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Application of the real-time temperature Green's functions
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The real-time temperature Green's functions are applied to study spontaneous breaking and res-
toration of chiral symmetry in quantum chromodynamics. In particular we discuss some salient
features of the temperature Green's functions which essentially reAect the Kubo-Martin-Schwinger
condition. The gap equation is given in the ladder approximation and solved with a rough ap-
proximation.

I. INTRODUCTION

The restoration of spontaneously broken chiral sym-
metry under the influence of finite temperature and/or
finite fermion density has attracted much attention for
quite some time. ' Although the following argument
may be relevant to a wide class nf field theories, we par-
ticularly consider its application to quantum chromo-
dynamics (QCD). In this realm, some interesting topics
discussed so far include properties of the phase transi-
tion, cosmological as well as astronomical implica-
tions, experimentally accessible phenomena, and so
on. Lattice gauge theories appear to provide the most
powerful approach to studying properties of the chiral
phase transition, giving T, = 3AMs (MS denotes the
modified minimal-subtraction scheme) and favoring the
first-order transition. ' However, they have a dificult
problem and their calculation is still limited owing to a
finite size of lattice. Moreover, we would like to obtain
other information pertinent to the chiral transition, such
as the possible temperature dependence of the decay
constant, the pion mass, and other quantities.

Now, since the pioneering work of Nambu and Jona-
Lasinio, a traditional approach to chiral-symmetry
breaking (CSB) has been to use the Schwinger-Dyson
(SD) equation. The temperature and/or quark density
effects ' in this approach were thus far studied based
on the imaginary-time formalism which uses
Matsubara's temperature Green's functions. " The pur-
pose of this paper is to present another treatment with
the real-time formalism.

Since the development of the thermo field dynamics
(TFD) of Umezawa and others, ' ' especially supple-
mented with the path-integral formalism of Niemi and
Semenoff, ' ' the real-time formalism has achieved such
substantial progress that one can systematically calculate
higher-order effects with diagrams analogous to the usu-
al Feynman graphs. Strictly speaking, TFD and the
path-integral formalism provide us with different repre-
sentations of the algebra of operator fields i.e., they
are canonically inequivalent theories. Nevertheless, both
theories are equivalent with regard to our perturbative
calculation of thermal Green's functions. More recently,

it appears that TFD purports to treat nonequilibrium
processes, not just equilibrium ones. ' In this paper we
treat only those states in complete thermal equilibrium.
Then it turns out that TFD gives substantially
equivalent results to the imaginary-time formalism.
Nevertheless, we argue that in our treatment there is
some novel aspect worth studying which originates from
the advantage of TFD, that the certain analytic con-
tinuation" ' ' ' required in the imaginary-time formal-
ism is automatically satisfied in TFD.

IN TFD all dynamical freedoms are doubled. Ac-
cordingly any two-body Green's function is expressed as
a two-by-two matrix. It is remarkable that in the spec-
tral representation, ' the whole of each matrix can be ex-
pressed in terms of a single weight function. It is a
direct consequence of the Kubo-Martin-Sch winger
(KMS) condition. ' The spectral representation is quite
important in identifying the genuine dynamical part in
the two-body Green's functions as well as to establish a
close relation between the real-time and the imaginary-
time formalisms. "' Therefore, our major task in deriv-
ing the gap equation is concerned with retaining the
properties imposed by the KMS condition.

This paper is organized as follows. In Sec. II we re-
view the essential arguments to derive the spectral repre-
sentation in the case of the fermion temperature Green's
function. Some expressions we use for the spectral rep-
resentation are different from the conventional ones. ' ''
Though their contents are the same, our expressions are
useful, especially in the case of a finite chemical poten-
tial. In Sec. III the gap equation is derived within the
ladder approximation and temperature-density effects are
studied by perturbation theory. In Sec. IV we treat the
gap equation in a crude approximation and give some
numerical results for the chiral phase transition. Brief
remarks are also given.

II. THE KUBO-MARTIN-SCHWINGER
CONDITION AND THE SPECTRAL

REPRESENTATION

This section is devoted to elucidating the important
consequence of the KMS condition which results in the
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spectral representation for two-body temperature
Green's functions. The representation was first derived
by Matsumoto. ' Some elaborative discussions are found
in Refs. 12 and 13. We treat only the fermion propaga-
tor because it plays a central role in the SD equation dis-
cussed in the next section. We include both the temper-
ature T = 1/P and the chemical potential p.

