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We calculate nucleon magnetic form factors using perturbative QCD for several distribution
amplitudes including a general one given in terms of Appell polynomials. We find that the magni-
tude and sign of both nucleon magnetic form factors can be explained within perturbative QCD.
The observed normalization of GM~ requires that the distribution amplitude be broader than its
superhigh-momentum-transfer limit, and the GM„/GM~ data may require the distribution ampli-
tude to be asymmetric, in accordance with distribution amplitudes derived from QCD sum rules.
Some speculation as to how an asymmetric distribution amplitude can come about is offered. Fi-
nally, we show that the soft contributions corresponding to the particular distribution amplitudes
we use need not be bigger than the data.

I. INTRODUCTION

There has been much discussion about the validity of
using perturbation theory with QCD (PQCD) to make
predictions for exclusive processes at experimentally
feasible energies. ' It is generally granted that the pre-
dicted scaling behavior works, by luck or otherwise, at
reasonably low Q . Absolute normalizations then be-
come the next testing ground for PQCD. Unfortunately
the normalization, unlike the energy or momentum-
transfer scaling behavior, is dependent upon unknown
and/or perhaps not well understood wave functions of
the quarks in a hadron. ' ' ' Still, the question remains
whether wave functions can be found for which the cal-
culated normalizations are in agreement with the data.
In this paper it is shown that such wave functions can be
found, and the nature of these wave functions is exam-
ined, but no firm stand can be taken on whether or not
these wave functions are the correct ones. Ab initio cal-
culations of the correct nuclear wave functions requires
the use of nonperturbative techniques beyond the scope
of this paper.

In order to clarify the discussion, several categories of
predictions of PQCD for exclusive processes can be dis-
tinguished.

(1) Scaling behauior High-ene. rgy or high-
momentum-transfer scaling behavior of form factors or
differential cross sections can be obtained. Taking elec-
tromagnetic form factors as an example, the helicity-
conserving one is always the biggest and goes like

for a system of X constituents. Predictions of power-law
behavior tend to work well. Figure 1 shows one exam-
ple: the proton magnetic form factor. The currently
published data for Q GM~ is shown as a function of Q
and the PQCD scaling behavior appears substantially

right for Q ) 5 GeV .
(2) Normalization The n. ormalization of the form fac-

tors [the coefficient A in Eq. (I)) or scattering ampli-
tudes could be obtained. These calculations depend on
the quark wave functions, and in this paper explicit cal-
culations for the nucleon magnetic form factors are
shown. (There has been a claim ' that no reasonable
wave function can give a PQCD calculated form factor
as large as the data, so that the agreement seen with the
PQCD scaling behavior in Fig. 1 is just luck. )

(3) Logarithmic corrections. The logarithmic correc-
tions to the power-law behavior can be calculated. '
Like the normalization, these calculations are, in gen-
eral, wave-function dependent. For example, the leading
term in a form factor is more completely given as

F(Q2) [/ (Q2)]x —11

X g d;, (lng /A ) (2)

The y~ are calculable, positive, and monotonically in-
creasing with j, but the d;J are wave-function dependent.
Only one prediction is wave-function independent, and
that is the lng behavior at sufficient Q that only one
term in the above sum survives. This requires extremely
high g . In contrast with category (1), "logarithmic
asymptopia" is now needed rather than "power-law
asymptopia"; that is to say, lnQ must be large rather
than just Q being large.

(4) Polarization Quantities spe. cifically involving po-
larization can be calculated.

In this paper the normalization of the nucleon mag-
netic form factor, category (2) above, will be studied, us-
ing plausible wave functions or distribution amplitudes
including a flexible class of distribution amplitudes that
can be expressed in terms of the first six Appell polyno-
mials. ' ' (These are eigensolutions of the evolution
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impulse-approximation calculation of the form factor. If
we do an impulse-approximation calculation of the form
factor keeping only the low-transverse-momentum part
of the wave function, for example, by purposely using a
wave function such as a Gaussian which is plausible at
low momenta falls much too quickly at high momenta,
then we get the "soft contributions. " At high Q the
soft contributions fall faster than the PQCD or "hard"
contributions so the PQCD result must eventually dom-
inate, but at any Q the size of the contributions is a test
of the validity of the approximations that go into the
PQCD result. The question is whether the soft contribu-
tions are significant or even dominant at present experi-
mental Q . It is found for some wave functions of in-
terest that the soft contributions may be important but
are not necessarily larger than the PQCD result. As dis-
cussed in Sec. III, it is important to note the effects of
the tail of the wave function on wave-function parame-
ters.

