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We discuss a simple rephase-invariant parametrization of the Kobayashi-Maskawa mixing ma-
trix V which easily generalizes to more than three generations and which we believe to be suitable
as a phenomenological standard. Our independent parameters are the magnitudes

~

V;
~

with
i &ct and the phase of plaquettes, arg( V; V,eV;eV,

*
), where j =i +1, @=a+1,and j &il. The de-

tailed discussion includes consequences of unitarity constraints, modifications in cases of degen-
erate quark masses, and the relation of Jarlskog's invariant functions of mass matrices. We reex-
press the CP-violation phenomenology of the K-K and B-B systems in this rephase-invariant for-
malism. We exhibit a fourth-generation scenario where the top-quark mass need not be large even
in the presence of large Bd-Bd mixing.

I. INTRODUCTION II. THE GENERAL PRESCRIPTION

In the standard model, CI' violation is believed to be a
consequence of complex values of elements of the 3&3
Kobayashi-Maskawa (KM) matrix' V which describe the
couplings of the weak intermediate bosons 8' —to quarks.
However, the phases of individual matrix elements of V
are not themselves directly observable, because of arbitrar-
iness in choice of phases of the quark fields. Therefore
there is strong motivation to find a descriptive structure
which is independent of such choices of phase. This prob-
lem has received a great deal of attention, and the 3&3
case is well understood. We are motivated to address
this issue again mainly by curiosity on how the three-
generation description generalizes to n generations. Here
the situation is much less clear.

The description we oA'er does work in the n & n case, is
reasonably simple and straightforward, and uses as raw
material the quantities directly emergent from phenome-
nology. We believe it to be an especially suitable candi-
date for standardization of the phenomenology.

Our main suggestion is to replace the usual descrip-
tion of the Kobayashi-Maskawa matrix in terms of gen-
eralized Euler angles by a description using moduli of
matrix elements and plaquette phases, defined below.
The name "plaquette" is motivated by a rough analogy
to gauge theories; the rephasing transformations play a
role analogous to gauge transformations. As the
definition suggests, the plaquette phases are then analo-
gous to the field strengths of gauge theories.

In the next section we present the general description.
In Sec. III we present details of the argument. In Sec.
IV we discuss the cases of three and four generations. A
graphical method used to describe unitarity constraints
is discussed in Sec. V. Section VI touches on Jarlskog
in variants, and parametrizations of mass-degenerate
cases are presented in Sec. VII. Rephasing-invariant
phenomenology occupies Sec. VIII. Section IX con-
cludes.

ia ~ia i —l, a —1Vi, a —1 Vi —l, a

We furthermore define plaques as

= V; VjpVpVJ'

(2)

As we demonstrate later, any observable consisting of
a product of Vs and V"s can be written as a product of
plaquettes, possibly multiplied by a product of

~
V;

and possibly divided by another product of
~

V;
~

. (We

We label the n )& n Kobayashi-Maskawa matrix V;
with latin indices for Q = —', quarks (i =u, c, t, . . . ) and
greek indices for the Q = ——,

' quarks (a =d, s, b, . . . ).
The number of independent real parameters characteriz-
ing the (unitary) V is n . Of these, n (n —1)/2 are "an-
gle" parameters (this being the number of independent pa-
rameters for n &Cn real rotations). Of the 2n possible re-
phasings of the quark fields, one (a common phase change
of all 2n quark fields) leaves V invariant. Hence the num-
ber of independent "phase" variables is

n — —(2n —1)=n (n —1) (n —1)(n —2)
2 2

A typical observable (in particular anything obtainable
from Feynman-diagram calculations) will be a polynomial
in Vs and V 's, with the restriction that in each term of
the polynomial there be equal numbers of Vs and V*'s,
and that in each term the set of indices Ii I in the product
of Vs be identical to the set Ii I in the V*'s (this must of
course also be true for the greek indices I a ) ).

