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It is shown that the mass matrices for both charges of quarks may be written in a most general
form consistent with the data for quark masses and Kobayashi-Maskawa (KM) matrix elements. The
most-general form is displayed explicitly for plausible choices of the masses and KM matrix ele-

ments. It is shown by direct calculation that in the good-CP limit there exists a basis for the quarks
in which the squares of the elements of the up-quark mass matrix are proportional to the squares of
the elements of the down-quark mass matrix. In this basis, the KM matrix is nontrivial solely be-

cause of differing signs of the mass-matrix elements.

I. INTRODUCTION

The problem of the existence of generations is generally
considered one of the most significant questions left un-
solved by the standard model. No agreement on the fun-
damental character or even on the appropriate type of la-
beling of the generations exists. Virtually the only data
bearing on this question are the masses of the fermions
and the weak-interaction mixing angles of the quarks. It
is not surprising that considerable effort has gone into at-
tempting to predict these numbers using symmetry rela-
tions to lower the number of parameters. No consensus
has come from these efforts.

The problem is not an absence of successful ideas.
Many symmetries have been explored as possible descrip-
tions of masses and mixings. Suggestions for such "hor-
izontal" symmetries relating the generations have includ-
ed both discrete symmetries' of various kinds and
numerous continuous symmetries. Especially popular
are matrices of the Fritzsch type, and there have been
efforts to combine grand-unified-theory (GUT) arguments
with demands that the matrices be of the Fritzsch form.

The difficulty is that all of these ideas are more or less
successful, leaving a choice between them very difficult so
that no consensus has arisen. The approaches and corn-
parisons with experiment are sufficiently disparate as to
make difficult even a comparison of the relative empirical
successes of the various methods. What is needed is some
kind of common approach so as to allow one to determine
what is common among the methods and what might be
done to begin making a choice among them.

This paper is hopefully the first step in an effort to or-
ganize in a systematic way how one might describe the
generational structure of the quarks. The formalism will
also be applicable to leptons but the absence of data on
mixing angles makes in unlikely that this method would
produce useful results. The approach taken is to use the
existing experimental data to write a most-general form of
the quark mass matrices consistent with current data in a
basis in which the weak interactions are diagonal, the
basis in which the coupling of Higgs particles to the fer-
mions is usually described. The determination to reason-

able absolute accuracy during the last few years of the last
of the Kobayashi-Maskawa (KM) mixing angles makes
such an approach viable. The weak-interaction basis is
not unique, since a common unitary transformation of the
mass matrices of the up-type and of the down-type quarks
does not affect the weak-interaction mixing matrices.
Thus there are additional parameters describing these
transformations which can only be determined from sym-
metry considerations. We show, however, that there is a
basis which is most naturally reached, and this basis can
be the starting point for searches for mass matrices with
specific desired symmetries. The degree to which the
desired symmetry can be achieved may eventually be used
as an indication of which mass-matrix symmetries are
more or less likely to be valid. For simplicity in this first
attempt, we work in the good-CP limit using real mass
matrices and assuming a real KM matrix. The numerical
results therefore might prove to be illustrative rather than
definitive.

Ironically, in the process of implementing a procedure
by which we hope eventually to reduce the number of vi-
able symmetries of quark mass matrices, we have
discovered what appears to be a new one. In the natural
basis mentioned above, and using a low but quite viable
value for the top-quark mass, the squares of the elements
of the up-quark mass matrix are very nearly proportional
to the squares of the corresponding elements of the
down-quark mass matrix, but with some of the signs of
the corresponding matrix elements varying. (Here and in
the following, we refer for simplicity to the mass matrix of
the charge =', quarks as the up-quark mass matrix and to
that of the charge ——,

' quarks as the down-quark mass
matrix. ) Specifically, if each matrix is scaled by the corre-
sponding third-generation quark mass (which tends to
reduce mass-renormalization effects), the squares of the
corresponding elements of the two different mass matrices
are equal. It is the varying signs of the matrix elements,
and not variations in their absolute values, that produce a
nontrivial KM matrix. This symmetry is true for only
one of the many equivalent weak-interaction bases, and
that basis is the one reached most naturally starting from
the experimental data. This symmetry is discussed in Sec.
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V, which is essentially independent of the earlier sections.
The structure of the paper is as follows. Section II

gives the formalism for finding all possible bases in which
the weak interactions are diagonal. Section III details the
constraints implied by CP invariance and obtains real
mass matrices. Section IV gives specific numerical results.
Section V discusses the possible proportionality of the
squares of the elements of the two mass matrices. In all
cases we work only with the three currently observed gen-
erations.