A summary and some speculation are given in Sec. IV.
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1. Data for Q G~~ plotted vs Q . (Taken from Ref.
8.) The two dashed lines indicate how the data would behave
if GMz —1/Q' or GM~ —1/Q'.

equation for the distribution amplitude. For this paper
any basis set would do as well, but the Appell polynomi-
als are very convenient for any studies of the logarithmic
Q dependence of the form factor. ) It will be shown that
it is possible to match at high Q the observed normali-
zation of G~z, without running afoul of wave function
normalization conditions. The simplest wave functions,
however, are not the best ones to use. The observed nor-
malization of GM~ requires a broad distribution ampli-
tude, and moreover the observed value of the ratio
GM~/GM„may not be readily explained without asym-
metric distribution amplitudes. Indeed, a distribution
amplitude based on QCD sum rules which shows an
asymmetry in the quark spatial wave function has al-
ready been suggested by Chernyak and Zhitnitsky. The
foregoing is discussed in Sec. II. Section IV includes
some speculation about how it is possible to have an
asymmetric distribution amplitude even though SU(6) re-
sults, which are based on completely symmetrical spatial
wave functions, work fairly well for quantities measured
atlowQ .

Section III contains a study of the "soft contribu-
tions. " In QCD the impulse approximation gives the
correct leading-order (in 1/Q ) form factors at high Q
and the result comes from the tail, meaning the high-
transverse-momentum part, of the quark wave function.
High enough transverse momenta allow the use of per-
turbation theory with QCD and indeed the PQCD calcu-
lation can be seen as a way of generating the correct tail
of the wave function and immediately using it in an

II. NUCLEON FORM FACTORS IN PQCD

k;T ——(k, k, ),
and the momentum fractions are

(4)

FICx. 2. The process giving GM~. Three parallel moving
quarks enter the circle labeled TH where one of them absorbs
the photon entering mainly from a transverse direction, and
then shares the momentum with its fellows so that three paral-
lel quarks emerge.

One can show that in QCD the impulse approxima-
tion contains the leading contribution to the form factor
at high Q and further that the leading contribution to
either F~ or G~ (these two are equivalent to leading or-
der since F2 falls faster by one power of Q ) is (Fig. 2)

GM= J [dx][dye*(x, Q)T„(x,p, Q)tt)(p, Q), (3)

where P, the three-quark distribution amplitude, and the
other quantities in Eq. (3) are defined below. To obtain
the leading contribution it is su%cient to consider the
three-quark part of the wave function; Fock components
with more constituents require more gluon exchanges to
give all the constituents parallel momenta in the final
state and their contribution to the form factor fall faster
with Q . We work in an infinite-momentum frame
where the entering proton is moving along the z axis.
The transverse-momentum components of the ith quark
are



2062 CARL E. CARLSON AND FRANZ GROSS 36

g k;r=0 (6)

x;=1 .

In the expression for the form factor, the distribution
amplitude P is

p(x, g) = j [dkT]g(x, kT ), (8)

where g is the three-quark wave function. The
differentials are

[dx] = gdx;5 1 —gx,

and

x; =k;+/p+,

where k;+ =k; +k; and p is the proton momentum. For
the three quarks in the initial proton

Note the 1/Q, the 1n(g /A ) dependence within the
strong-coupling parameters e„and the singularities near
the kinematic boundaries of x; and y; (0 (x;,yj & 1).

The proton wave function is not at present calculable.
However, QCD sum rules allow some moments of the
proton wave function to be determined, which in turn
sets conditions on model wave functions, and lattice
gauge theories may eventually give an ab initio calcula-
tion. Some progress is being made on the pion wave
function using lattice gauge theory. '

Accordingly G~ will be calculated for two general
classes of wave functions, starting with a simple one-
parameter symmetric wave function. This will show
what is necessary to get the right normalization and will
also display the limitations of symmetric spatial wave
functions which seem to persist even in more sophisticat-
ed versions of the same.

A. Simple symmetric wave function

A simple and factorable form of the wave function is
d k

[dkT]= g 16~ 5' ' g k T16~

The wave function is normalized by

j[dx][dkT J ~

g(x, kr)
~

=P3~ .

(10) P(x, kT)=N(x, x,x3)"exp —g k, T'/2a, '

from which

$(x)=N'(X, X3X3)" .

