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Holonomy transformation, deficit angle, and Aharonov-Bohm effect
in a cylindrically symmetric universe
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We obtain the exact expression for the holonomy transformation for a circle that corresponds to
a nonstatic and to the most general static, cylindrically symmetric metric. A general formula for
the angular deficit is obtained in both cases. A discussion about the Aharanov-Bohm eft'ect in the
static case is given.

In this paper, we use the loop variable in the theory of
gravity in order to obtain the holonomy transformation
and a general formula for the angular deficits for the
space-time under consideration. The holonomy transfor-
mation enables us to find directly the deficit angles (coni-
cal angle) without the necessity of using the Riemann
tensor of four-dimensional space-time.

In this context we reproduce the results of Garfinkle, '

Vilenkin, Gott, and Hiscock. We also obtain a result
of Ford and Vilenkin who used the Gauss-Bonnet
theorem. In all cases and particularly in this case our
method is easier than that of Ref. 5, because to use the
Gauss-Bonnet theorem it is necessary to express the
Gaussian curvature in terms of the four-dimensional
Ricci tensor and hence the momentum-energy tensor of
the source, and because in general, it does not seem pos-
sible to obtain such relations. We consider a particular
case of a cylindrically symmetric metric due to Marder
to examine the eA'ect of the parallel transport of vectors
around closed paths, showing that this gravitational field
provides a gravitational analogue of the Aharonov-Bohm
eAect.

The loop variables in the theory of gravity are ma-
trices representing parallel transport along contours in a
space-time with a given affine connection. This is con-
nected with the holonomy transformation which is a
mathematical object that contains information about
how vectors change when parallel transported around a
closed curve.

Now let us suppose that we have a vector v at a
point p of a closed curve C in a space-time. Then, one
can produce a vector v at p, which, in general, will be
difterent from v by parallel transporting v around C.
In this case, we associate with the point p and the curve
C a linear map U ~ such that for any vector v at p the
vector v at p results from parallel transporting v

around C and is given by v = U &v~. The linear map
U & is called the holonomy transformation associated
with the point p and the curve C. If we choose a tetrad
frame and a parameter k for the curve C such that
C(0) =C(1)=P, then, in parallel transporting a vector
U from C(A, ) to C(A. +dA, ), the vector components
change by 6v =M ~v~dk, where M ~ is a linear map
which depends on the tetrad, the affine connection of the
spacetime and the value of A.. It then follows that the
holonomy transformation U"& is given by the ordered

matrix product of the N linear maps as

Up lim—g fip+ —M~.N

One often writes the expression in Eq. (1) as

U(C) =P exp f M
c

(2)

where v, P, and A. are functions of p.
To compute the tetradic connection, we start by

defining the one-forms 0 (D =0, 1,2, 3):
6I0=e dt,
0'=e'd p,
9 =end/,

O=e dz.
The geometry (4) is obtained from (5) by the expression

where ilDz is the Minkowski tensor diag( —,+, +, +. ).
Then the tetrad frame defined by 0 =e' 'dx is given

by
(0) v (1)e0 ——e, e&

——e, (2) i/r (3)

A straightforward calculation gives the value of
I „dx" (or I „Edx" where D and F. are tetradic indices).
The unique non-null rpEdxP are

I „idx"=e (e')dt = I „'odx",
dp

which should be understood as simply an abbreviation
for the expression in Eq. (1). Note that if M & is in-
dependent of A, , then it follows from Eq. (1) that U & is
given by U ~

——exp(M ~).
In this paper we shall use the notation

U(C) =P exp I I dx" (3)c
where P means ordered product along a curve C and I „
is the tetradic connection.

Now, consider the most general static cylindrically
symmetric metric

ds = —e dt +e ~dP +e (dp +dz ),
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I „dx"=I&dP,

where

(9)

I &,dx" =e (e ~)dP = —I „'2dx",
p

I' dx"=e (e )dz = —I' dx" .— 'd
p

We shall consider circles with center at the origin and
a fixed value of p. So, in this case

ponents of the parallel translated vector. From this and
Eq. (15), it follows that, the corresponding diagonal ele-
ment of U is the cosine of the angle between the vectors.
Then, we can write, in this case,

cosg, = U', , (16)

where a is a tetradic index.
The non-null angular deviations occur in our case for

a = 1 and 2. Considering a = 1, we have

-~d—e (e~) 0 0
dp of

costi = cos277P (17)

( |l)
dp
0
0

0 0

0 0
0 0

(10)

i
X,

/

=
/

2rrP+2~n
/

As p~l we must have Xi~0 we choose n = —1 so
that

(18)
As I

&
is independent of P, then

62
U(C)=P exp f I &dP =e

From Eq. (10), it is easy to see that
'2

3= —2~ d
I& ———e (e ) I& —=—P I&2

dp

(definition of P) . (12)

Equation (12) implies that for a complete circle we
have

where

p2 —2i.
(

ii
)

d

dp

2

Equation (18) with a definition of p given by Eq. (12)
corresponds to the general formula for the angular
deficit for a class of static cylindrically symmetric
space-time given by metric (4).

If we made a different choice for the coordinate p one
can write the metric given by Eq. (4) as

rp r, '
U(C) =1+ sin(2trp)+ [1—cos(2rrp)] . (13)

ds = —e "dt +e dz +e dP +dp (19)

Equation (13) is the exact expression for the holonomy
transformation that corresponds to the class of solution
given by Eq. (4).