The simplest observable is the magnitude of each KM
element: ( V; V;* )' . The simplest which contains
phase information is a product of four Vs:
V, V~&V&VJ' For the cas.e ~i —j ~

=
~

a —P
~

=1, we
call this product a plaquette. The plaquettes, together
with the

~
V; ~, will be our basic building blocks. We

define plaquettes as
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J =Im~, &
——ImV, b V„, V,*, V„*& ——s1 szs3C1czc3 sin6, (4)

which is the familiar and ubiquitous combination present
in CP-violation phenomena. We note that

,q I
& ( 0.0& ) X ( 0.2 ) X 1 X ( 0.01 )

—lO-4 .

We also note the important result that in the 3X3
case, all plaques have the same imaginary part. In fact,
for allis, a&P,

Im V; VJp V;~ Vj* =const =+J .

assume, here and in what follows, except Sec. VII, that
all elements of the KM matrix are nonvanishing. ) It is
therefore natural to associate the magnitudes of the

I
V;

I

with "angle" variables and the phases of the pla-
quettes (often just the imaginary part suffices) with the
"phase" variables. In particular if we choose the

I
V;

with ca~i as "angle" variables and also the arg; with
+~i as the "phase" variables, the counting comes out
correctly: there are n (n —1)/2 independent

I
V;

I

and
(n —1)(n —2)/2 arg; . IThe top-most row with i =1
is unavailable, and one has n (n —1)/2 —(n —1)=(n
—1 )( n —2 ) l2 elements remaining. ]

This is our main proposition: use the
I

V,
I

and
argO; with a &i as the independent set of rephase
invariant variables. We will show later that, given these
parameters, the entire KM matrix is determined up to
the 2n —1 arbitrary quark-field phases, and up to a finite
ambiguity which is no greater than 2" -fold, coming
from solving quadratic equations in determining the
magnitude of unknown diagonal Vs. In the 3X3 case,
this implies that

I
V„, I, I V„t, I, I

V,t, I, and argO, b
are the principal parameters. In the standard KM pa-
rametrization, it is the imaginary part of the plaquette:

This is a consequence of unitarity of the KM matrix,
and is discussed further in Sec. IV.

In the 4X4 case, the parameters are supplemented, in
an obvious notation, by five new quantities: namely,

I
V.a I'

I
V,a I'

I
Va I' arg .a»d arg a Thu»

were new generations to emerge, the phenomenological
structure need not undergo any major revision. New pa-
rameters become introduced and old unitarity con-
straints are modified. However the moduli and plaques
below and on the diagonal will be complicated functions
of the above parameters.

III. DETAILS

In order to substantiate the assertions of the previous
section, it is necessary to first show that any (rephase-
invariant) observable can be expressed in terms of

I
V;

and phases of plaquettes. Second, we have to show that
given only the

I
V;~

I
and argO; with a&i all remain-

ing parameters of the KM matrix are determined.
To demonstrate these assertions, it is useful to depict

the observables, plaquettes, etc. , which are products of Vs
and V*'s graphically. The procedure is as follows.

(i) If V; appears in the product, place an 0 in the ia
entry of an originally empty n Xn matrix. If V appears,
place an X.

(ii) Then, from rephase invariance, each row (or
column) must have equal numbers of X's and 0's.

(iii) An g in a single given ia location is a factor
I

V;
I

. These can be inserted or removed at will without
changing the phase of the expression.

Now, given an arbitrary product V; V;&, which
corresponds to a matrix with X and 0 entries, we may
systematically eliminate the X's and the 0's from the
first column in terms of plaquettes, and then continue the
procedure column by column. For example,

X ' 0 X 0 X
arg X 0 arg X 0 ——arg 32+ arg

0 X X

= —arg —arg 3 +arg

0 X

= —arg 32
—arg 33

—arg 42
—arg 43 arg 44 .

