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Two-loop renormalization of the Pontryagin density in pure Yang-Mills theory
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Two-loop renormalization of the Pontryagin density in pure Yang-Mills theory is studied in the
Feynman gauge. Dimensional regularization is assumed. Our calculation supports the expression
(gs Z~/32rr')*F""F„', , with F„',, =B„A;,—8„, 3„'+gsZ3 f b, A„A;., as the correct renormalized
Pontryagin density.

It is well known' that the term proportional to the
Pontryagin density is needed in the effective Lagrangian
density of the quantized Yang-Mills theory because of
the topologically nontrivial vacuum structure. Since the
space-time integral of the Pontryagin density is a topo-
logical invariant (at least in the classical sense), one
would naturally expect that the Pontryagin density be
renormalized fully by wave-function renormalization of
Yang-Mills (YM) gauge fields ( 3 „;~Z3' 3,", ) and the
coupling-constant renormalization (g ~gz ). Despite
some doubt concerning whether such a topology-based
argument can be trusted in renormalized perturbation
theory, this strongly suggests the renormalized Pon-
tryagin density of the form

Z3
%'( A ) = *F""F'

327T2
pv

where F" '=
—,'e" ~F'& and

Some time ago Jones and Leveille verified, by explicit
Feynman-diagram calculations, the one-loop finiteness of
the amplitude including an insertion of the renormalized
Pontryagin density as given in Eq. (1).

We now have two versions of proof, which directly
assert all-order finiteness of vertex functions including an
insertion of the renormalized Pontryagin density (1).
The proof given by the authors in Ref. 4 was based on
the background-gauge background-field method, while
the authors in Ref. 5 resorted to the anomalous U„(1)
Ward-Takahashi identity (in the context of QCD). But
one may suspect whether the arguments of Ref. 4, which
depend rather crucially on the special characters of the
background-gauge background-field method, will also
apply, say, when a more usual covariant gauge is as-

sumed. On the other hand, the proof of Ref. 5 (which is
addressed in usual covariant gauges) is restricted to the
case when there exist some fermion fields, and therefore
does not directly apply to pure YM theory. Also, the
appearance of the four-dimensional pseudotensor e"' in
the Pontryagin density casts some doubt (especially if
one has the popular dimensional-regularization scheme
in mind) on whether various symmetry restrictions can
be consistently imposed as needed in the arguments of
these authors.

Under the circumstances, we have felt that it should
be worth checking the assertion by explicit two-loop cal-
culations in the context of pure YM theory in the Feyn-
man gauge and assuming dimensional regularization.
This short paper reports our findings. We have followed
Jones and Leveille in the treatment of the pseudotensor

in dimensional regularization; viz. , e"
(p, v, A, , 5=0, 1, . . . , n —1) is totally antisymmetric and
can be identified with const )& Tr( y sy "y 'y y ) where y &

and y" in n dimensions are defined consistently with the
relation Tr(y5y"y")=0. (The 't Hooft —Veltman ys
prescription, which is known to be unambiguous, is one
consistent realization of this. ) Our calculation confirms
that the expression (1), solely on the basis of the renor-
malization counterterms as given in the expression (and
no further counterterm), indeed leads to two-loop finite
(off-shell) matrix elements.

The authors in Ref. 2 verified that, with a single inser-
tion of the operator %'(3 ), the one-loop amplitude with
two external YM vector legs is finite. In this paper we
shall also look at the corresponding amplitude with
three external YM vector legs, and then go on to verify
the finiteness of the two-loop amplitude with two exter-
nal YM vector legs. Including the source term for the
Pontryagin density operator, the renormalized effective
Lagrangian density of YM theory in the Feynman gauge
reads

X,ir(x)= ,'Z F""(x)F„' (x) ——
—,'[—r)"A„'(x)]—Z X'(x)t)"[t)„5„.+g Z ' f, , A„(x)]X'(x)

B Z2

+8(x) *F" '(x)F', (x),32~' (3)
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where F"" is given in Eq. (2), (X',Y ') represent
Faddeev-Popov ghost fields with the corresponding
wave-function renormalization constant Z3, and we have
written (a) (b) (c) (d) (e)

(
inequivalent diagrams under+
the permutation ot external legs

gP Z]Z3 g
—3/2

g'[C (G)]'
+

(4~)
25 1 23 1+ + ~ ~ ~

12 g2 8 e
(sa)

g Cz(G) 2
Z, =1+

(4vr )'

g'[C «)]'
+

(4~)
13 1 71 1

8 p2 48 e
(Sb)

(g=renormalized coupling constant) . (4)