II. FINDING THE WEAK-INTERACTION
BASIS

One of the major di%culties in exploring horizontal
symmetry relations is that the physics is likely to be more
transparent in a basis in which the weak interactions rath-
er than the mass matrices are diagonal, whereas necessari-
ly all the data are obtained in the basis in which the mass
matrices are diagonal. The relationship between the bases
is well known. Let

l
q~P, i ) be the states in which the

weak interactions are diagonal, where I and R denote
left- and right-handed helicity, i is the generation label,
and q may be replaced by u for charge —', quarks or d for
charge —

—,
' quarks. Similarly, let

l q~(, ,i ) be the physi-
cal states in which the mass matrices are diagonal ~ Write
the mass operator as Mq and the standard weak Hamil-
tonian as H~~. The relevant terms in the Hamiltonian for
up-type and down-type quarks are then

H=[&&wt& lM luwi&+&du)) IM Idwi&

+&&w)'IHw ldwtj&+H c 1+ ' ' '

=((qp), i'
l

U;; M;, UJ, l
qp)J')

+ ( u „hi
'

l

H wee U;"; U,~'
l

d ~~
' ) + H. c. ) +

where U MU =Mq, a different U must be used for each
of the two kinds of quarks, and if M is not Hermitian
different U's must be used on the left and the right.

We may incorporate the data on masses and mixings as
follows. Choose

l q„h, &) = V;, l qx~, j) and use V to di-
agonalize Uz~. Because of the unitarity of the KM ma-
trix, the diagonalized matrix UD must have eigenvalues of
exp(ig). With no loss of generality we may write UD as
the product of two diagonal matrices: UD ——P„Pd, these
phase factors may eventually be absorbed into the phases
of the states. After these changes, and suppressing the
generation labels, Eq. (1) becomes

H=«~~
l
V™DVlq~~&+&"~~

l

+H. c. +
showing explicitly that H ~, is diagonal in generation
space. It now makes sense to identify the physical states
as being, up to phases, the states that make the KM ma-
trix diagonal, i.e.,

I qw) &=P,'l«M&=P, 'V' q, h& .

Comparing with Eq. (2) we see that the mass matrix is

now parametrized as Mq ——Pq V Mq VPq. However, anyD

common unitary transformation of the
l qw, ) will leave

H~K diagonal and will therefore produce an equally legi-
timate weak-interaction basis; in fact separate transforma-
tions of left- and right-handed fields would be acceptable.
So in general we could have

UD ——V UK.M V=P~Pd
(4)

III. REAL MASS MATRICES

We first tabulate some easily established properties of
orthogonal matrices. Any unitary or orthogonal matrix
may be diagonalized by a unitary transformation; the
transformation of the orthogonal matrix is generally com-
plex rather than real. The eigenvalues of a 3&&3 orthogo-
nal matrix are necessarily exp(iP), exp( —iP), k=+1.
We then choose Pq ——( exp(iH~ ), exp( —) 0~ ), 1) with
6)„—Hd

——(t). The eigenvectors of the two complex roots
may be chosen to be complex conjugates of each other,
and the third eigenvector may be chosen real. Thus the
matrix V which diagonalizes a real three-generation KM
matrix may be written in column form as

[& ()) x ())s x (3) (3)e ]

The eigenvalues are completely determined by the trace
and determinant of the matrix. Calling the trace T and
the determinant D (necessarily +1), we have

which provides a most-general form of the mass matrices.
The two unitary matrices WL and Wz each have four

continuous parameters, so we have altogether eight pa-
rameters which cannot be set by data. These parameters
must somehow be determined by symmetry relations.
The large number of parameters available makes it un-
surprising that many different proposals for possible hor-
izontal symmetries seem to give decent results for masses
and mixing angles in the quark sector. However, one
quick reduction in the number of parameters is possible.