We trust the procedure is clear enough not to require
the formal proof here. Therefore we argue it is possible
to express all observables in terms of the magnitudes of
KM matrix elements and the phases of plaquettes.
What remains to be shown is that the limited set
( I

V; I,arg; j with a &i suffices as well. ~e do this
in several steps, by construction.

(1) First choose the phases of V, and V;„. Since
there are 2n —1 such elements, this exhausts the arbi-

I

trariness associated with rephasing of quark fields. (We
shall return later to a suggestion for how this phase
choice might most conveniently be made. )

(2) Use unitarity to determine
I

V~~ I
and

I V„„ I:
(8a)

a&1

I
v-

I

'= 1 —X I
v.

I

' .
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(3) At this point all elements in the top row and
right-hand column are fully determined. Thus the phase
of Vp &

can be determined from the phase of the pla-
quette 2„ in the upper-right-hand corner of the matrix

)fC

(9)

)fC

(4) In the same way, the phases of the remaining Vz
in the second row with a ) 2 may be determined itera-
tively in terms of plaquette phases: e.g. ,

)fC

OJC

(10)

a remotely possible twofold ambiguity in its solution.
(8) When we reach the nth row, the same procedure

again may be used to determine
~

V„„~ . However
~

V„„~ was already determined in step 2 without ambi-
guity. Thus no additional ambiguity is introduced at
this stage, and it can be expected that the overall degree
of ambiguity will, if present at all, be reduced. A highly
conservative statement is that there is at most a 2"
fold ambiguity in reconstructing the KM matrix from
the input data. However, as long as the off-diagonal ele-
ments are as small as those seen experimentally, there
will in fact be no ambiguity at all.

This completes the general argument on reconstruc-
tion of all KM parameters from the input parameters.
In the next section we will explicitly show how the pro-
cedure works for the three- and four-generation cases.

IV. PARAMETRIZATION

A. Three generations

Note that the phase of V22 is determined at this stage,
but not its magnitude.

(5) The same procedure may be followed to determine
the phases of all V; with a ) i,

)fC )fC

although it must again be remembered that
~

V;;
~

is not
determined for 1 &i &n.

(6) We now use unitarity to obtain the missing param-
eters in the second row. The orthogonality of the first
and second rows gives a linear relation between the
(comPlex) Vz1, the real

~
Vzz ~, and Previously deter-

mined quantities:

V21 V11 + V22 V12 + g Vza V la
cx =3

(12)

Now we may introduce the unitarity constraint of nor-
malization of the second row:

n

I
Vz1 I

'+
I

Vzz
I

' = 1 —& I
Vz.

I

'
&=3

(13)

The combination of Eqs. (12) and (13) is a quadratic
equation in the unknown

~
Vzz

~

. If the off-diagonal ele-
ments of the KM matrix are small (as in the case here),
one root is positive (the physically correct solution). The
other root will be negative, near —j. , and thus physically
unacceptable. '

(7) This procedure can be again iterated. In the third
row there are two orthogonality equations which deter-
mine the (complex) V31 and V32 as linear functions of

~
V33

~

with coefficients determined in terms of known
quantities (up to the remote possibility of a twofold am-
biguity in determining

~
Vzz

~

). Normalization of the
third row leads to a quadratic equation for

~
V33

~

with

The magnitudes of the KM elements which serve for
us as inputs are

i
V„,

i

=0.220+0.002,

V„b
i
(0.011 (90% C.L. )

i
V,b i

=0.048+0.010 .

(14a)

(14b)

(14c)

B. Four generations

In the case for four generations we proceed in a simi-
lar way. Again it will be convenient to choose phases
such that the phases of plaquettes of interest are directly
related to phases of the KM matrix elements in the
upper right-hand corner; i.e., V„b, V„z, and V,z. We
shall choose those such that their neighbors are real and
positive. Specifically, the proposed generalization of the
preceding section is as follows.

