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Yang-Mills theory and quantum chromodynamics in the temporal gauge
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A canonical formulation is given for Yang-Mills theory and quantum chromodynamics in the
temporal gauge. Operator constraints are avoided so that canonical commutation rules apply
throughout. The use of ghost operators for longitudinal and timelike gluons permits the selection
of states that obey the gauge-fixing condition and Gauss's law as time-independent constraints.
Propagators for longitudinal gluons are evaluated and an argument is given in support of the con-
clusion that the part of the propagator that violates time-translation invariance has no effect on
perturbative S-matrix elements. The validity of asymptotic free-field representations for quarks
and gluons in perturbative 5-matrix calculations is related to the Lie algebra that characterizes the
gauge theory.

I. INTRODUCTION

In the preceding paper we have discussed a canonical
formulation of quantum electrodynamics in the temporal
gauge in which the gauge-fixing condition Ao ——0 and
Gauss's law are implemented and the unphysical longitu-
dinal and timelike polarization modes of the photon are
eliminated. ' The formulation leads to S-matrix elements
which can also be evaluated with a set of perturbative
Feynman rules. The propagators included in these rules
follow from the canonical apparatus, i.e., momentum
representations of A and A o and their conjugate mo-
menta, Hamiltonian, and time displacement operators,
etc. However, these propagators are the vacuum expec-
tation values of time-ordered products in a vacuum state

~

0) that is the lowest-energy eigenstate of only the Ho
part of the Hamiltonian (i.e., the e~0 limit of H ); and
the vacuum state

~
0) violates the Gauss law constraint.

Nevertheless it was shown that the S-matrix elements
obtained from these Feynman rules are identical to the
ones that follow from the properly formulated theory in
which the incident and scattered charged-particle states
are coherent superpositions that obey Gauss's law as
well as the constraint Ho=0.

In this paper we report an extension of this program to
non-Abelian gauge theories such as Yang-Mills theory
and QCD. We continue to use the canonical apparatus
that we implemented in our earlier work, in which pri-
mary constraints are avoided and all fields have canoni-
cally conjugate momenta. In this way we hope to avoid
the ambiguities in propagators obtained by path-integral
methods, that have recently been discussed and docu-
mented by Cheng and Tsai. We will show that the
canonical formulation allows us to implement the gauge-
fixing condition and Gauss's law in a manner that para1-
lels the procedure in QED. Because no Faddeev-Popov
ghosts are required in this gauge in non-Abelian theories,
simultaneous implementation of Gauss's law and gauge
fixing is easier than in similar programs in covariant
gauges. Moreover, because canonical quantization rules
obtain between fields and their conjugate momenta, no
operator-ordering ambiguities arise in this gauge. The

fact that such operator-ordering problems can arise in
noncovariant gauges has been reported; it has also been
noted that ordering ambiguities do not appear in the tem-
poral gauge. As in QED we generate a set of Feynman
rules in an interaction picture in which the "free field"
e~0 limit of the Hamiltonian time displaces the opera-
tors and selects the vacuum state used to evaluate the
propagators. Unlike QED, it has not been possible in
Yang-Mills theory or in QCD to make a rigorous connec-
tion between the S matrix in the theory in which Gauss's
law is implemented with the S matrix obtained with Feyn-
man rules. We will postpone further discussion of this
point until Sec. III of this paper.

&= ——.
' f;,'f;, +-,' f;O. f;0+j, .b, —jo bo

—c)ob G —p(m +y„t)„)1(,

where

(2.1)

and

f;j =B~b; —0;b~ —2eb; &&b

f; =8 b;+0;b +2eb; ~bo,

i„=tenor„r0

(2. la)

(2.1b)

(2. 1c)

with j4——i jo. We include bo components of f;o and jo'bo
in the Lagrangian, and will later impose the temporal-
gauge condition by using the gauge-fixing term
—hobo A. This technique allows us to formulate the
temporal gauge with sufficient generality to encompass
most of the gluon propagators that have been used in
temporal-gauge calculations. The conjugate momenta
are

II. CONSTRAINTS AND PROPAGATORS
IN YANG-MILLS THEORY

We will develop the formalism for non-Abelian gauge
theories in the temporal gauge using Yang-Mills theory as
an example. The SU(3) case can be obtained simply by
substituting the structure constants of SU(3) for those of
SU(2) and extending the gluon triplet to an octet. We
postulate the Lagrangian
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=,,=II, ,
a(a,b,")

(2.2a)

= —G"=Hp,
a(a,b;)

(2.2b)

and

a
a a,q

='~ ="' (2.2c)

and

[b/'(x), II~&(y)] = i5;, 5~ q 5(x —y),

[b)(x),G~(y)] = i 5~ q—5(x y),—
(2.3a)

(2.3b)

[P(x),g (y)] =5(x—y) .