(14)

TH

with C& ———', , and

x3(1—x& ) y3(1 —
y& ) X3( 1 —x, ) yz(1 —y, )

2 + 2 2

1 1 = T3(1~ 3)
x2x3(1 —x3) y3y3(1 —y, )

(13a)

and

The "hard-scattering amplitude" TH is the scattering
amplitude for three parallel quarks going into three
parallel quarks. There are 42 diagrams that can be
drawn form TH, but only 14 are nonzero and only the
four drawn in Fig. 3 need be calculated, the others being
obtained by symmetries. If ej is the operator which
gives the charge of quark j, then'

8~Cga, (Q )

g [e, T, +(x~y)], (12)
j=]

This is a one-parameter family of wave functions, the pa-
rameter being the power g. The constants X and N' are
fixed by the wave-function normalization condition, and
the parameter ao by the rms value of kT. , which should
be some reasonable value; one value suggested" is
a=0. 32 GeV. A Gaussian in the transverse momentum
is incorrect at high kT and Sec. III will show the effect
of additional terms in the transverse-momentum wave
function. However, the Gaussian is useful for now to
show how the usual normalization condition on the wave
function implies constraints between the size of GM~ and
the rms quark transverse momenta.

The integrals for GM can be done analytically. The
power must satisfy g& —,

' to make those integrals con-
verge. One way to begin looking at the results is to ex-
amine the ratio GM~/GM„, plotted in Fig. 4. The proton
form factor has a zero at g = 1 and the neutron form fac-
tor has a zero at

1 1T2=
x]x3( 1 —x& ) y&y3( 1 —y3 )

(13b) I

GM 0 GMp 0

Mr)

~ 5
0 ~ w I I

I

GM& &0 ~ GM&&0
I

+ (IN. = = OUT. )

FIG. 3. Lowest-order perturbation diagrams for TJI . The
small signs indicate quark helicities.

FIG. 4. Gl~/GM„ for the simple symmetric wave function,
plotted vs the power parameter for g.
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1g= —'+ —=0.79 .
2

(16)

Of course, the neutron and proton form factors have op-
posite signs and this constrains the values of g which
may be chosen. Further, since it is the proton form fac-
tor that is positive, 71 is constrained to —, &g &0.79. (In-
cidentally, there was for a while, an error in the litera-
ture in the overall sign of T~ and hence, of the calculat-
ed GMp. This had the effect of requiring g ~ 1 with con-
sequent large effect on the normalization. )

The result for GMz using the wave function (14) is

Q4G (Q2) 2 4 I + 2+2a, ao
IT 7l

(17)

with

and

(6r) +2)!
l(2n)'1'

(18)

X= (rI! ) (r) —I )!(2'—2)!
(2' )!(3'—1)!

For g=0. 6, a, =0.3, and ao ——0.32 GeV this gives

Q GM~ =1.1 GeV

(19)

(20)

which is near the data for Q & 5 GeV .

This wave function demonstrates that the observed
size of the proton form factor can be obtained, at least at
high Q, from PQCD. It shows that the experimental
normalization requires a broad (rI & 1) rather than a nar-
row (g& 1) distribution amplitude. It also shows the
possibility of a catastrophe that did not occur: what
could have happened was the distribution amplitudes
which gave a normalization compatible with experiment
also gave the wrong sign for G~p, but this was not the
case.

On the other hand, this wave function may be too
simple, and whether it can give the value of GM, /GMp
seen experimentally depends delicately on just what that
ratio is. Some comments on the GM„data are in order.

Strictly speaking, there is no GM„data away from
Q =0. There is data on o.„, the differential cross sec-
tion for e nelastic -scattering, at Q =2.5, 4, 6, 8, and 10
GeV but only at one angle. ' Hence a separation of
Gz„and GM„ is impossible. However, several things can
be learned or are suggestive about GM„by analyzing the
data which is available.

