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Some global charges in classical Yang-Mills theory
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Three classes of boundary conditions allowing the definition of a global field strength ("global
color" ) are presented. A definition of global color of the sources and of the Yang-Mills field is pro-
posed. Some exact solutions of Yang-Mills equations with point sources and with "topologically
nontrivial electric color" are presented.

I. INTRODUCTION

In classical Yang-Mills theory the concept of the total
strength of a field configuration seems to be generically ill
defined: the Lie-algebra-valued integral'

g J' "F

does not intrinsically characterize a field configuration, as
it is gauge dependent. ' The proposed solutions to this
problem seem either to be specific to some peculiar prop-
erties of a field configuration' or to require the introduc-
tion of some arbitrary elements, ' both, ' or, finally, to as-
sume the existence of Lie-algebra-valued Higgs fields' in
the model under consideration. When trying to make
sense of (1.1), one has to define f s —if this symbol is

understood as the limit R ~ ao of integrals over a family
of surfaces S(R ), the requirement of convergence im-
poses restrictions on the asymptotic behavior of I' and
on the gauge in which the calculation is performed. If
we demand

paper we shall consider spatial infinity only (i.e. , the limit r
tending to infinity for fixed t ), some of the constructions
presented here can be carried over to null infinity by
means of the asymptotic expansions of Tafel and Traut-
man. The symmetry group is assumed to be compact and
semisimple throughout, although in many places these as-
sumptions can be weakened. Unless stated otherwise, we
consider the fields on a fixed Cauchy surface only. The to-
pological analysis presented here is standard; it seems to
us, however, that the context in which it is presented is
new.

II. THE CHARGE AS THE MOMENTUM MAPPING

The charges we shall consider can be defined in a stan-
dard way by "Noether currents"; in this section we shall
recall a slightly more sophisticated symplectic derivation
of these quantities (the reader may skip this section
without damage in the understanding of the remaining
ones). Consider the infinitesimal phase space
P, = [ ( A„, A„„P"',Pt" ) ] for the Yang-Mills theory
with the canonical symplectic form

F=O(r ') (1.2)
co =(k„dP'"'h d A„"), , (2. 1)

and choose a gauge in which the limit exists, it will in
general cease to exist if we perform a gauge transforma-
tion F~g 'Fg, with g = exp[f(r)X], where X is a con-
stant element of the Lie algebra. The purpose of this pa-
per is to present some conditions under which (1.1) ac-
quires unambiguous meaning.

In Sec. II we recall the Hamiltonian meaning of (1.1).
In Secs. III and IV we present three classes of boundary
conditions which allow us to define (1.1). In each case we
derive the "asymptotic gauge group, " i.e., the group of
gauge transformations which preserve our conditions. It
turns out that these conditions do not all single out a fam-
ily of gauge transformation s which are asymptotically
constant (point independent) —this makes (1.1) still ill
defined, although finite and well convergent in every ad-
missible gauge. '

In Sec. V we propose how to define the global strength
of sources, and how to extract gauge-invariant informa-
tion from (1.1). The global magnetic color is shortly dis-
cussed in Sec. VI. In Sec. VII the problem of time evolu-
tion and of Lorentz invariance of the charges is briefIy dis-
cussed. Finally some solutions with "topologically non-
trivial electric color" are presented in Sec. VIII. In this

0=X ~ co =d ( P,
' j co ) =. (b,

' J co = —d [j(X ) ], (2.2)

where X=g'(e). From the definition of the action we
have

y,'=D„X axaA„' ([X,P']).aiaP +—
so that

tt,
' J co= —d[k(D„X,P"')],

j(X) is therefore defined globally and we have

j (X)=k(D„X,P"') „
which, after going to integrated structures, leads to the
charges"

where k is the Killing metric. 6 acts on P, via a family of
diff'eomorphisms P, :

P ( A„,P" ) =(g ' A„g+g 'g „,g 'P"'g ) .

The action is symplectic so the one-forms P' J co are
closed which allows us to define (at least locally) the
momentum mapping j:
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Q(X) = J k(D„X,P"")dV. . (2.3)

4m .