The renormalization constants, to the order we need for
our calculations, are given explicitly as

g'C2«) s 1
Z, =1+

(4~)'

FIG. 2. One-loop diagrams with three external YM vector
legs associated with the %'( 2 )-vertex insertion.

our calculation shows that diagrams of the type in Figs.
2(a) —2(e) contribute, respectively, the values —9, —", , —'-,',
—3, and —6 to K. They clearly sum up to A =0, thus
confirming that the amplitude Fi' (p, q, r)„'",; is indeed ul-
traviolet finite. Note that corresponding one-loop ampli-
tudes with four external YM vector legs are power-
counting finite since one momentum factor from the
'N( A ) insertion is really an external one.

We now turn to the analysis of corresponding two-
loop diagrams, restricting our attention to those with
only two external YM vector legs. For this considera-
tion, we have found that the exact expression for the
one-loop renormalized YM vector propagator,

Z 1 + e ~ ~

3 (Sc)

where f"df ' =Cz(G)5' and a=2 —n l2. Momentum-
space Feynman rules associated with the vertex insertion
of the operator 'K( A) are shown in Fig. l. [The symbol

denotes the 'K( A) insertion with (g~ ——g, z3 ——1), and
the symbol H denotes the corresponding counterterm
contribution as implied by Eq. (1).] Note that "K(A),
being equal to

n"' pp"
p2 (p2)2 (4~)2 3

X I (e) 1+ e
31
15

—E

4' (7)

Z
2 ',' a„~~"(A'„a,A;+,'g, z, '"f.„,A;A', A;),

32~'

does not contain any quartic piece in 2 „'.
We have first studied one-loop amplitudes which con-

tain a 'K( A ) insertion and involve three external (ampu-
tated) YM vector legs. Relevant Feynman diagrams are
shown in Fig. 2. When we denote this vertex function,
renormalized as indicated by the form (1), by

3

F'"(p, rq)~', ",,
' ——K Sif'"'e„„~(p +q +r )~

64~

F'"(p, q)„',, =(p+q) L "i(p, q)„'. (8)

with

is very useful. (Diagrammatically, this one-loop renor-
malized vector propagator will be represented as in Fig.
3.) In Fig. 4 we have given all relevant two-loop Feyn-
man diagrams, grouped appropriately for conveniences
in calculation. This two-loop amplitude may be
represented as

g'C. (G)
X

2
+(finite terms), (6)

(4~)'

2

L"'(p, q)„'"„=— go'"e~ pp~A(p, q),
64m

(9)

g ab )a P, 88 e& &(p~q) q

g 2

8lgf 6~~~@ ( P+ q + r )

2

where A(p, q) is a Lorentz scalar. In Eq. (g) we have ex-
plicitly factored out one external momentum (p +q)
originating from the %'(A) vertex. [Note that 'lV( A)
corresponds to a total derivative. ] The function A (p, q )

in Eq. (9), once all one-loop subgraph divergences have
been taken care of, will be at most logarithmically diver-
gent by power counting. Being only logarithmically
divergent, it should thus be suf5cient for us to verify the

g 2

p P v

a b
+ l

2

FICx. 1. Feynman rules associated with the %'(2)-vertex in-
sertion. FIG. 3. One-loop renormalized YM vector propagator.
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a b(a) (bi ) (b2) (c I ) (. c2) (d I) (d 2) (d 5)
~ ~ ~

P q=-p

(e I ) (e2) (e3) (e4) (e5) (e6) FIG. 5. Two-loop diagrams which vanish identically in di-
mensional regularization.

(e 7) (e 8) (e 9)

(f 2) (f 3) (g I )

(e lo)

(g2) (gQ) (h I) (. h2)

Diagrams

Fig. 4(a)

Contributions to A (p, —p )

[C (G)] 21 1 67 1

(4~)' 4 ~' 24 ~

(
1nequivaIent diagrams under+
the permutation of external legs

FIG. 4. Two-loop diagrams with two external YM vector
legs associated with the %'( A)-vertex insertion.

Figs. 4(bl) and 4(b2)
Figs. 4(cl) and 4(c2)
Figs. 4(dl) —4(d3)

g [C2(G)] ( —", + 12m) Y

g [Cz(G)] ( —1 —6e) Y

(10)
finiteness of, say, 3 (p, q = —p ) to demonstrate the ultra-
violet finiteness of the function F' '(p, q)„' . This is pre-
cisely the procedure we have adopted here: look into
the finiteness of A (p, —p ). (Actually, with q = —p, tad-
polelike diagrams as shown in Fig. 5 vanish identically
in dimensional regularization. By this reason we have
not included such tadpolelike diagrams in Fig. 4.)