The salient observation is that o.„/o.p falls roughly
like 1/Q from (say) 5 GeV to 10 GeV and is roughly

at the upper Q . Neglecting GE gives Qo „~ o~
=

~
GM„/GM~

~

and since the contributions of GE~ to o'z
really appear negligible at high Q, we can safely say

GM„1
GMp 2

at Q =10 GeV . (The sign is known to be negative at
Q2 0 )

The falling cross-section ratio suggests more. Possi-
bly, cr „/o.

p falls because GM„ is dominating 0.„but

B. More general wave function

For a more general treatment, expand P(x) in polyno-
mials (times a weight factor x,x2x3 to decrease sensitivi-
ty to the end-point singularities' ). For the present pur-
poses the particular choice of polynomials is not crucial,
but it is convenient to use polynomials which are stan-
dard' to the subject and which would be useful for
study of logarithmic dependences. The wave equation
for P(x, kT) has a kernel which is dominated by one-
gluon exchange for high kT. This observation can be
turned into an "evolution equation" which governs how
the distribution amplitude P(x, Q ) changes with Q for
high Q . The evolution equation can be solved by the
separation of variables to yield

P(x, Q') =x,x2x3 g X;P;(x), (21)

where
2

%; =N;(Q )=n;ln (22)

The n; are noncalculable constants, but the y; are calcul-

Q GM„ is not yet constant. However, the observed ap-
proximate constancy of Q GM~ makes an alternative ex-
planation plausible. Possibly, GM„ is small, i.e., its lead-
ing term at high Q is small, and then the cross section
o.„ is dominated by GE„. This requires Gz„ to be about
the same size as Flp of GMp and leads naturally to
cr„/o~ —1/Q . Incidentally, since the leading terms of
Gz„and F&, are the same, one can tie the high- and
low-Q data together with the suggestion that F,„=O at
allQ .

Returning to the simple symmetric wave function, we
can consider three possibilities.

(i) GM„ /GM~ = —
—,'. More precisely, consider that

GM„/GM& is falling with Q until Q =10 GeV but is
approximately constant at the value ——,

' thereafter. The
simple symmetric wave function cannot give this value;
values of

~
GM„/GM~ between —

—,
' and —1 are inacces-

sible (see Fig. 4).
(ii) GM„ /GM~ small. This possibility means the distri-

bution amplitude gives small GM, /GMp at high but ex-
perimentally accessible Q . (If we let Q be superhigh,
then the evolution with changing lnQ of the distribu-
tion amplitude must be taken into account and the ulti-
mate consequence of this is known to give Q GMz ~0.
On the other hand, the same superhigh-Q limit gives
GM„positive, so that GM„must have a zero at some
finite though possibly superhigh Q and the ratio
G~„/GMp should fall to zero before it ultimately be-
comes infinite. ) This possibility would require r) =0.79 in
the simple symmetric distribution amplitude, but this
has the high price of requiring a0=0. 67 GeV (for
a, =0.3) to give the observed normalization of Q GM~.

(iii) GM„ /GM~ intermediate. This means GM„ /GM~
about ——,

' to ——,'. GM„ is small enough that o.„ is still
dominated by GE„, so the 1/Q falloff' of cr„/cr~ is still
naturally explained. This value of GM„gives no problem
for the simple symmetric distribution amplitude. The
example g=0. 6 fits here.
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able' and are positive and monotonically increasing
with i. The first six "Appell polynomials" are

4tp ——1, pt ——x) —x3, p3 ——2 —3(x, +x3)

p3 ——2 —7(xi+x3)+8(xi +x3 )+4xix3,

f4 ——X (
—X3 ——', (X )

—X3 )

p5 ——2 —7(x i +x 3 ) + —", (x
&

+x 3 ) + 14x,x 3 .

(23)

Quarks 1 and 3 are the ones with parallel spin and some
of the above are symmetric and some antisymmetric un-
der interchange of quarks 1 and 3. If P is split into parts
Ps and Pz which are symmetric and antisymmetric un-

P~(x) =Ps(x)(2u, d, u, —u, u, d, —d, u, u, )/3/6

+p „(x)(u, u, d, —d, u, u, )/3/2+ perm

and

(24a)

p„(x)=ps(x)(d, d, u, +u, d, d, —2d, u, d, )/3/6

+p~ (x)(u, d, d, —d, d, u „)/3/2+perm . (24b)

It is now straightforward to calculate the form factors
and normalization condition. The results are' ''

der 1~3, then Ps and P~ can be associated with the
corresponding symmetry spin-isospin wave functions for
the proton and neutron

QGM(Q )= 4na,
27

2

20N( 423/3N—pN) +36N3 +283/3N, N2 —54NpN2+ 188N3 —144N3N3 — —N (N32 3 ~3 1 3

26 2 46 22 26 77+198NQN3+ N4 + —N3N4 — —N2N4 — N]N4+10+3NQN4+ Ns27 v'3 v'3 3 9

4+a,
27

2

41 35—N4N5 —59N3N5 + 1 1N2N5 + —N ] N~ —42NQN)v'3

54NQ +22N J +42+ 3NQN f 6N2 28+3N ( N2 + 54NQN2 N3 +60N2N32 2 3 170
3

(25a)