In standard Yang-Mills theory P" =F" /4~ on dynamics
and so, if vacuum Yang-Mills constraint equations are
satisfied and X is asymptotically constant,

Q(X)=k X, J (2.4)

boundary conditions ensuring a well-defined charge it is
useful to write (1.1) in the form

Q= f [j'—([A„,F" ])/4~]dV. (3.5)

(and we have assumed that the "constraint part" of the
field equations is satisfied). Q will not suffer from any of
the above-mentioned troubles if we require

If sources are present, a supplementary current term ap-
pears in (2.4).

j 'EL, (X),

[A„,F"']EL,(X) .

(3.6)

(3.7)

III. QUASI-ABELIAN BOUNDARY CONDITIONS

In this section we shall present our first set of boundary
conditions for which (1.1) make sense. This is a subtle
problem because the imposition of too-strong boundary
conditions may make the whole discussion trivial; more-
over, certain boundary conditions may simply be incom-
patible with the field equations. Suppose that for some
reasons we only wish to consider fields satisfying

F„=O„(r ' ~), f3&0, k&0. (3.1)

If P&0, proposition 4. 1 of the next section shows that
(3.1) implies the existence of a gauge in which

A, =O„~,(r ' ~) . (3.2)

g, =O~(r '
) . (3.3)

In particular, if P=O, (3.3) allows for transformations of
the form

g(x') =g(x'/ x
~

),
but there is also the analogue of what is called the "loga-
rithmic ambiguity" in the general-relativistic case:

g= exp(X lnr),

where X is any fixed element of the Lie algebra. If S is
understood as the limit of a family of coordinate spheres,
the simplest way of ensuring convergence of the integral
(1.1) is to assume

F= F(8,$)/r +o(r ); (3.4)

the problem with such a hypothesis is that one can ob-
tain another (nevertheless well-convergent) result if the
spheres are replaced by, e.g. , a family of ellipses. To find

If P=O, (3.1) implies the existence of gauges, eventually
with string singularities, for which (3.2) holds in ap-
propriate domains (cf. the remark following proposition
4.1). If m~(G)&[e], the standard U(1) magnetic mono-
pole shows that strings cannot be generically removed,
while if n&(G)=[e.], global gauges in R tB(R ) always
exist but we have not been able to show that the two po-
tentials with strings on, say, the positive z axis and the
negative z axis, respectively, can be patched together to
a gauge satisfying (3.2). Nevertheless, if P=O, the above
discussion suggests that it is natural to consider poten-
tials satisfying (3.2)". This being the case, a singled-out
class of gauge transformations preserving (3.2) appears
and it is simple to show that this class consists of trans-
formations satisfying

F= F+O(r '), F=O(r ), e&0,
A Eo, FEO, (3.8b)

where O is any chosen Cartan subalgebra of 9 (the field
is Abelian in the leading order). We have not been able
to prove in general that these boundary conditions
guarantee that the charge is well defined; we conjecture
that this is indeed the case. To give support to this con-
jecture we shall establish it under some supplementary
conditions on OF (proposition 3.1) and without any sup-
plementary hypotheses for infinitesimal gauge transfor-
mations (proposition 3.2). In the noninfinitesimal case
we shall require that, in natural coordinates,
Fz, F„,(8,$——)r . We shall call such an F„„generic if

the set of (8,$) for which F "belongs to the boundaries
of Weyl domains' is of measure zero. We have the fol-
lowing proposition.

Proposition 3.1. For generic F„„the gauge transforma-
tions for which g(8, $)= lim„g(r, 8,$) exists and
which preserve the property F C O are of the form

g(x)=wh(x), x ES„,
where w is a fixed element of the Weyl group' and h(x )

has values in T, the maximal torus associated with @.
Proof The condit. ion g(x ) 'F(x )g(x ) E@, x ES

implies that g(x )=w(x )h(x ), where w(x) is an element
of the Weyl group W' and h(x ) belongs to the isotropy
group of F(x ). As F(x ) is generic, its isotropy group is
equal to T, the maximal torus of which O is the Lie alge-
bra; w(x ) = const follows from discreteness of Wand con-
tinuity of g(x ) (we always assume gauge transformations
of class Cz).

Proposition 3.2. The space of infinitesimal gauge trans-
formations preserving (3.8) is finite dimensional, modulo
infinitesimal O-valued gauge transformations and
infinitesimal gauge transformations which vanish at
infinity.