(1) Choose V„d, V„„V,21, and Vr21 real and positive.
(2) As before, choose the phase of V„*b equal to the

phase of the plaquette

arg V„b ———arg (16)

(3) In the same way choose the phase of V,z equal to
the phase of the plaquette

alg V g = —alg (17)

(4) Finally choose the phase of V„s so that V,b
remains real and positive. This is accomplished by the
choice

We suggest that for reconstruction purposes the five
independent phase choices be made as follows. (1) V„d,
V„„V,b, and V,b are chosen real and positive; (2) the
phase of V„*b is chosen equal to the phase of the (only)
input plaquette

arg V„*b ——arg

This implies that V„ is also real and positive. Then we
may proceed to reconstruct the remaining Vs.
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arg V„g ——arg V„b +arg V,g —arg 0 0 ~ e 0
= —al g b

—al g g —al g (18) X ' + X + . . X =0 (21)

(5) From these definitions, it follows that, as in the
3X3 case, V„, V,b, and V,b remain real and positive.
The situation is shown schematically as

R R
(R) (R)

(R) R
R

(19)

V. MODIFICATIONS TO THE RELATION
J =+IIG IN FOUR GENERATIONS

We show some simple diagrammatics based on unitar-
ity to prove the well-known result Im =+I [Eq. (6)] in
the three-generation case; and then extend the diagram-
matics to any number of generations. Define Im „=J;
then unitarity of KM matrix gives

Vii V»+ V»t'»+ Vi3

One can write equivalently

(20)

where R denotes real and positive by definition, an aster-
isk denotes complex, and (R) denotes real and positive as
a consequence of the phase choices made for the starred
elements.

It is clear there is a useful generalization here: for the
2n —1 phase choices, take the V;; and V;;+& to be real
and positive. This puts the number of remaining phases
for elements above the diagonal equal to the number of
independent plaquette phases. The analysis of Sec. III
remains valid with this convention. Indeed, we believe
that if one insists on a standard phase convention, this
one might be useful for phenomenology, since its con-
nection to the rephase-invariant plaquettes is manifest.

Multiplying by V» V» we obtai~

0 X ~ ( o X
X 0 . + . e + 0 X =0. (22)

Taking the imaginary part removes the second term and
we get

Irn» ——Im 23
——J . (23)

In this fashion one easily sees that in three generations
only one CP-sensitive parameter exists: Im =+J.

The generalization to 4X4 matrices or higher creates
a very large number of such relations. It is interesting to
see how far one can go with these. Already for four gen-
erations, the large number of linear unitarity constraints
which one can write down contain many which are
linearly dependent. After detailed examination it turns
out that the nire Irn; for plaquettes can be expressed
linearly in terms of nine other quantities which are the
imaginary parts of big plaques. By a big plaque we mean
a quantity

big plaque= V; VjpV;~V~* (24)

with i —j ~

) 2 and
~

a —P
~

) 2.
There are four 2 X 2 big plaques, four 3 X 2 big

plaques, and one 3X3 big plaque. This reexpression of
plaquettes can be useful because, under the assumption
that

~

V
~

decreases the farther it is from the diagonal,
one relates phases of plaquettes on the diagonal to
phases of elements, the moduli of which are small. Note
that there is only one big plaque which can reside in the
three-generation submatrix. By repeated use of the uni-

tarity condition, '

X X X X

Im» ——Im x ~ o + x ~ ~ o + . - . +
X X

X 0 X

Im 23 ——Im»+ Im
~ x o+.

X
(25)

Irn 32 ——Im»+ Irn
X X

X 0 X

Im 33 —Im 23+ Irn 32
—Im»+ Im

0 ' X

X
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In the limit of a trivial fourth-generation contribution
(i.e., no off-diagonal elements of V;4 or V~ ), this reduces
immediately to the three-generation case. To make good
use of these relations, however, appears to require some
knowledge of the fourth-generation KM matrix ele-
ments. One can say that sufhcient conditions for the
three-generation relations to survive are that