220 26 2 46 22 26+ —N ( N3 —30NpN3 + N4 — —N3N4 + —N2N4 — N t N4 —10&3NpN4v'3 27 u'3 v'3 3

145 2 41 6S , 3S
54 9v'3N5 + —N4N3+ N3N) ——,'N3N5 — —N, N3+20NpN5

The GM have now been given for a six-parameter family
of wave functions. Note that there is no Np term for
the proton. This is the same as the zero at q= 1 in the
previous wave function.

The N; cannot be made arbitrarily large because there
is a wave-function normalization condition to satisfy.
Some tradeoff' between normalization of the distribution
amplitude and normalization of the transverse momen-
tum part of the wave function is possible, but large N;
will generally lead to large and possibly unacceptable
rms quark transverse momenta. It can be seen how this
happens for a factorizable wave function with a Gauss-
ian kT dependence. Let

(29)

or

—„', ( 165Np + 11N ] + 33N2 + 17N3 + ,
' N4-

+ 9 N5 —44NpN5 +2N2N3 +
&
N

~ N4

1

NpN3 —
3 N2N5 + 3N3N5 ) = '

4 ap P3q
48m

(30)

f [dx](t'(x) f [dkT]g'(kT)=—(p')(g') =P3q

P(x, kT ) =P(x)g (kz ),
where

f [dkT]g(kT)—= (g) =1

and

192~
g(kT ) = exp —g k;T /2ap

CXp

The normalization condition becomes

(26)

(27)

(28)

where P3q is the three-quark probability. If only one N;
is nonzero, the most form factor for a fixed normaliza-
tion occurs if i =3. For this case with P3q ——1 and
a, =0.3, the proton form factor data at Q ) 5 GeV is
fit with ap ——0.39 6eV, a reasonable value. Other
choices of i would tend to give larger, less acceptable
values of up.

Let us discuss the requirements on the distribution
amplitude if it is to give the observed GM~ and GM„and
not imply via the normalization condition a quark trans-
verse momentum, measured by ap, which is unaccept-
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P~(x) =(0.38 GeV )x &xzx3($3 —P)) . (31)

This amplitude is perhaps surprising because it is asym-
metric, and Sec. IV below contains some speculation on
how this might come about. A more complicated, but
better because it fits certain QCD-sum-rule results, dis-
tribution amplitude which also gives GM„/G~~ ———, is
the one due to Chernyak and Zhitnitsky, and it is given
explicitly in Sec. IV.

(ii) GM„/GM~ small. Here we can succeed with sym-
metric Appell polynomials. The smallest ao we can find
for Q GM~ =1.0 GeV and Q GM„between +0. 1 GeV
is ao ——0.48 GeV (for the record, N&

——0.2, Nz ——0.2,
N3 ——0.57, N& ——0.5, all in GeV, and Q GM„———0.07
GeV ). This ao however is only borderline acceptable as
it gives a somewhat large (kr ) for the quarks and the
difficulties of escaping some problems associated with
the "soft contributions" (see Sec. III) go like ao or
higher.

(iii) G~„/GM~ intermediate. As there was no problem
with the simple symmetric distribution amplitude, there
is none here. The smallest ao for the symmetric case
and Q GMz ——1.0 GeV is here and is a„=0.37 GeV.
(Again for the record, NO=0. 1, Nz ——0. 1, N3=0. 43,
N& ——0.0, all in GeV, and Q GM„———0.28 GeV ).

For now it should be emphasized that the apparent
asymptotic GM has a size as well as a Q falloff which
can be matched in PQCD with reasonable values of the
QCD coupling constant and quark transverse momenta.

ably big. The possibilities for the neutron data will
match our earlier discussion, and all remarks will apply
to Appell polynomial expansions through the quadratic
Appell polynomials.

(i) GM„/G~~ = —
—,'. Can we obtain this with only the

symmetric Appell polynomials contributing to the distri-
bution amplitude and with an acceptable ao, say ao
below 700 MeV? The answer is no. (Our search routine
is simple: we scan on a tight enough grid all the IN; )

which will give ao below 700 MeV, searching for sets of
IN; I which give Q G~z in the range 0.9—1.1 GeV and
Q GM„ in the range —0.4——0.6 GeV, both with
a, =0.3. There are no such sets. ) Using only antisym-
metric Appell polynomials is clearly futile, since they
give G~„)GM~. A distribution amplitude which works
quite well at giving both GMz and GM„ is (for P3q —1,
a, =0.3, and ao=0. 39 GeV)

FIG. 5. The impulse approximation which generates both
hard and soft contributions to the form factor.