Proof. For infinitesimal gauge transformations
A~A+5&A (3.8) yields

5&A =dp+[A, p]=w(x)+O, (r ' '), w&O,

w =dP+['A, P]+O, (r ' 'lnr)

[(3.3) implies P =O(lnr ), whence the logarithmic term

In what follows we will assume that (3.6) is satisfied. We
shall analyze three classes of boundary conditions which
guarantee the satisfaction of (3.7). A possible hypothesis
which exploits the bracket structure in (3.7) is

A ='A+O, (r ' '), 'A =O, (r '),
(3.8a)
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above]. Let b, denote the set of roots" and let
P =g~E~ P~+ 4, 4 & O, be the Cartan decomposition of P
( =. dp=gdp +d%' is the Cartan decomposition of
dg). We have

dP. + ['A, P.]=dP. +a('A )P. ,

which together with (3.3) implies

dP +a('A )Q, =O, (r ' 'lnr),

d+=O, (r ') .

The integrability conditions of (3.10) are

(3.9)

(3.10)

(3.1 1)

a('F)=O(r ' 'lnr) (3.12)

g(x)=g, h(x)g, (x), h(x)HT, dg, =0,
dg, =O, (r ' '), dh =O, (r '),
g, ~e for r~oo .

(3.13)

Equation (3.8) can be generalized to admit a particular
case of what we shall eall a "topologically nontrivial elec-
tric charge. " Let gf be a subbundle of the trivial bundle
O XS„,each fiber &„,x H S„,being a Cartan subalgebra
of O. We can weaken (3.8b) to read

'A (r, 0,$)E&,~, 'F(r, 8,$) E&g ~ . (3.14)

We do not know whether the generalization (3.14) is an in-
teresting one because (3.14) and F=d A may be incom-
patible with a nontrivial F and a nontrivial & bundle.
For further purposes it is useful to describe the structure
of such bundles. These are in one-to-one correspondence
with subbundles "T of the trivial principal bundle G XS„
with typical fiber T, the maximal torus corresponding to,
say, & . Each T„,being a maximal torus, is of the form

Xp

g '(x ) T g (x ) (with some fixed xo ), g (x ) being deter-

mined up to multiplication from the left by an element of
N(T„)= the normalizer of T . Making use of this ob-

servation it is not too dificult to show that T is trivial if
and only if

and, therefore, for F for which (3.12) does not hold we re-
cover the infinitesimal version of proposition 3.1 For
every a for which (3.12) holds (3.10) determines
uniquely up to the value of P at, say, the north pole of S„
and lower-order terms. As a consequence the O part of P
is arbitrary [up to (3.11)] and there may be as many non-
vanishing P 's as a's for which (3.12) holds, every such a
allowing for at most a one-parameter family of P 's.

It should be noted that the "P, gauge transformations, "
whenever allowed, do not change the value of the integral
(1.1).

In specifying (3.8) we have arbitrarily singled out some
Cartan subalgebra and the freedom of performing gauge
transformations which lead from one Cartan subalgebra
to any other restores a rigid action of the gauge group at
infinity. This is due to the fact that all Cartan subalge-
bras are conjugated" which leads, at least in the generic
case, to the asymptotic gauge group which consists of
transformations of the form

[gl.,(Gzw7. I)=0 .
0

(3.15)

n = rankG = dimO. If (3.15) holds &s & may be
transformed to be equal to &„with the help of the gauge
transformation g(x), leading in consequence to the reduc-
tion of the gauge group described in proposition 3.1. As
we shall see in the following sections, the nontriviality of
these bundles leads to some topological invariants which
characterize the leading-order behavior of the electric and
of the magnetic fields.

To close this section let us note that the conditions
A =O(r ') and F=O(r ') can be weakened; a finite

and well-defined charge will be obtained if 'A =O(r ),
'F=0(r '), a+@& 1. Finiteness of energy, if imposed,
would yield the supplementary condition 'F EL,(X)
(which will be satisfied for a ~ —,

' ).