Here a brief explanation on the nature of various
two-loop diagrams shown in Fig. 4 should be useful.
The diagram in Fig. 4(a) represents the two-loop coun-
terterm contribution coming from the operator 'N(A)
and is proportional to (Z, Z, —1) "'~. Diagrams in
Figs. 4(b) and 4(c) are those containing one-loop counter-
terms, while diagrams in Fig. 4(d) involve a one-loop re-
normalized vector propagator (see Fig. 3) as subdia-
grams. It is relatively easy to identify divergent pieces
from these diagrams. We obtain the following (diver-
gent) contributions from them to the amplitude
A(p, —p):

Here, X and Y represent

X=
4 &

1 —e —2e y+ ln —
2(47r ) 2e 4~p

I

'
2—.1 —6 p+ ln

(43r ) e 4''
where p is the normalization mass and y is the Euler-
Mascheroni constant.

Feynman diagrams shown in Figs. 4(e) —(h) are
genuine two-loop diagrams, and identifying divergent
pieces from them is nontrivial. For our purpose, we
have found the integration formulas given in the Appen-
dix of Ref. 2 quite useful. But the formulas given there
are not sufficient, and we shall here give some additional
integration formulas obtained by us. [The formula (i)
below was obtained earlier in Ref. 9.] they are, up to
finite contributions,

(i) ft- d "k d "l 1 L
(2')" k D (p )

d"k d "I k I"J', p
11 ) (2')" k D p

d
"k d "I k l"I I

( iii )
(277)2&

f d "k d "1 k l~l"l k(iv) e (2~)" k2D
=e p~s[ —,', (1+—", e)Xp rl~" + —,', (1+ 4,'e)Xp~g "],

a p= —
—,'eX 31' —

—,', (1+—", e)X71 "3l" +(permutations of indices p, v, and A, ),

d "k d "I X
(v) = —3(1+2@)

(2~) " D (l —k) (p2)2

d "k d "l k 3(1+2 )X p
(2~)" D(l —k) ( 2)2

d'k d "l k k~ d "k d "l k l~
(vii)

(2m. )
" D (l —k) (2m. )

" D (l —k)
= ——', (1+ 8„'e)X + —,', (—1+~4'e)X

(12)
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d "k d "I. k k~k~ d "k O'I / 1~k~, „p p~p~
(viii)

z
= 4"+ ll'(2~) " D (1 —k) (2m) " D (1 —k) '

(p )

X——'(1+—"E) {p n" +p'n' +p'n

—,', {1++'e) (p p~rlr" +p "p il~i')+ —„',(1+ ', 3'„e)Xq

+(permutations of indices a, P, and y)

(277) " D(1 —k) (p )

' (1+ '4'q) (p~pi t)ri'+p "p~r)~i')+(permutations of indices a, p, and y)
80 1S

+='(1+ '" )X i) "+—'(1+"' )X(il 'rI +r)' il )

where we have denoted D =k (k +p) I (1+p) (l —k)
and followed the metric convention (+ 1, —1, —1,
—1, . . .). Based on these formulas, the following (diver-
gent) contributions to the amplitude A (p, —p ) have
been obtained:

g [C~(G)]
(4ir )

21 1 67 1

4 g~ 24 e

+ ( 85 + 3739 ~)X6 36 (14)

Diagrams

Figs. 4(el) —4(e4)
Figs. 4(e5) and 4(e6)
Figs. 4(e7) —4(e10)
Fig. 4(el 1)
Figs. 4(fl) —4(f3)
Figs. 4(g 1)—4(g 3)
Figs. 4{hi) and 4(h2)

Contributions to 2 (p, —p )

g [Cp( G) ]'( ——', ——',"e )X
0
g [C~(G)] ( —", +e)X
0
g [C2(G)] ( —", "„'e)X
g 4[ C ( G) ]2( 113 + 2059 + )X
g [Cz(G)] ( —,'+ —,3e)X

while that from the terms shown in Eq. (13) is

g'[C~(G)]'[( —"+"-'e)X—( —'„'+ "39m)X]

Clearly, the two cancel. (Here note that the cancellation
of nonpolynomial divergences, which of course follows
from general renormalization theory, serves as a useful
check of our calculation. ) This way, we have explicitly
verified that A(p, —p) is indeed finite. The renormal-
ized Pontryagin density, in the form given in Eq. (1),
leads to a two-loop finite result.

(13)

The net contribution to 3 (p, —p ) from the terms
shown in Eq. (10) is
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