I V„s I,
I Vcr

I I
VTd

I
and

I
VT. I

all be s~~ll compared to
10

VI. JARLSKOG INVARIANTS

Jarlskog, in an interesting paper, ' pointed out that all
physical quantities must be independent of an arbitrary
unitary transformation a6'ecting simultaneously the up-
and down-quark mass matrices, denoted, respectively, m
and m'. One diagonalizes the "square" of the mass ma-
trices via' '

matrix. Jarlskog pointed out that physics does not
change under the transformation

mm ~Xmm X
m'm' ~Xm'm' X

(28a)

(28b)

U~TU,
U'~B U',

(30a)

(30b)

where X is an arbitrary unitary matrix. Under such a
transformation, Eq. (28), the mass eigenvalues of the up
and down quarks and even the mixing matrix

(29)

stay invariant. As is well known, not all the mixing ma-
trix elements are physical quantities. The transforma-
tion discussed in previous sections which leaves physics
invariant, but changes the phases of KM elements is

U(mm )Ut=D

U'(m'm' )U' =D'
(26a)

(26b)

where T,B are arbitrary diagonal unitary matrices

V~TVB . (31)

where U and U' are unitary matrices. The KM matrix
is defined as

It appears that Jarlskog's approach includes all the
physics, since one can not only express any

I
V I,

V= UU' (27)
I

V~~
I

=tr[v;(S)v' (S')]/(detv detu'), (32a)

There are n + 1 physical measurables, 2n quark
masses, and (n —1) physical parameters of the mixing

but also any plaque as an invariant function of mass ma-
trices, Eq. (28). In particular

= V; VkpV;pVk* ——V; Vk* VkpV;p
——V; V g VkpVp; ——tr(E; VE V"Ek VEp V )

=tr[v;(S)v' (S')uq (S)u p(S')]/(detu detu') (32b)

Here S =mm, S'=m'm '; E; and E are the elementa-
ry matrices; v;(S) and u' (S') are the Vandermonde-type
matrices for the up and down sectors, respectively (con-
sult Ref. 13 for details' ).

It appears that invariance under Eq. (28) can be
likened to redefinition of fields and not to an underlying
internal symmetry. A lucid example is the case of multi-
ple scalar fields P'=(P', . . . , P") with a P interaction.
The Lagrangian density reads

(33)

The mass matrix can be diagonalized by a unitary trans-
formation U, i.e.,

VII. DEGENERATE MASSES

A. Mass degeneracies

It is interesting to consider cases of d-fold degenera-
cies' in the up- or down-quark masses. For instance, as
is well known, in the three-generation case existence of
one twofold degeneracy implies the nonexistence of a
CP-violating phase. For four generations and two two-
fold degeneracies, there remain four angle parameters
and one phase, and not five angles and no phases.

Consider a d-fold mass degeneracy, and for concrete-
ness take the first d up quarks to be degenerate. Under
a d &(d unitary reshuffling U of the first d rows of the
KM matrix physics cannot change:

U m U=D

Then under the redefinition of fields

(34)

(35)

U 0
V~ 0 ~

V. (36)

we will have a diagonalized Lagrangian. Obtaining the
"same physics" does not require identical actions
S = f d x L, but rather "same physics" falls into
equivalence classes, definable by all Lagrangians having
identical m eigenvalues (not necessarily equal m ma-
trices).

d d
(VtV) p

——g V,* V;p
——g V,*V;p. (37)

Call the KM matrix restricted to the first d rows V. We
observe that V V is invariant under U transformations
Eq. (36) (this is trivial for V V). The invariants under
Eq. (36) are
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d

g V;*V; (38a)

The summation extends only over the degenerate mass
rows. Physically invariant quantities are obtained when
we create rephasing-invariant combinations in the down
sector of V V, Eq. (37); for example,

B. Dift'erent number of up and down generations

Inspired by E6 Inodels' we consider the following. If
we were to have an unequal number (n) of "up genera-
tions" and (m) of "down generations, " then the mixing
matrix could satisfy only one of the two equations:

d d

g V;* Vp( V,pV, ) = g 'PU~„ for j )d, (38b)