Now, let us define the deficit angle and establish its
connection with the holonomy transformation. The
deficit angle is one number and the holonomy transfor-
mation is a set of linear maps (one for each point and
closed curve). One must then obtain from the linear
map a single number, the deficit angle (in our case)
which is a property of axially symmetric, asymptotically
conical space-times (at infinity, these space-times are
asymptotically a cone rather than a plane). To obtain
the single linear map we consider a point p on the curve
C (since the space-time is axially symmetric, it does not
matter which point we choose). Then U tt, as defined
previously, is the holonomy transformation associated
with the point p and curve C, where C is an integral
curve of the axial Killing field in the asymptotic region.
With U &, the deficit angle 7 can be defined by

cosX=U &A A~, (14)

where A is the unit vector in the direction of the axial
Killing field. Using tetradic indices we can write

cosg= A 'gA, ,

where 2 '= U'q A
As A is a unit vector the elements of U are the com-

If we identify all the coefficients of the metrics (4) and
(19) and use our formula (18), we get exactly

dX=2~r J (e )dp .
dp

(20)

X=2ir( 1 b)— (21)

Equation (20) is the Garfinkle expression for the deficit
angle in which we assume certain boundary conditions
such as (1) at the axis the metric is smooth and (2) at
infinity, space-time is asymptotically conical. Proceed-
ing as Garfinkle did we obtain Eq. (82) of Ref. 2. Then,
if we consider Vilenkin's solution (cosmic string) we get
from Eq. (18) that X=8vrp

Now, assume that the coordinates can be chosen so
that e ~1 and e~~p as p~O and e ~1 and e~~bp
as p~ oo. Therefore, in the neighborhood of the origin,
the space is Oat and for large p it becomes a cone with
conical angle ~b. As the space is asymptotically conical,
if we transport a vector parallel to a given closed curve
around it, in general, it will not return to itself but will
undergo a rotation by an angle which is expressible as
the area integral of the Gaussian curvature over the sub-
surface of the space enclosed by the curve. Here, we get
this angle with the use of Eq. (18).

Now, setting the values of e and e ~ when p~0 and
p~ ~ in Eq. (18) we get
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which is the same result obtained by Ford and Vilenkin
with the use of the Gauss-Bonnet theorem.

Then, we conclude that with the expression for the
transport operator (holonomy transformation) for the
space-time given by metric (4) we can get a general ex-
pression for the deficit angle that undergoes a vector
parallel transported around a circle.

Consider a particular case of metric (4) which is given
6

r ch~= dt+ —dp=r d~~D o
pO

r dx~= dy=r dx~DG
pO g p2

I „,dx"=G'dP= —I „',dx",

I dx"= -dz = —I" de~'
3'B

/l 1 D P3 )

(27)

ds'=dt' —p'd(5 —A (dp +dz') .

Then we obtain, for the deficit angle,

(22)

in which the overdot denotes d/dt and a prime denotes
d /dp.

As in the first case, we shall consider circles with the
center at the origin with a fixed value of p. So, in this
case

=2~ ——1
1

(23) I „dx"=I&d(t

where

(28)

From Eq. (23) we conclude that there will be no
Aharonov-Bohm eAect if and only if 1/A is an odd in-
teger. This condition is not always satisfied because
1/2 is not necessarily an odd integer. Then, this flat
space-time, describing a nontrivial gravitational field,
provides a gravitational analog of the Aharonov-Bohm
eAect, as pointed out by Dowker.

Now, consider a metric describing a nonstatic cylin-
drically symmetric space-time, which is given by

ds'= 3 '(p)[dt B(t)dz ]—D'(t)[d—p +G (p)dP'],

0 —G' 0 0

G'

0 0

DG

DG

0

From Eq. (29) it is easy to see that
2

DG

(29)

(24)

where p, P, and z are cylindrical coordinates defined by
0&p & co, 0&/ &2~, 0&z & co, and t & 0.

As in the preceding case, to compute the I 's, we
define the one-forms 8 (C=0, 1,2, 3):

0 =A(p)dt,

O'=D(t)dp,
(2&)

(definition of 3&) . (30)

Using the fact that I
&

is independent of P together
with Eq. (30), we obtain from Eq. (3) that, for a complete
circle,

Ip r, '
U(C) = 1+ sin(2wA & )+ [1—cos(2' A ~ )] .

(31)

by

B =D(t )G(p)dg,

0 =A(p)B(t)dz .

Then the tetrad frame defined by 0 =e' 'dx is given

Equation (31) is the exact expression for the holonomy
transformation that corresponds to the solution given by
Eq. (24).

The non-null angular deviations occur, in this case, for
a =0, 1, and 2. Considering a = 1, we get

eo ' = 3 (p), e', "=D(t ), eP' =D(t )G(p), l
Xi = 2~( 3& —1) (32)

and

=&(p)B(t) .

(26)
Equation (32) with the definition of A~ corresponds to
the angular deficit expression for a =1, for a nonstatic
cylindrically symmetric spacetime.

A straightforward calculation gives us the unique
non-null tetradic connection I „Edx" (where C and E are
tetradic indices):

The author thanks Conselho Nacional de Desenvol-
vimento Cientifico e Tecnologico of Brazil for financial
support for this research.

'D. Garfinkle, Phys. Rev. D 32, 1323 (1985).
2A. Vilenkin, Phys. Rev. D 23, 825 (1981).
3J. R. Cxott III, Astrophys. J. 288, 422 (1985).
4W. A. Hiscock, Phys. Rev. D 31, 3288 (1985).
~L. H. Ford and A. Vilenkin, J. Phys. A 14, 2353 (1981).

L. Marder, Proc. R. Soc. London A252, 45 (1959).
7S. Chandrasekhar and J. L. Friedman, Astrophys. J. 175, 379

(1972).
8J. S. Dowker, Nuovo Cimento 52B, 129 (1967).