It has already been observed that in the absence of
visible effects of right-handed currents, a unitary transfor-
mation of the right-handed quarks alone has no observ-
able effects. Thus transformations on the right-handed
quarks may be exploited to make the mass matrix Hermi-
tian. We get a Hermitian mass matrix by choosing
Wl ——Wz ——W in Eq. (4) so that there are four parameters
instead of eight. It must be remembered, however, that
some horizontal symmetries might require a non-
Hermitian mass matrix, in which case WL and W~ must
be different. Non-Hermitian mass matrices can be
recovered at any point in the following by right multiply-
ing by an arbitrary unitary matrix.

We will make one further simplification in this paper.
CP violation has a small effect on the values of the matrix
elements of the KM matrix. For the moment we will as-
sume CP to be a good quantum number. In that case the
mass matrices can be chosen to be real, and the KM ma-
trix is a real, orthogonal matrix. Eventually we intend to
remove this restriction from the analysis.
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A, , 2
——exp(+i/), X3 —— D—,

cos(5= 1(T D—) .
(6)

In the next section we will obtain /=0. 07427r and A, 3
——1

for the KM matrix, so the complexity of the eigenvalues
and eigenvectors is significant and may not be ignored.

For the moment let us take WL and Wz both to be 1.
Then we may substitute Eq. (5) into Eq. (4) to get an ex-
plicit representation of the mass matrix. To simplify the
notation take the complex eigenvector x "' of V in Eq. (5)
to be (x&,x2,x3) and the real eigenvector x' to be
(y &,y2, y3 ). Then

X* Y*

ther O individually, may be absorbed into the remaining
arbitrary orthogonal transformation and does not
represent an additional degree of freedom. Ordinarily we
will choose

8„=—8d ———,
'
p (12)

For the KM matrix we adopt the values

0.974 0.227 0.001

in order to preserve the maximum possible symmetry be-
tween the charge —', and charge —

—,
' quark mass matrices.

IV. SAME ILLUSTRATIVE NUMERICAL
RESULTS

M= X 3 Y

Y Y* B
(7) UK ~ —— —0.226 0.973 —0.045

—0.012 0.044 0.999
(13)

where

1
1

Wp —— — 1

0

i 0
(9)

The resulting matrix is our intended starting point for
searches for mass matrices satisfying desired symmetries:

M=W MW,
3 +ReX —ImX &2 Re Y

M = —ImY 2 —ReX —v'2 Im Y

+2ReY —v 2ImY B

(10)

If at this point we do a further orthogonal transforma-
tion with the matrix

cosO —sinO 0
sinO cosO 0

0 0 1

the only effect on M will be to replace Oq by Oq+O. Thus
the arbitrariness of the factorization of the KM matrix
into P„Pd, which requires / =8„—8d but determines nei-

A=pm; [x; /',
B=gm; [y; f

X= exp(2i8~)gm;x;

Y=A3exp(i8q)gm; x;
~

It is amusing to notice that if the first and second gen-
erations are interchanged in Eq. (7), the result is the com-
plex conjugate of the original matrix. Thus a horizontal
symmetry of a sort follows from no more physics than the
imposition of CP invariance. Of course, no useful infor-
mation comes from this symmetry since it works for arbi-
trary masses and mixings.

Equation (7) is not in an entirely satisfactory form,
since we expect to have real mass matrices when CP is a
good symmetry whereas the mass matrix in Eq. (7) is
complex. To cure this problem we make use of the free-
dom to make a common unitary transformation on the
two mass matrices, using

For simplicity in a first attempt we have, as discussed
above, chosen the KM matrix real, specifically by taking
the CP-violating phase to vanish. We choose this pro-
cedure in order to retain the magnitudes of the matrix ele-
ments unchanged. Strictly speaking we should take the
parametrization of Chau and Keung (or Fritzsch ) and
take sinO, =0. The resulting matrix differs by at most by
an amount of 2&10 in any element from the matrix
adopted. Since these amounts (and indeed the imaginary
parts themselves) are small, we do not anticipate apprecia-
ble effects from taking them into account.