VV =Inxn ~

V'V=X

(43a)

(43b)

~V, ~, ' kp for jk)d. (38c)

d

p "(:).p

It seems possible to express any other physical quantity
in terms of Eqs. (38a) —(38c). For instance,

d d d

X V*-Vp X ~)*p~&-= X "
p

n [(m —1)+(m —n)]/2 (44a)

Both unitarity conditions cannot be met simultaneously
since the combined number of constraints n +m
exceeds the initial number of real parameters 2nm
characterizing an arbitrary complex n 0&m V matrix. To
be definite take n &m, and assume Eq. (43a) holds, as
would be the case if all up quarks were members of elec-
troweak doublets. Then the number of physical angle
parameters is

or

for k r )d (39) and phase parameters is

[(n —2)(m —1)+n (m —n)]/2, (44b)

g V;*V;pVJpVk Vk*~V, ~=" J~ g ~;p
~ VJ

for k,j )d . (40)

where we assume a nondegenerate up mass and down
mass spectrum. A physical parametrization can proceed
as follows: take the region bounded to the left by the di-
agonal, which is not included:

As a physical parametrization we could choose the angle
and phase parameters from the region bounded above by
the dth row and bounded to the right by the diagonal
(the dth row and the diagonal are not included):

0 C 0'
n ~ 0 0

~ ~

(45)

C 0 C

C 000
(41) The angle parameters are the magnitudes of the KM ele-

ments in the bounded region, the phases are the argu-
ments of the plaques constructed in that same region.

The angle parameters, denoted by diamonds, are taken
as the magnitudes of KM elements in the above region.
The phase parameters are taken as the arguments of all
those plaquettes that involve at least three KM elements
from the above region. Indeed any plaque with two ele-
ments from the first d rows can always be rotated to 0; it
has no physical significance. By a unitary transforma-
tion on the first d rows, Eq. (36), one can rotate all the
first d rows below the diagonal simultaneously to 0.
Therefore no angle or phase content is neglected in the
parametrization, Eq. (41).

It is also possible to analyze cases for which there are
two or more sets of degenerate quarks. For example,
look at a four-generation model where m „=m, and
md ——m, . Then just choose

~
V33

~ ~
V34

~ ~
V/3

~
V~4 ~, and arg q4 as our parameters. Indeed the sub-

matrix

VIII. REPHASE-INVARIANT PHKNOMKNOLOG Y

A. Kaon system

%e define the short- and long-lived species, assuming
CPT invariance, as

I:,& =z
~

rc')+q
~

K'),
~sc, &=q ~1~'& —~ ~I~ 0& .

(46a)

Here we display in rephasing-invariant form ' the
kaon parameters Am, 5I, e, e', and look at the KM
constraints from Kl ~p+p and from B -B and D-
D mixings. In a later study we will include constraints
coming from K+~vr+vv and from the electric dipole
moment of the neutron.

V43 V44

The parameters p and q are not rephase invariant. In
the absence of CP violation the ratio p/q is of modulus
unity. Define

is not necessarily unitary and contains phase informa-
tion.

i~, (~ir, I=O
~

H'
~

K )e
( rrn, I=0

i

H'
i
K ). (47)
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The Wu- Yang phase convention, together with
CP

I

K ) =+
I
K ), implies coo ——0. Here we leave this

phase, Eq. (47), arbitrary. From their definitions it is
clear that the following combinations are rephase-
invariant:

and

(~~, 1=0
I

H'
I
K, &

(~~,1=0IH IK, )

e'=(I/i/2)ie ' ' Im(az/ao) .