IV. (3THER BOUNDARY CONDITIONS

The boundary conditions of the previous section had "a
group-theoretical character"; the integrability of [A„,F"']
was ensured by the commutativity of the leading-order
terms. In this section we shall present two further sets of
boundary conditions guaranteeing

[A, ,E']EL, (X) (E'=F") . (4.1)

These boundary conditions are clearly sufficient for finite-
ness and convergence of (1.1). The conditions we shall
present in this section sufIer from lack of Lorentz covari-
ance; if they are satisfied on some Cauchy surface, they
will in general not be satisfied on a boosted one, raising
doubts about the possibility of defining the charge on
boosted surfaces. Although an unpleasant feature, we do
not consider it as eliminating because the problem of
definition of charges is a kinematical one, while the behav-
ior of the fields on boosted slices belongs already to the
dynamical domain: one obtains the fields on boosted hy-
persurfaees by evolving the Cauchy data in time. %'e
shall first consider the "electric boundary conditions":

B'=e,,„F,„/2=0(r ' '), e) 0,
E'=O(r ') .

(4.2)

(4.3)

Proposition 4.1. If (4.2) holds, there exists a gauge in
which

A, =O, (r ' ') . (4.4)

Remark. If @=0 the construction that follows shows
existence of a gauge transformation which leads almost to
(4.4): we will have

~

A,
~

&C(H)/r, and C(0) may go to
infinity as 0 tends to ~, so that a string singularity will be
present. A repetition of our construction starting from
the negative z axis will lead to a complementary gauge in
which the string lies on the positive z axis.

Proof. We shall construct the gauge transformation
which will lead to a potential satisfying (4.4). Let x, be
an arbitrary point on the positive z axis: x, =(0,0,r, ).

From the exact homotopy sequence of a fibration we have

vr, [G/N(T„, )) =n, (G. /T) =m.
, (T)=Z",
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For r & ro let g(0, 0, r) be uniquely defined as follows.
VX H 8, g(0, 0, r ) 'Xg (0,0, r ) is obtained by parallel

transport ofX from ro to r along the z axis.
For all (8,$), 8&m, we

define

(x) as follows. @XYLO,
g(r, 8,$) 'Xg(r, 8, $) is obtained by parallel transport of
X from the north pole to x along the meridian.

This defines g(x ) for all x with
~

x
~

& ro except on the
negative z axis. Let Xx,(x ) =g(x ) 'Xog(x ),

The "parallel-transport deviation equation, "
D+=O~D~D. X=[F.~,X], a =r, P,

the preservation of the length of the vectors under parallel
transport, and D,Xx (8=0)=D&Xx (8=0)=0 imply, for
8 ~ m, the existence of a constant C such that

~ Dye, ~

&Cr

~
D&Xx

~

&Cr ' (DeXx ——0 by construction) .

Consider now the parallel-transport operator T& & along

parallels with given 8 on S(R ) from P, to P, . We have

Te, ,X. (q„8) X. (q„—8)= I' T,', D,X. (q, 8)~q,
2

therefore have

D; Xx ——r);Xx + [A;, Xx ]= [ A, ,Xo ]

=O(r-'-') . (4.8)

A, =O(r ' '), (4.9)

which had to be established [the higher diff'erentiability of
3 follows from standard theorems on differentiability of
solutions of differential equations and similar considera-
tions, if F is assumed O, (r ' ')]

Proposition (4.1) shows that (4.2) and (4.3) naturally
single out a class of gauges for which (4.9) holds. It is
trivial to show that C, gauge transformations preserving
(4.9) must be of the form

g(x ) =g,g, (x ), dg, =0,
dg, =O (r ' '), gI~e for r~m .

(4.10)

An alternative set of conditions ensuring (4.1) are the
"asymptotically Coulomb boundary conditions":

As (4.8) holds for all Xo, the compactness and semisimpli-
city of 8 imply

which for 0=~ leads to

~
Xx (Pi, 8)—Xx,($,8)

~

&C'r
A„=O, (r '), A„=O, (r ' '),
ejkx~E"=O(r ' ') .

(4.1 1)

in virtue of the previous estimates and because T& &
——id.

It is easy to show now that this last inequality holds also
for all 8&(vr e, n), w—ith some e &0 and with a possibly
larger constant C'. For a semisimple Lie group there ex-
ists a neighborhood of unity which is smoothly
diffeomorphic with its image under the adjoint representa-
tion; thus, this last estimate shows that for sufficiently
large r, say, r &R„and for 8E(n e, vr) all —the g(r, 8,$)
lie within the radius of injectivity of the exponential map-
ping at g(r, n, O):

g(r, 8,$)= exp[ X(r, 8,$)]g(r, rr, O) .