At high Q only the "tail" or high-kT part of the wave
function is important and this is the piece that can be
calculated in PQCD and substituted into the usual im-
pulse approximation to obtain the PQCD result for GM.
Note that while the impulse approximation is the dom-
inant contribution' to the form factor at high Q, the
same is not necessarily true at low Q .

There remain low-kT parts of the wave function which
can make contributions to GM. These are the "soft con-
tributions" and are not included in PQCD. It is (or will
be) clear enough that they fall faster with Q than the
PQCD or "hard" contributions. How big are they at
Q 's where experiments are done? For the wave func-
tions defined by Eqs. (21) and (26) the answer is that
they are big —unfortunately or fortunately —but
modifications can be made in the kT dependence to
make them small. This will be discussed in this section.

The impulse approximation in the infinite-momentum
frame formalism can be written in symmetric form:

Q G(Q )=Q g J [dx][d kT]g(x, hT' )e;g'(x, hz +),

(32)

where g includes the spin-isospin part of the wave func-
tion, e; is the charge of the struck quark, and hT' —are
the transverse momenta of the quarks in the case where
the ith quark is struck (see Fig. 5); for i being one we
have

hI'T' ——k&T ,'(1 —x, )q, hz'z ———kzT—+—,'xzq,

III. SOFT CONTRIBUTIONS
(1)+

h3T —k3T+ —+3q .
(33)

The PQCD expression for the form factor can be de-
rived as an approximation to the impulse approximation. For the proton this becomes

G(gz)= J [dx][d kr] Ws
—~- 0~[ h'" ]v'3

1—Pq [x,hT"+] + —', P~(x, hP )Pq(x, hT '+)
3

(34)

If we use a factored form [Eq. (26)] for the wave function and suppose initially that just a Gaussian [Eq. (28)] can give
the transverse-momentum distribution, then

2
48 4 4

g4G(g2) Q I [dx] y y
23 0 + 2y 2 13 0 f(gz/2a 2)

aO4 3
(35)
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where x; =x; +x~ ~x, x~. The function f (g) is shown
in Fig. 6 calculated using the Chernyak-Zhitnitsky dis-
tribution amplitude; qualitatively the results are the
same for all distribution amplitudes we have considered.
Note that f (g) peaks at /=60, which corresponds to
Q = 20 (GeV/c ) for ao =0.39 GeV, and that it has a
maximum value of about 5 GeV, about five times larger
than the experimental value of 1 GeV . Furthermore,
f(g) does not fall to the experimental value until Q is
greater than 300 (GeV/c) . This shows that the low-kT
components of this wave function are dominating over
the high-kT parts; to make (35) smaller than the hard
calculation (25) for g & 10 (GeV/c) would require that

ao be 30 times smaller, which would in turn violate the
normalization condition (30). The result may appear
surprising, since the Gaussian wave function (28) has an
rms transverse momenta of only 3/2 ao and falls off rap-
idly with kT.

However, one knows that a Gaussian cannot properly
represent the high-transverse-momentum tail of the wave
function, and it is not difficult to find a wave function
g (kT) which will give a smaller result for the impulse
approximation, and will at the same time be consistent
with the hard-scattering calculation and the normaliza-
tion condition. Let

g(kT)=3(16~ ) e ' ' +
4a4 (P1 +«) (P I. +eP xT )

g soft( T )+gha td (kT ) (36)

3 +BI=1, (37)

with

where p =(ktr —k3r )/3/2 and p&
——(k, T+ k3T —2k, T )/

3/6. Choosing e = —,', will prove convenient, and
9—:0(pz —1r)0(p1, —1~) so that 0 is 1 if both p and p) are
above K and otherwise is zero. The tail falls asymptoti-
cally like four powers of mornenturn as it should but
otherwise is chosen only for purposes of illustration.