For the masses of the quarks ' we have adopted, in
GeV,

M„=36 diag(1. 11 &( 10,3. 19X 10,1),
Md ——4. 7 diag( 1.70 && 10,3. 19 && 10,1 ),

(14)

where diag means a diagonal matrix and where the
masses are evaluated at the conventional scale of q =(1
GeV) . In general, since the top-quark mass is not well
known and might be much higher than the figure used
here it should be treated as a parameter rather than a
known quantity. The s-quark mass is also uncertain by at
least 20% and many of the results below are likely to be
insensitive to a simultaneous increase of the top- and
strange-quark masses. We choose the top-quark mass to
be 36 GeV, using the relation"

m, =mz(m, /m, ) (15)
which for the mass values we have adopted gives m, =36
GeV at a scale of (1 GeV) . Using the methods of Gasser
and Leutwyler to change the scale to q = (m, ) for com-
parison with experiment, we get a value of 24 GeV, slight-
ly above the current experimental' lower limit of 23
GeV. Equation (15) will be discussed further in the next
section.

With the values for the elements given in Eq. (13) it is
straightforward to find the eigenvalues and eigenvectors of
the KM matrix. The eigenvalues are exp(+P), 1 with

/=0 0742~ . . (16)
Since the eigenvalues are determined by the values of the
diagonal elements alone, they are insensitive to the adopt-
ed values of the off-diagonal elements. The matrix of
eigenvectors is
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TABLE I. Parameters obtained from Eqs. (7j and (16) for the mass matrix for charge —', quarks. The
signs tabulated are for m1 and m2, m3 may always be chosen positive. The parameters quoted are
defined in Eq. (8).

Signs

0.034 51
0.002 587
0.034 40
0.002 480

0.9624
0.9623
0.9624
0.9623

0 005 1 18 0.3660rri

Q.Q34 23e 0.0361+i

Q Q05 079e 0. 3722m'

0 Q34 12e 0.0362ai

0 1 333 0.0358rri

0 1 335 0.0384iri

0.1334e
0.1 335e 0.0384

0.694 exp( 0 0—43m. i) 0.694 exp(+0 043'. ri )

V= 0.707i exp( 0 0—41'.li ) —0.707i exp(+0 041'.ri )

0. 136 0. 136

—0. 190
—0.025
0.981

(17)

We are now ready to use Eq. (10) and the mass values
in Eq. (14) to get the mass matrix in the natural weak-
interaction basis. There is a significant technicality to
take account of. Because the mass matrix connects the
left-handed fields with the right-handed fields rather than
some field with itself, the phases of the mass eigenvalues
are not well determined. Having chosen to use Hermitian
matrices, we have automatically assured that the mass ei-
genvalues are real, but we have no way of knowing their
sign. No physics can be affected by simultaneously
changing the signs of all the mass eigenvalues for either
charge of quark, but the relative signs of the masses of
different generations of quarks matter. Thus we may fix
one mass to be positive (we choose the third generation),
but we have four possibilities for the signs of the masses
of the remaining two generations. In Tables I and II we
tabulate, for all possible signs, the parameters 2, 8, X,
and Y that through Eq. (10) give the mass matrices.

We have quoted four-figure numbers in the tables even
though the data are good to three figures at most. The
reason for this is that the diagonalization of the mass ma-
trices is ill conditioned because of the large range of mag-
nitudes of the mass eigenvalues, and four figures in the
general mass matrix are required to get acceptable first-
generation masses. In view of this instability, one might
feel more comfortable if some general principle could be
invoked for the smallness of the first-generation masses;
such a principle could be used to restrict the remaining
parameters in the mass matrices.

V. PROPORTIONALITY OF THE SQUARES
OF MASS-MATRIX ELEMENTS

In the preceding sections we have shown that by di-
agonalizing the KM matrix it is possible to find explicit

IB„=36 —0.0039
0. 1874

0.0368

md ——4. 7 —0.0036
0. 1875

—0.0314 —0.0227
—0.0227 0.9623

—0.0036 0. 1875
0.0304 0.0228
0.0228 0.9623

(18)