X is defined uniquely and satisfies

The constraint equations D,E'=4vrj', (3.6) and (4.11),
lead one to expect that

E'=Q(8, $)x'/r'+O(r ') . (4.12)

If BA„/Bt vanishes faster than r ', (4.12) and the field
equations imply A =Q(8,$)/r+O(r '), and if, more-
over, the magnetic field vanishes faster than r ', proposi-
tion 4. 1 implies that we have a solution of the type (3.8)
or (3.14). It seems, however, that the classes (3.14), (4.2),
(4.3), and (4.11) need not coincide. The solution (4.12)
may exhibit the already mentioned "topologically non-
trivial electric charge" behavior, which we shall discuss
now in some detail. For every 8 and P we can define

~

X(r, 8,$)
~

&Cr ', ~D,X &Cr

D&X
~

&Cr ', ~D„X &Cr
(4.5)

T.,
=

I g & G:g 'Q(8 4)g =Q(8 4) I

7 =
I (g,x ),x ES„,g E T„I,

(4.13)

Let @ be any smooth function satisfying 4(x ) = 1 for
x &m. —2e/3, &b(x) =0 for x & n e/3 For—r &R.o define
a C, G-valued function g:

g=g, 8&(m.—z, m),

g(r, 8,$) = exp[2(r, 8,$)4(8)]g(r, vr, O)
(4.6)

for vr —a &0~~ .

Define Xx (x)=g(x) 'Xog(x). From (4.5) and (4.6) it

follows that

each T, & being the isotropy group of Q(8,$). In this way
we have defined a subset T of the trivial bundle G&(S„.
In what follows we shall assume that all the T, &

are iso-
morphic, i.e., 7 is a bundle (this is a restrictive assump-
tion, analogous to the genericity assumption in proposi-
tion 3.1). We shall also focus our attention on the case
where the fibers of T are maximal tori, a situation de-
scribed at the end of Sec. III (our further discussion
would not be essentially altered without this last hy-
pothesis). As in Sec. III, Q(8, $) may be written in the
form

~DXx
~

&Cr (4.7) Q(8,$) =g '(8, $)Q, (8,$)g(8,$),
If we perform a gauge transformation Xg (x )Xg (x )

the fields Xz will be represented by point-independent
fields Xo, (4.7) still holding (being gauge independent). We

with Qo having values in a fixed Cartan subalgebra. If the
~z class of g in G /T is trivial, one can, via an angle-
dependent gauge transformation [which, therefore,
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V. GLOBAL CHARGES

In this section we shall propose how to extract gauge-
invariant information from the Lie-algebra-valued in-
tegrals of the kind (1.1). Consider first the "source-
strength" integral:

Q, (g &)= f g i'"g«, (5.1)

and we have written QJ(g, X) to emphasize the depen-
dence of (5.1) upon the gauge (cf. Ref. 15 for some in-
teresting remarks). Our procedure can be described as fol-
lows: let @ be any Cartan subalgebra of 8, b,o any base of
the root system, ' and Oo the related Weyl domain. There
is a unique element jo of the orbit of j lying in Oo (Ref.
12). For further purposes let us note that jo is uniquely
defined by the n = rankG = dimO numbers [a(jo ) }
For cz E Ao we define

a[j,X]= f a(jo)d'x . (5.2)

The set of numbers [a[j,X]} Ez is defined up to the ac-
tion of the Weyl group on b,o (which acts on it as a sub-
group of the permutation group), irrespective of the
choice of @and Oo. As for every x there exists g(x ) such
that

preserves (4.11) and (4.12)], obtain a Q which lies in a
fixed Cartan subalgebra. The whole gauge group gets
asymptotically reduced to a rigid group by requiring that
the gauge transformations preserve this structure, as in
proposition 3.1. If, however, the bundle V' is not trivial,
there are no preferred gauges and conditions (4.11) and
(4.12) leave the freedom of performing gauge transforma-
tions (3.3) with P=O, excluding the logarithmic transfor-
mations discussed in Sec. III.