The linear normalization condition for g tells us that
d kT gsoft hT Shard hT

—gh d(xq ) f [d kT]g of (kT ) (41b)

in which the notation xq ' for the arguments of g refer
to the substitutions, using the first quark as an example:

relations

f [d kT]g„,„d(hr'+)g„,„d(hT )

—2gh „d(xq
'

) f [d kT ]gh,„d(kT ), (41a)

1 g'/~' dx x +eg /x.I=- ln
%+6 X +E'

(38) ( 1 —x I )q, k2T —x&q, k3T x 3'q (41c)

The usual normalization condition takes the form

8B2
4+ 4 &+

a a (1+@)1~

1

48~'(y')

We will evaluate I numerically (e.g. , for e= —,', , Q =10
GeV, and Ir= 300 MeV we get I = 51), but note that

2

1im I ( e, g /Ir ) — ln

which are the values of the transverse momenta assumed
for one of the wave functions in the integrand when the
other is at its peak (where its arguments hT—. are zero).
[Note that the approximations (41) hold only at high Q
when the integrands peak sharply at h —=0; they do not
work for the product of two Gaussians which do not
peak sharply even at high Q .] Using (41) and (37) the

impulse approximation becomes

1 =44. 1 GeV
CX

(39)
6.0

5.0

I I I I I I I I I I 1111[ I I ! I I

the numerical result is for the Chernyak-Zhitnitsky wave
function. The overlap term involves

2 2—(x +y)v /2a~= f"dxdy
'

(40)
1 (x +e)(x +ay)

and R is easily bounded:
—12'

1
K+

K 2(x

4.0

3 0
4AA

2.0

1~ 0

This suffices to make the overlap term negligible for the
parameters we will work with below.

At high Q, a simple formula can be obtained for the
impulse approximation (32), if we use the approximate

0.0
1 10 100 10

FICx. 6. The function f (g) defined in Eq. (35).

I I !

10
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2

Q GM~(Q')= A'f, +B24(16~')'(J, +J, ) . (42)

The 2 term is usually referred to as the "soft contribu-
tion, " and falls asymptotically like Q . The term

linear in B contains the effects of the high-momentum
tail of the wave function, and its asymptotic Q depen-
dence is a reflection of the high-momentum behavior of
this tail. Consistency with the hard calculation requires
that B be chosen to reproduce the results (25). The in-
tegrals J; are given by

2

&(1 —x
~ +x3 & &2~/Q)0(x, & ( —')'"x-/Q )v'3 3

(1 —x, +x3) [(1—x, +x, ) +3ex2 ]

J2= ''—34~'~(
l

x i
—x3

I
& &2«Q)t)(1 —x2 & ( 3 ) ~/Q)

2 2 2(x] x3) [(x~ —x3) +3e(1—x2) ]
=3.2&& 10 GeV

(43)

where again the numerical values are for the Chernyak-
Zhitnitsky distribution amplitude. The consistency con-
dition gives

B =1.3~10 '

if a, =0.3. Now the linear condition (37) gives

3 =1—BI =0.34 (45)

for e= —,', , Q =10 GeV, and ~=300 MeV. Finally, the
normalization condition (38) determines a new value of a

a=0.23 GeV . (46)

With this small value of A, the soft contribution to (42)
is about —,', of the data level, even at its maximum value,
which occurs at about Q =6 (GeV/c) .

The hard contributions plus soft contributions then
give something more than the data. We should point
out that our main goal in this section was to show that
the soft contributions do not dominate the hard ones,
and in this we have succeeded, but now something more
may be added. The excess of cross section could have
several easy explanations. One is that we have used a
factorized form of the wave function, which must be un-
realistic, and abandoning this would give us still more
flexibility to reduce the soft contributions. Another is
that perhaps the soft contributions really do make some
significant but not dominant contribution to the form
factor at present Q and that some other distribution
amplitude which proportionately shrinks both the hard
and soft contributions should be used. Chernyak and
Zhitnitsky's distribution amplitude was based on their
QCD-sum-rule moments, but their distribution ampli-
tude is not the only one that fits those moments, and
many of the others give a smaller hard-scattering contri-
bution.

Not only does the new wave function (36) show that
the hard-scattering calculation dominates for Q of
physical interest, it is a more realistic model wave func-
tion for the transverse-momentum dependence of the
proton. The term proportional to B produces a tiny
high-kT tail for the wave function which more accurate-
ly models the power-law behavior of the proton wave

function expected for large kT. Adding such a behavior
decouples the two conditions (37) and (39). It is not
surprising that this small "tail" (a) contributes the major
part of the strength required for the hard-scattering re-
sult, (b) dominates the impulse approximation at large
Q [if the wave function were exact, the extra term in
(42) should reproduce the result (25) exactly], and (c)
that it plays no role in the normalization of the wave
function, which is dominates by small momentum com-
ponents. Furthermore, the tail is so small that it also
plays no role in the rms value of kT.