It is convenient to introduce the tilde operators P(x)
and P(y) whose temporal dependences are defined by

f(x,x)=e+' "
1((O,x)e (2.1a)

(2. lb)

where K=H —pN+, N~ denoting the fermion number
operator. These are simply related to the usual Heisen-
berg operators as

The KMS condition follows from the feasibility of cyclic
permutations of the operators inside the trace Tr( ). '

It amounts to

13
0

p (po p) —e
—PF

p (po p

Hereafter we set

(2.5)

(
o

)
pp p
1+e -»' (2.6a)

p, (p, p)=
0

e
—»

Qp(p p) .
1+e —»' (2.6b)

The four matrix elements of the fermion temperature
Green's function can be expressed as

iSp„(x,y)=0(x —y )Sp (x,y)

P(x)=e'" it(x), (2.2a) —0(y —x )Sp& (x,y), (2.7a)

ti (y ) = e '"y g(y ) . (2.2b) iS p2, (x,y) =Sp& x i —,y— (2.7b)

[Sp& (x,y)]zs—=Tr[e P fz(x)P&(y)]/Tr(e P ),

[Sp (x,y)] s—=Tr[e P its(yt)gz(x))/Tr(e P ),
together with their Fourier transforms

(2.3a)

(2.3b)

In the following we shall concern ourselves with the
Green's function defined in terms of the tilde operators.
The corresponding Green's function with the Heisenberg
operators can easily be obtained by shifting the zeroth
component of momenta. It is evident from functional-
integration formulations' ' that the former type of
Green's function, not the latter, is a directly calculable
quantity in perturbation theory. Next, in terms of the
tilde operators we define two auxiliary functions:

iSp»(x, y)= —Sp~ x,y i— (2.7c)

iSpz2(x, y)=6(y —x )Sp (x,y)
—8(x —y )Sp((x,y) . (2.7d)

4

( )= f d p 'p'~" y)S. . . (po, p)
(2m )

(2.8)

Perhaps the easiest justification for these (2.7) can be ob-
tained with a functional-integration method. Their
Fourier transforms are

[Sp
4

(p', p)],s .

(2.4)

Then it is remarkable that all four quantities in
(2.7a) —(2.7d) can be expressed with a single weight func-
tion p(p, p):

0 +
lSp(i(p, p)= dc' 2~&(p' ~)fD(p ) —p(co, p),—

oo P —6) + l E

iSp»(p' p)=e ' "fD(p')p(p', p),
iSpi2(p' p) = —e ' "fD(p')p(p', p),

(2.9a)

(2.9b)

(2.9c)

iSp22(p, p)= f den 0
P —6) —1 E

—2ir5(p —cu)fD(p ) p(co, p), (2.9d)

where e denotes an infinitesimal positive quantity and fD the Fermi-Dirac statistical factor:

fD(p') =
e»'+1

(2.10)

The expressions (2.9a) and (2.9d) in the spectral representation are somewhat different from the conventional ones, '2'3

though their contents are the same. The above expressions can be arranged as a matrix in quite a suggestive way

~P11 ~P12
0(P»P) = UF

P21 P22

G+ (p)

0

0

(p) F ' (2.11)
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where

UF ——
cosOF sin OF

—sin OF cosOF
(2.12)

with (sinOF) =fD(p ) and

G~(p)=+ f dc'
P —Q)+1 E

(2.13)

As was emphasized by Matsumoto, ' the genuine dynamical part of the fermion propagator is G+(p). Furthermore,
at this point a close relation between the real- and imaginary-time formalisms becomes evident. We note that iG+ (p)
is just the Fourier transform of the retarded Green's function:

i[6+(x,y)]rs 8——(x y—)Tr[e ~ [gr(x), Ps(y)] ]/Tr(e ~
) . (2.14)

It is well known that this function and the imaginary-time temperature Green s function share the same weight func-
tion. "' ' Indeed the Fourier transform of the latter can in general be written as

Gp(co„,p ) = f dc'
l CO„—CO

where co„=(2n +1)n/g, n being integers.