In the case of G =SU(2) the condition of triviality of 7
may be expressed in a more direct way in terms of condi-
tions on Q(g, g). This can be described in a setting con-
siderably more general than (4.11) and (4.12) as follows:
consider any family of spheres S(R ) such that Vx,
i„,F(x )&0, for R, & R & R„where i„ is the inclusion

i~:S(R )~X. Consider the algebra-valued field

Q~ =*i„~F, where e is the Hodge dual with respect to
the induced metric on S(R). e„=Q„/

~ Q„~ is a map-
ping from S(R)=S, to [XESU(2), ~X

~

=1}=S„sowe
can define its degree deg(e~). It follows from homotopy
invariance and from ~,(G) = [e } for every Lie group that
deg(e~ ) is gauge invariant and constant for R E [R „R,],
in particular, if R, = oo, deg(e„) defines a discrete topo-
logical invariant. It is easily seen that in the case of (4.12)
deg(e~ ) = deg[Q(0, $)/

~
Q(9,$)

~
]. It can be shown that

the 7 bundle (4.13) is trivial if and only if deg(e„) =0 [in
the SU(2) case the genericity requirement is Q(8,$)+0 for
all 8 and P]. In Sec. VIII some exact solutions exhibiting
the above-mentioned "topologically nontrivial behavior"
are presented.

Let us remark that (4.2) and (4.3) can be weakened to
E, =O(r '), y'+e& 2 (in particular if B=0 no restrictions
on the asymptotic behavior of E are imposed). (4.11) can
be weakened to A, =O, (r ~), e,,„x'E"/r =O(r ),
y++ & 3, A„=O, (r ), E'=O(r "), ir+X & 3.

'g(x) 'j"g(x)=jo (5.3)

(5.2) may be looked upon as the value of a(Q ), where Q is
given by (5.1) in the gauge where all the j belong to Oo.
The trouble is that there may not exist a continuous g(x )
for which (5.3) holds. Nevertheless the integrals (5.2) can
be related to the family of integrals (5.1) as follows: for
L Cot define

Q, (X,X)= sup f k(X,g '(x)j"g(x))dV„,
g(x)

(5.4)

and (3.6) implies that Q, (X,X) is indeed well defined.
From (5.4) it follows

Vh C G, Q, (h 'Xh, X)=Q, (X,X),
which shows that it is sufficient to consider (5.4) for X be-
longing to a fixed Weyl domain @0 of a fixed Cartan
subalgebra O. The integrand k(X,g '(x)j g(x)) takes
its maximal value when g 'j g Woo, because, as has been
shown by Kostant, ' the orthogonal projection of the ad-
joint orbit of any element of 8 on some Cartan subalgebra
is the convex hull of the intersection points of the orbit
with O. Therefore, if a C2 gauge transformation go exists
for which (5.3) holds we have

Q)(X, X)=k(X,Q, (X)),
(5.5)

Qo(X) is in one-to-one correspondence with the set of
numbers (5.2). By showing that the supremum commutes
with the integral it can be proved that (5.4) contains ex-
actly the same information as (5.2), if the symmetry group
G is connected.

It is worth noting that formula (5.4) leads to the inter-
pretation of our charges as quantities describing some ex-
tremal properties of the set of vectors obtained from the
integrals (1.1), and this is in fact the way we came to con-
sider the charges (5.2).

Let us illustrate our construction in the case of SU(n ):
O can be chosen as the set of diagonal matrices (in some
basis), and Oo as the set of matrices for which(A,„,with A, ; the ith eigenvalue, a base in the sys-
tem of roots may be chosen as a; (h ) =A. , + i

—A,;. Our
prescription therefore requires the ordering, pointwise, of
all the eigenvalues of j in increasing order and the global
charges are given by the integrals A, = f A. , (x)d'x. In
the simplest case G =SU(2) we have

Q, (X,X)=k(X,X)' ' f k(j,j')' 'd'x .

In the previous sections we have analyzed some condi-
tions which led to a finite charge (1.1), with well con-

S
vergent and surface independent. In the case of' boundary
conditions (4.11) and (4.12) one was left with all angle-
dependent asymptotic gauge transformations in the re-
duced gauge group. In such a case, in a manner com-
pletely analogous to (5.2) and (5.4), we propose to define

where the supremum is taken over all C, gauges. Clearly

I Q, (»&)
I

&
I

X
I f li

'
I

d'x
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a[F,X]= f a("F"')d'S 4~, +ED, (5.6)
VII. DYNAMICS OF THE COLOR CHARGES

Q(X,X)= sup k X, f g '*Fg
g(x)

(5.7)
If there exists a gauge in which

[A„,F"']=o(r ), j "=o(r ), (7.1)

where the supremum is taken over angle-dependent C2
gauge transformations, ' and F" is the unique element of
the gauge orbit of F" lying in Oo.