The first term in the sum (36) is the only term which
contains truly small values of kT, and the contribution
of this term to the impulse approximation is the "soft
contribution" referred to above. By moving some of the
strength in Eq. (37) to the tail, the soft contribution has
been reduced by a factor of about 9 and no longer dom-
inates the form factor.

Summarizing, consideration of the tail has resulted in
a reduction of the soft contributions to GM~ by a factor
of about 9, so that at their peak they are below the data,
and decoupling of the normalization condition (a non-
perturbative low-momentum effect) from the asymptotic
calculation (a high-momentum effect).

Thus, the soft contributions do not necessarily dom-
inate the PQCD contributions to the form factor.

IV. COMMENTS AND CONCLUSIONS

In conclusion, the following comments are offered.
(1) Factored wave function For simplic. ity, a factored

form for the wave function has been used in this paper.
This is probably an oversimplification; the correct wave
function is not likely to be factorizable. The hard and
soft regions of transverse momenta could easily have
different x dependencies, and this can give us significant
extra freedom to manipulate the hard and soft contribu-
tions.

(2) Asymptotic ratio G~z /G~„. It has been noted'
that at very, very high Q (that is, lnln Q »1) only the
zeroth Appell polynomial survives and the proton form
factor goes to zero relative to the neutron form factor.
It should also be noted that in this limit the neutron
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form factor is positive, so that the neutron form factor
must have a zero' at some large but finite Q .

(3) Chernyak and Zhitnitsky distribution amplitude
Chernyak and Zhitnitsky have proposed a distribution
amplitude for the proton. Their distribution amplitude
is gotten by supposing an expansion in terms of the six
lowest Appell polynomials and fitting to six moments
that are calculated using QCD sum rules, and is

+1+2X3(0 1 1 1(bo —0.274$
&

—0.212tb2

+0.248/3+0. 221/4

+0.002(b5) GeV

This distribution amplitude gives a good account of
GMP, gives GM„- —2GMp, and is quite asymmetric.
While this distribution amplitude is not uniquely forced
by the calculated moments, those moments do not allow
the possibility of no asymmetry.

As an amusement, examine the hard-scattering expres-
sion for GMp and note that every single term there is
positive if No, X3, and N4 have one sign and X&, N2,
and N& have the opposite sign. This is just the sign pat-
tern in the Chernyak-Zhitnitsky distribution amplitude,
excepting the last term whose coefficient is too small to
be significant. The QCD sum rules have thus led to a
distribution amplitude which satisfies one clear criterion
for maximizing GM .

(4) Asymmetric wave function. The sorts of wave
function which fit both the neutron and proton form fac-
tors are quite asymmetric in the three quarks. This is
perhaps a surprise and it may be worth speculating how
it may come about. First, note that the distribution am-
plitude, which is a transverse-momentum integrated
wave function, is dominated by the high-kT part of the
wave function (if the wave function falls as a power of
kz. as expected from PQCD). At the same time, the nor-

malization (which unlike the distribution amplitude is
gotten by squaring the wave function before integrating)
is dominated by low kT. The expectation of near sym-
metry among the quarks comes from calculations of
things such as the charge radius or magnetic moment
that are like the normalization in being dominated by
the low-kT part of the wave function, and the x depen-
dence associated with this could be quite symmetric.

Why, then, might one expect an asymmetry at high
k&7 Think of quark-quark scattering, or equally well,
electron-electron scattering at very high energies. There
is a large, angle-dependent spin dependence. At 90' in
the c.m. , the amplitude for scattering two same helicity
electron is twice the magnitude of the amplitude for op-
posite helicity electrons. High-kz quarks result from a
hard scattering of low-kT quarks, and this amplitude is
spin dependent. The pair of quarks with same helicity
are more likely to scatter each other out to high kz- than
other pairs of quarks, and this same scattering will likely
also scatter the quarks forward and backward so that
one of the same helicity quarks will have a large share of
the longitudinal momentum. ' This is just what is seen.

To conclude, the magnitude and sign of either nucleon
magnetic form factor can be fit with a broad distribution
amplitude, and consideration of both nucleons together
suggests an asymmetric spatial part of the distribution
amplitude. Finally, the soft contributions may be below
the asymptotic QCD results in the range where experi-
ments may support the latter.
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