(2.15)

III. GAP EQUATION IN THE LADDER APPROXIMATION

Let us calculate the self-energy correction to the quark propagator in the ladder approximation depicted in Fig. 1.
Insofar as vertex corrections are neglected, it is straightforward to incorporate manifestly the important properties of
the temperature Green s functions, which are discussed in the preceding section. Inclusion of vertex corrections will

require a much more complicated calculation.
We write the inverse of the quark propagator as

—1

—)"(p ', +p )+y.p+ &p(p, )
(3.1)

X&(p, ) denotes the proper self-energy part of the whole contribution in Fig. 1. Hereafter we use the notation

p+, ——(p +ie, p). We write the gauge-boson propagator in the Feynman gauge as

(D~p )), (Dp ))q

(DP„) (DP )
(k, k)=( —g"")U~

p && p 22

cr(co, k)
k —6p+EE

(3.2a)

where

cosh O& sinhO&

sinhO& cosh O&
(3.2b)

with

(sinh8& ) = 1

pk
(3.2c)

We use the free boson propagator for which

cr(co, k) = [5(co—
)
k

/
) —6(co~

f

k
f
)] .

1

2[k/
It is enough to calculate only the (11) element of the proper self-energy part of Eq. (3.1), because all the other ele-
ments can automatically be fixed by it. We find that

z C
cos 0~X~(p, )~ sin OFT~(p, )=

4 f y„[S~(p —k)]~~@,[D~p (k)]~~d k,
(2~)

where CF is the Casimir factor CF ——(N, —1)/2N, = —', and

(3.3)
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i[De (k)]„=(—g"')f des +2~6(k —cu)fR(k ) o.(co, k) .
k —M+I&

The left-hand side (LHS) of Eq. (3.3) consists of two parts, each characterized by different analytic properties of the
variable p . To be consistent, we must similarly distinguish two parts on the RHS. The separation of two parts has
crucial importance in summing up the contributions in Fig. 1. This separation can be achieved with the aid of the for-
mula""

dk 1

277 p —k —co+ I E

—2~fo (p —k )5(p —k —co )
k —N +1E

+2~fR (k")6(k —co')

0 I
p —c0 —co + l E

fg)(~)fR(~')
2~fD(p—")5(J ' ~ ~')

fo(~+w )
(3.4)

Thus one arrives at

g 2C g""),~(co, p —k)y, ,
o. (co', k) f D(co)fR (cu')

Xp(p, ) =—,d'k d~ dw'
(2~)' p —CO —M +l E fo(~+~') (3.5}

If one recalls that X~(p, ) is the proper self-energy part
of the retarded Green's function (2. 14), Eq. (3.5) clearly
corresponds to Dzyaloshinski's formula in the imagi-
nary-time formalism. ' '

Now the self-consistency requirement in the Hartree-
Fock approximation is to impose the condition

SF(p) = f g(K) + h(~)
y p —w+ie y.p+K —ie

JK
(3.8)

Now it is easy to confirm that the retarded Green's func-
tion at T =p =0 can be expressed as

)"(J,'+i ) r p~g—(p..)
+ ~ p(M, p)

0
p —cd+ 1 6'

(3.6)

GR(i, )= f,
g(K) + h(~}

p'p —K+1 6' p p+K+l6
8K

(3.9)

Equations (3.5) and (3.6) together give us the gap equa-
tion to determine the dynamical mass of quarks at a
finite temperature and finite quark density.

Let us evaluate the temperature and density eAects up
to the lowest order. We start from the dynamical solu-
tion of the SD equation at T=@=0. It was estimated
by many authors. ' We assume that the solution is ex-
pressed as

Let us set

w(z)—=z —A(z ) . (3.10)

If and only if w (z) is a generalized R function, it is pos-
sible to write the inverse of Eq. (3.7) in the spectral rep-
resentation. If this is the case, the weight functions are
given by

SF(p) '=y.p —A(p')+i@ . (3.7) l
g (K ) /K = ltm

277 e 0 w(K+ I E')

1

W ( K —lE)'for ]c)0,
Strictly speaking, the above form is valid only for the
Landau gauge. The solution in the Feynman gauge ap-
pears a bit complicated. However, as the following pro-
cedure is essentially unchanged, we dare to use Eq. (3.7).

As is evident from Eq. (2.11), we need the retarded
Green's function in order to get the temperature Green's
function. For this purpose we cast the inverse of Eq.
(3.7) into the famous spectral representation of Gell-
Mann, Low, and Lehmann:

FIG. 1. Ladder-type diagrams.