From what has been said it is not too difficult to show
what follows.

Proposition 5.1. (5.7) contains the same information as
(5.6).

From (3.5) one obtains the following.
Proposition 5.2. Suppose that 3 has values in a fixed

Weyl domain Oo( -=.j" has values in Oii). We have
a[F,X J =a[j,X], for all a H b, o.

It is clear that in this last case (a[j,X]].«describes
the classical Abelian electric charges of the fields F and j.

As discussed above, prescriptions (1.1) (in an admissible
gauge) and (5.5) give the same result in the case of bound-
ary conditions (3.8); they may however give difterent re-
sults in case of (4.2). We shall not analyze this problem
any further.

Having defined the charges a[F,X] and a[j,X] one can
consider the deficit charges a[F,X]—a[j,X], and they
vanish if the field is quasi-Abelian in the sense of proposi-
tion 5.2. This difference may be thought of as the color
carried by the Yang-Mills field itself, a phenomenon relat-
ed to the so-called color-screening behavior (cf., e.g. , Ref.
18).

VI. MAGNETIC CHARGES

It is straightforward to include magnetic charges in our
discussion. The appropriate boundary integral takes of
course the form

the charges (1.1) (calculated in this gauge) are time in-
dependent and Lorentz invariant, which is readily demon-
strated with the help of the Stokes theorem and the field
equations. (In the general-relativistic case, for space-times
asymptotically flat in the sense of Christodoulou and
O'Murchadha, " they are also invariant under "super-
translations. "') This shows that (3.8) leads indeed to con-
served, Lorentz-invariant 8-valued charges at spatial
infinity. In the case of the boundary conditions of Sec. IV
there is no guarantee of obtaining well-defined charges on
boosted hypersurfaces, but one can still inquire about time
evolution. One obtains time-independent charges if

[A„,F"']=o(r ), j'=o(r ) (7.2)

holds together with (4.1). If, in addition, (4.2) and (4.3)
are satisfied Q is well defined and time independent. The
generalized charges (5.7) will be time independent if (7.2)
and (4.11) are satisfied in a gauge in which the supremum
of (5.7) is attained.

In opposition to the Abelian case the source charges
(5.2) or (5.4) need not be conserved in time even if the glo-
bal charges (5.6) or (5.7) are. There may be "a fiow of
color" between the sources and the fields.

VIII. SOME EXAMPLES

In this section we shall present some solutions of field
equations with point sources exhibiting the "topologically
nontrivial electric charge behavior. ' Consider the Abelian
point-particle solution:

A =Qor 'dt, Qo &S,
(8.1)

(3.8) or (3.14) guarantee convergence, finiteness, and
uniqueness of definition of Q~ up to the action of the
Weyl group, as in Sec. III. The equivalent of (4.1) in the
magnetic case takes the form

[ A, ,B']EL, (X);

dQO=O, F=Q, r 'dt hdr .

For every mapping g:S,~G the fields

3,=g ' Ag+g 'dg,

F =g 'Fg=Q(6, $)r 'dt hdr
(8.2)

(4.11) can be supplemented by

e...x'B'/r =O(r ' ')

to give again a well-convergent Q~; the topological dis-
cussion of the previous sections can be carried over word
for word to the magnetic case, and the construction of
Sec. V may also be used to define global magnetic
charges. In the special case considered by Goddard,
Nuyts, and Olive, " our global charges reproduce the
"magnetic weights. " 't Hooft's definition of magnetic
strength leads to the same number as ours for the
't Hooft —Polyakov" monopole. It should be noted that
neither the standard monopole topological number, relat-
ed to the topological properties of the asymptotic Higgs
field, nor the topological invariants discussed by Lubkin"
and Chan and Tsou" coincide with our discrete invari-
ants.

are solutions of vacuum Yang-Mills equations in
IR X [r =0), Q(0, $) being a mapping from Sz to the G
orbit of Qo. Q:S~~ [g 'Qog, g & G J

=G /Ig (Ig is the
isotropy group of Qo ).