(5 la)

(51b)

(K IH'In)(n IH'IK )
e M&2 ——e ' P

mx E„—
Here we have defined

(52)

e I ~2
——e 2mgp(K IH'In)(n IH'IK )

)& 5( mg E„), — (48b)

It follows that

—i Im(M~2e ) —Im(I &2e )/2

l Cg)p

i l—m(M &ze
(51a')

]. /2
—iruo/ —i( 0+r0argI i2) M12/ 12=e

p M, 2/I, z
—(i/2)

, , 2[M |2 —(l /2) I |2]
(49)

Equations (50) and (51) are all physical quantities and
shown in a rephasing-invariant way; under the rephas-
lngs

where P stands for principal value and p„ is the density
of states. Here EA, =A.L

—A,z ——Am —ihI /2 and A, L and
are the eigenvalues of the 2 )& 2 mass matrix

M —iI /2. It is useful to recognize that M&2/I &2 is re-
phase invariant. In the limit of CP conservation it is
real. We now may express the (rephase-invariant) mass
and lifetime difference of the kaons as'

e"
I
K'&,

I

K'o&-e"
I

K '),
(53a)

(53b)

a2 ——bV„', V„d, (54a)

physics does not change.
We remark that in the standard model the I=2 ampli-

tude arises only from the spectator diagram and
hence '

I Cgp
b, m = —2 Re(M&2e '),
AI = —2 Re(I &2e ') . (50b)

ao=
q =u, c, t, . . .

cq Vqs Vqd

b being a real constant. On the other hand,
50a

(54b)

Rephase-invariant definitions of the CP-violating param-
eters are

where cq are coefficients whose short-distance contribu-
tions have been calculated. We therefore obtain

i (52 —6p) Ie'= —ie ' '
I
a2/ao

I
( —)Imv'2 q=u, c, t, . . .

(c~ /b) ~ 2„, . (55)

Utilizing unitarity and assuming (cz /b) to be real we obtain, in the four-generation case,

1 . i(52 —6pj 2 1e'= —ie
I
az/ao

I 2 [ —(cT —c, )Im „+(cT—c, )Im"',d] .v'2
I

V„, V„d I
b

(56)

One sees that e'/e can be positive, negative, or even 0
and that e'/e does not depend on the long-distance c„
coefficient, which might harbor the AI= —,

' rule explana-
tion. Note that in the three-generation case the square
bracket in Eq. (56) reduces to (c, —c, )J.

To calculate e, one realizes that to a good approxima-
tion one can neglect the phase difference between ao and
a2. Then, exploiting the simple relation [Eq. (54a)] we
obtain

S (x;,xk ) =x; ln(xk /x; ),
S(xk )—:S(xk, xk ) =xk .

(58a)

(58b)

—l

~~
I

I'ur I'ud
I

', k =., r, i,
S(x;,xk )Im("";, "

k, ) .

(59)

For arbitrary quark masses exact expressions could be
used. e follows as

I Cggp

M&2e
i, k =u, c, t,

m. mkud ud S ' "
(57)ls ks

w w

In the simple limit x; «xk «1, [x;—= (m;/M~) ] we
have

The KI -Ez mass difference is believed to arise mainly
from long-distance effects K ~2~~I( . However, Gail-
lard and Lee predicted the charm mass within the
two-generation Glashow-Iliopoulos-Maiani (GIM) mod-
el:
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As a rough upper bound, we note that higher-generation
contributions must not exceed Am and so must not
exceed the charm contribution.

While the e' parameter involves the imaginary parts of
the t CI„, plaques [Eq. (55)]; the short-distance contribu-
tions of KL ~p+p contains information about their
real parts. An estimate of the modulus of the short-
distance amplitude leads to

less than maximal, one would then have to look outside
the standard three-generation model. One possible ex-
planation could be found with four generations.