(3.11a)

~(K)/~= lim
1

2' e-0 w( —K+ie)
1

for &)0.
W( —K —1E)

(3.11b}

We now substitute +GR(p+, ) for G~(p) after shifting
the zeroth component of the momenta: p ~p +p.
Thus, we are provided with an approximate temperature
Green s function, which in turn is substituted into Eq.
(3.5). In this way we obtain the dynamical mass term
modified by temperature and chemical potentials to the
lowest order:
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22g Cp
A~(p, )=A[(p, +p) —p ]— J drc[g(v) —h(x)][J~(p„x')—Jq(p„a)],(2~)'

where

(3.12a)

d k fD(E, -~ —v) f0 (Et, g P)—
o z+ 2 oEp g k —(p +p —Ep, g+ie) k —(p +p+Ep g+ie)

(3.12b)

1 1Jp(p„~)= fs( k )
~ 2+ 2/k Ep g' —(p "+p —,~ k

~

+i~)' Ep g' —(p "+@+ k
~

+~E)'
(3.12c)

with E =(p +~ )' . In order to get a rough figure for the second term in (3.12a), we use a crude approximationP
A (p ) =const, setting g(~) =M5(a. —M) and h (v) =0. Then one obtains

g CFM
A~(p +@=M,p=O)=M—

o E
E~

M
+1 fD(Eq p) ——

M
—1 fD(E&+P) (3.13)

where Eq ——(k +M )'~ . This result implies that the
dynamical mass tends to decrease u~der the inhuence of
the temperature and chemical potentials.

We remark that the confinement effect may invalidate
the representation (3.8) (Ref. 24). Thus, in order to ap-
ply the above argument, it is presumably a requirement
to cut off infrared singularities. The singularities them-
selves can be treated, at least, to some approximation. '

IV. SOME NUMERICAL RESULTS AND REMARKS

spectively, for ultraviolet and infrared divergences.
Our approximate gap equation reads as

3~ 1

8

On the LHS a, =g /4~, while on the RHS

M ~ 1
(+E(g)

A A 2g

(4.4)

The dynamical mass of a quark at finite temperature
and density may be defined by the condition + fdx 1 1

E(x) D+(x) D (x)+

Xp(p =M —p, p=O)=M . (4. 1)

This quantity plays the role of an order parameter which
distinguishes between the Wig ner and the Nambu-
Goldstone phase of chiral symmetry. Let us make a
rough calculation to find the critical values of T and p
for which M changes its value from zero to nonzero.
We approximate the weight function p(~, p) on the RHS
of Eq. (3.5) by

A 1+ dx
M r D+(x)

where

(=A, /A, E(x)=(x +M /A )'

1

D (x)

(4.5a)

(4.Sb)

p(co, p) = [(y.p+ +M )6(co+@ Ep)—1

2E
and

D+(x) = exp(PA[E(x)+p/A]}+1 . (4.5c)

—(y' p +M )5(co+p+Ep)], (4.2)

where E& ——(p +M )'~ and p~ =(+E~,p). This ap-
proximation utilizes the free retarded Green's function a, = 3~/[8 In(A/X)] . (4.6)

a, in Eq. (4.4) denotes the critical value of the coupling
constant beyond which the Nambu-Goldstone phase is
realized at T=p=0. It is given by

1/[V (p +8+'~) 'Y'p™l (4.3)

to all quark lines in Fig. l.
The resulting equation involves ultraviolet as well as

infrared divergences. In fact, the ultraviolet divergence
is false; there is no divergence of this kind, if one takes
into account the correct asymptotic behavior of the
dynamical mass term. Even if one includes current-
quark masses as explicit symmetry-breaking terms, the
ultraviolet divergence should off'er no problem, once it is
renormalized at T=p =0. In the present approximation
we merely introduce two cutoff parameters A and A. , re-

~s
M0 at T=p=0

1000 MeV
100 MeV

0.51
0.75

300 MeV

TABLE I. Parameter values for numerical calculation.
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FIG. 2. Phase diagram for chiral transition.

At T =@=0 the dynamical mass value is expressed as
0 O. I

Tc/A
0.2

g= exp
8

Mo ——(2k Ill )&1—il,
3~ 1

(4.7a)

(4.7b)

FIG. 3. The dynamical mass of a quark vs the critical tem-
perature.

Taking the appropriate parameter values listed in Table
I we calculate the phase diagram in Fig. 2. Among the
parameters in Table I, u„A, and X are fixed and the
other parameters are calculated from them. The mass
values on the critical curve are shown in Fig. 3. The
figure shows that Eq. (4.4) implies the chiral transition of
first order for @&0, while of second order for @=0.

In conclusion we remark that it will be possible to im-
prove the treatment of the ladder-type gap equation. It
is also interesting to treat instanton effects with the
real-time formalism; it seems especially suitable to treat
the weak effect of T and p, once solutions are known at
T=p =0, while the imaginary-time formalism is known
to yield reliable results in the high-temperature case. '
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