If Qo is generic then rr2(G /I& ) =Z""",as discussed at
the end of Sec. III, and so the rrz class of Q may be
nontrivial —in such a case g necessarily has a singularity
at, say, either the south or the north pole and (8.2) gives a
solution of Yang-Mills equations in R' y [ r =0 ] with
smooth F but a potential having a string singularity. It is
interesting to ask whether F given by (8.2), with [Q] &0,
can admit some smooth potential. The answer is nega-
tive, as can be seen from the following argument: if a
smooth potential exists, the equations F., =0, a, b =t, 8,$,
and the simple connectedness of S, imply the existence of
a smooth gauge transformation g, which leads to A. =0,
so that A„, =g, 'Qg, r '=Qr '. The integration in time
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of this last equation and a simple analysis of the equations
F=dA+[A, A]/2 show then that Q=Q(r, t), which is
in contradiction with [Q] &0 and the smoothness of g, .

In a similar way one can obtain magnetic monopoles:

F=g(O, Q) sinOdOhdg, [Q] &0, (8.3)

F=Q, r 'dt @dr,

g, =x'o'r ' (» degQ=1)

we have two potentials, singular on either the negative or
the positive z axis:

A, =g, r 'dt+g, 'dg, ,

or monopoles with a Higgs field P in the adjoint represen-
tation (and eventually string singularities in the potential).
In this case the field configurations are numbered by two
sets of integer invariants, [Q] and [lim„(t ]„.(The
asymptotic leading-order terms of the Polyakov —'t Hooft
monopole can be obtained in this way (cf. Ref. 22) starting
from the standard Dirac monopole and a constant Higgs
field, so that in this case [Q] ~orr~

—[limg] ~o&TI. This

last equality holds for monopoles considered by Goddard,
Nuyts, and Olive. ' It also holds for the monopoles con-
structed by Jaffe and Taubes provided r k(Q, Fo, ) is
bounded from below for large r )Cle.arly, the three
above-mentioned families of fields are gauge equivalent to
the Abelian point particle (8.1), the standard magnetic
U(l) monopole, or the Polyakov —'t Hooft monopole, re-
spectively, if one admits singular gauge transformations.
If not (which is the commonly accepted point of view) the
foregoing solutions are distinct classes of solutions. The
problem of whether or not these are diA'erent solutions is,
therefore, equivalent to the problem of what one calls a
gauge transformation.

To end this section let us give explicit examples of solu-
tions (8.2) for G = SU(2). For

F„=g„r dt @dr, Q„= f„o
f„=(si nOc osn6, sinOsinng, cosO) (» degg„=n )

which are only Lipschitz continuous on the z axis (and
not differentiable) one can obtain potentials replacing $ by
nP in (8.4) (these potentials will be singular on the whole
z axis, which can be cured by smoothing out f„on the z
axis).

IX. CONCLUSIONS

We have presented three classes of boundary conditions
allowing the introduction of the concept of "global color. "
Two of them lead to the asymptotic reduction of the gauge
group to a "rigid" group and, consequently, a definition of
Lie-algebra-valued charges. In the case of the third class
we have shown how to define n = rankG scalars carrying
global gauge-invariant information about the fields. We
have pointed out the existence of solutions exhibiting a
"topologically nontrivial color behavior. " Our results
show that one can in some situations associate to a
configuration of Yang-Mills-Higgs fields three sets of to-
pological invariants —the invariants associated with the
asymptotic behavior of the electric field, of the magnetic
field, and of the Higgs field. In the general case these in-
variants may diff'er, as is demonstrated by the trivial
example G =SU(2) )& SU(2) X SU(2), F=F, +F2+F3,

—P3 F i purely electric with lim„„[F
&

"r ]= n i, F2
purely magnetic with lim, [*F2"r ] =n~, and (F3,$3) a
Polyakov —'t Hooft-type monopole, F; having values in
the ith SU(2) factor of G. It would be interesting to find
out whether these invariants may diAer in less trivial
cases. It seems also of some interest to study the stability
of the "topologically nontrivial electric" solutions. Our
results are disappointing in some sense, because one has to
impose rather strong boundary conditions in order to be
able to define the global charges; it is however obvious
that the boundary conditions we have presented, in each
case, hardly can be weakened without spoiling at least the
convergence of the charge integrals.

g, = cos(O/2)+i [cos(g)cr, —sin(P, ) ]osin(O/2),

c4 =Q)r di+g, dg2

g2
——sin(O/2)o + cos(O/2) exp(intr, ) .

For the fields

(8.4)
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