C. Remarks and speculations

Large fourth gen-eration mixing: An example

To get a feel about the mixing magnitudes of a fourth
generation consider

Re
q =u, c, t,

~ &„,m, ' &
~

V„,'V„d 55 GeV' . (61)

B. B-B mixing

The large Bd mixing observed by the ARGUS Colla-
boration,

Utilizing unitarity we may eliminate any one plaque; this
yields, for the four-generation case,

~
m, Re(' „,)+m, Re(' „,)+mT Re( " „,)

~

&
~

V„, Vd~55GeV . (62)

1 0 0 0

0 1 0 0
I Vbis I g3 g2 I g

0 0 0 1

We list a few consequences:

mT &30 GeV (KL-Ks mass difference),

mT 34 GeV (KL, ~p+p ),
ms & 100 GeV (D Dmixi-ng),

mT 170 GeV (Bd Bd mixin-g) .

(69)

(70b)

(70c)

(70d)

(b, m /y )d =0.7,
implies, in the case of three generations,

m, ~60 GeV .

(63)

(64)

We make the following remarks.
(a) In order that higher-generation contributions not

exceed the charm contribution to the EL -Ez mass
difference, one must have

We review the reasoning as follows. To good approxi-
mation

(b,m/y)d
2

S(x, ) ~rd=0.88d
100 MeV S(m, =40 GeV) V,b

(65)

204 ) 208 (71)

bmD fD
~mx ft;

2 t2
m,

m,
(72)

leading to mz- 30 GeV.
(b) The Kt ~p+p analysis [Eq. (62)] leads to Eq.

(70b).
(c) In the two-generation case

where Bd is the "bag constant" and f8d is the decay
constant. From unitarity of the KM matrix and the ex-
perimental data one obtains that

I
V«/Vcb

I

=~. (66)

The easiest way to reconcile the experimental Bd-mixing
result, Eq. (63), is to choose a larger top-quark mass.
This may not be obligatory given theoretical and experi-
mental uncertainties. However, in the four-generation
ease, unitarity conditions are much relaxed. We know"
from the 8 lifetime that

(67)

and from indirect unitarity bounds

i
Vtd i

&0. 17 (95% C.L. ), 0&
i

V,b i
&1 .

Assume, for the sake of an argument, that the top
contribution is dominant even in the four-generation
scenario. Then one can easily fit the large Bd mixing
with small top-quark masses (say 40 GeV), by choosing

Furthermore, were it to happen that B,-B, mixing is

With the experimental D lifetime and mz ——500 MeV one
gets

(bm/y)D =10 (73)

The existence of an ultra, heavy fourth-generation 8
quark leads to

b,mD —[0 m, +mt' ( V,~ V„*s ) ],
(Am/y)D =10 [1+9 (mqlm, ) ] .

(74)

(75)

From experiment (b, m /y )D & 10 ' hence Eq. (70c).
(d) By demanding that the fourth-generation contribu-

tion to Bd-Bd mixing not exceed the ARGUS observa-
tion Eq. (63), and by analogous reasoning to (c), we ob-
tain ~ the bound (70d).

It appears that Vb;s, Eq. (69), is experimentally mar-
ginal.

IX. CQNCI. USIQNS

The main purpose of this paper is the proposed pa-
rarnetrization of the KM matrix. It is quite directly re-
lated to phenomenology, since the parameters consist of
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moduli of matrix elements and plaquette phases [defined
in Eq. (2)]; these are manifestly rephase invariant. In the
three-generation case, the question of how to
parametrize the KM matrix is not too important. How-
ever if a generalization to a higher number of genera-
tions turns out to be necessary, the problem is less trivi-
al.

If one does insist on a phase-dependent convention, we
believe that choosing diagonal elements and those next-
to diagonal elements which are above the diagonal to be
real and positive guarantees a simple relationship to pla-
quette phases. However one suffers from increasing
complexity in the lower diagonal half. It may also be
that experiment may dictate other choices; if a given set
of

~
V;

~

are measured especially accurately, it makes
sense to include them in the set of independent parame-
ters. Likewise one might consider to use phases of those
plaques directly related to the observed CP violation.
Our basic point is to highlight the importance of rephase

invariance of any future parametrization, because only
then is the physics manifest and not obscured by arbi-
trary phase conventions.
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