The similarity of the magnitudes of these matrix ele-
ments is striking. This similarity suggests an attempt to
determine the mass matrices from the condition that the
squares of the elements of the up-quark mass matrices
should be proportional to the squares of the correspond-
ing elements of the down-quark mass matrix. We have
used Eq. (10) to make a search for Hermitian matrices
which best satisfy this criterion; those given in Eq. (18) in
fact satisfy this criterion better than any other possible
pair. Moreover, for almost all values of the angles of the
orthogonal transformation, the transformed matrices satis-

quark-mass matrices in a basis in which the weak interac-
tions are diagonal, with the value of the top-quark mass
as a parameter. If these matrices are determined in the
approximation that CP is a good quantum number, and if
the absence of observed effects of right-handed currents is
used to permit the restriction to Hermitian matrices, then
there is a three-parameter set of appropriate bases. The
basis in which the phases O„d associated with the quarks
are handled as symmetrically as possible is the most natu-
ral one to start from, and we have chosen to obtain nu-
merical values for that basis. Using the parameters in
Tables I and II and Eq. (10) we may write out specific
mass matrices once we have chosen the signs we want for
the quark masses. We will take m, and md negative and
all others positive, in which case

0.0366 —0.0039 0. 1874

TABLE II. Mass-matrix parameters for the charge —
—,
' quarks. The notation is the same as for

Table I.

Signs

0.035 26
0.003 369
0.003 362
0.001 728

0.9624
0.9624
0.9623
0.9623

0.005 460e
0.034 97e
0 004 861 0.267~i

Q Q33 35
—0. 1 1 1 iri

Q 133 1
—0.0384rri

Q 1 333 —0.0357rri

0 1336 0.0385m.i

Q 1 337 —0.0358 Iri
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the resulting quark masses are

m„=(7.56 && 10,—1.13,36.0),
md ——(8.60 X 10,0. 152,4.70),

(20)

and the KM matrix is

0.0975 0.224 0.001

UK~ —— —0.224 0.974 —0.045
—0.011 0.044 0.999

(21)

which, except for the mass of the up quark, are entirely
satisfactory results. Of course, one would prefer to have
some fundamental understanding of the origin of such a
symmetry and of the unsymmetric magnitudes of the am-
plitudes.

We should mention one condition on the quark masses
which follows from this symmetry. We have written in
essence (M~) =(m, /mb ) (MJ~) . Since the trace of M M
is invariant, this condition implies that

m„+m, +m, =(m,!m)b(md +m, +m, ) . (22)

Equation (22) may be solved for the top-quark mass in
terms of the other masses; neglecting small terms we re-
cover Eq. (15), which for the mass values we have adopted
gives 36 GeV for m„corresponding as discussed in the

fy this criterion much more poorly than those in Eq. (18).
If we then demand that m„d satisfy this criterion exact-

ly by choosing

0.0367 —0.0038 0. 1874

md „——rn 3d „—0.0038 +0.0309 +0.0228
—0. 1874 +0.0228 0.9623

last section to an experimental value for m, of 24 GeV.
In fact, we used Eq. (15) to choose the exact value of m,
before finding the proportionality symmetry. In any
event, the requirement that the magnitudes of the ele-
ments of the quark mass matrices should be proportional
to each other gives a prediction for the top-quark mass
which is experimentally acceptable.

VI. SUMMARY

Diagonalizing the KM matrix directly establishes a set
of bases in which the weak interactions rather than the
mass matrices are diagonal. If the nonobservation of
right-handed currents is used to permit the requirement
that the mass matrices be Hermitian, then there are three
continuous parameters describing the various bases. If
non-Hermitian matrices are permitted, then there are
three additional continuous parameters not determined by
the requirement that the weak interactions be diagonal.
Of necessity, these parameters must be specified by sym-
metry relations, not by comparison with data. It is feasi-
ble to perform searches over these parameters seeking
mass matrices obeying specified symmetry conditions.
Such searches could potentially be used to determine
which of the several viable horizontal symmetries gives
the best fit to experimental data. There is a single basis in
which the up quarks (all charge —,

' quarks) and the down
quarks (all charge ——,

' quarks) are treated as symmetrical-

ly as possible given the constraint of a nontrivial KM ma-
trix. For a top-quark Lagrangian mass of 36 GeV, the
magnitudes of the matrix elements of the two quark-mass
matrices are proportional to each other, and the nontrivial
KM matrix comes about solely from the differing signs of
corresponding elements of the mass matrix.
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