The Euler-Lagrange equations are

aoII; —(a&+2eb& X ) f,
&

—2eboX II; —j, =0,
—a 6+(a;+2eb; X)II;+j =0,

obp
——0

(2.3c)

(2.4)

(2.5)

(2.6)

and

[pm —ia& (a& —I'eb~ .r ) i(ao+ieb—o r) ]$=.0 . (2.7)

Every field component has a corresponding conjugate
momentum and the equal-time commutation rules are

Equations (2.6) and (2.14) fall short of constituting the
gauge-fixing condition or Gauss's law. They do however
provide a basis for imposing these constraints. If we ar-
range conditions so that Gauss's law, and the gauge con-
dition bo ——0 hold at any one time, Eqs. (2.6) and (2.14)
guarantee that both of those conditions will hold at all
other times too. In that way the situation in Yang-Mills
theory and in QCD exactly parallels circumstances in
QED in the temporal gauge.

An important feature of this formulation is the use of
gluon ghost modes in the representation of bp and G and
in the longitudinal components of the gauge fields and
their adjoint momenta, b and II, respectively. The
relevant momentum-space operators are the ghost an-
nihilation operators atI(k) and ag (k) and the creation
operators that are their respective adjoints in an
indefinite-metric space, ag'(k) and a)*(k). A Fock
space of ghost states consists of the vacuum state

~

0)
for which at3(k)

~

0) =0 and ag (k)
~

0) =0, and the set
of n-particle states for which n&a& operators and nzaz
operators act on

~

0) (with n~+n~ =n ). The commuta-
tion rules for these operators are

[~g«),~8'(k') ]= [~4 (k), ~$'(k') ]=5,,,5k, k (2.15)

and all other combinations commute. The properties of
this Hilbert space have been discussed previously in the
case of Abelian' as well as non-Abelian theories. The
representations of the gauge fields are

Equation (2.7) leads to

(ao —2ebo X )jo+ (a~+ 2eb~ X )j~ ——0 . (2.7a)

e';(k )
(b/') = g, [a, (k)e'"'"+a, (k)e'"'"]

t, =i, z (2&)'
(2.16a)

To find the equation that allows us to impose Gauss's law
as a constraint we take the spatial divergence of Eq. (2.4)
and use the lemma

and
' 1/2

(Ilf) = g i@;'—(k) — [a~(k)e' '"—a~"(k)e '"'"]k

k, s=1,2

a;(b, X f J )= —b; X[(aj+2eb, X )f; ]

along with Eqs. (2.4) and (2.7a) to obtain

(ao —2eboX )[(a;+2eb; X )II;+jo]=0 .

Equations (2.5) and (2.6) then lead to

a,(a, —2eboX )&=0 .

(2.8)

(2.9)

(2.10)

(2.16b)

for the transversely polarized components of the gluon
field,

k;
(b/') =g, [[ag(k)+yap(k))e'""

k

We can rewrite Eq. (2.10) in the form

ao(a;II;+jo+2eb; X II; —2eboXG) =0 . (2. 1 1)
and

+ [a)*(k)+yat3*(k)]e '" "j (2.17a)

The Euler-Lagrange equations can be used to show that J;
and Jp, given by

—ik;
(11~) =g, , [ag(k)e'""—ag'(k)e '"'*] (2.17b)

and

Jp= jp+2eb )& II —2ebp)& G

J; =j;+2eb~ X f;~+2ebo)& H;, (2.12b)
and

ho= g, [ag(k)e'"'" —a(*(k)e '"'"]
k

for the longitudinal components, and2. 12a)

(2.18a)

respectively, form a conserved current, for which

BpJp+ 0;J; =0 .

Equation (2.11) can therefore be expressed as

a,(a, II, +J,)=0.

(2.13)

(2.14)

1/2
G~= g [ [ag (k ) —ya|3(k)]e'" *

k 2'
+ [a)*(k)—yap'(k)]e

where G = —Hp.

(2.18b)
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The representations of b, bo, and Cx in terms of ghost
excitation operators constitutes an implicit choice of
gauge appropriate for implementing the applicable con-
straints in the temporal gauge. a and y are parameters
useful for obtaining gluon propagators of sufficient gen-
erality to encompass the forms actually used in perturba-
tive calculations. The commutation rules given in Eqs.
(2.3a) —(2.3c) and the equations of motion are indepen-
dent of a and y.

The Hamiltonian H is given by H = J&dx where A
is the Hamiltonian density

(2.19)

Since each field component has a canonically conjugate
momentum and each field and momentum obey canonical
commutation (or anticommutation) rules, there are no pri-
mary constraints in this formulation. Use of Eq. (2.1) in

(2.19) leads straightforwardly to

and

QP(k) =a)(k)+ Jf(k)/(2k ) (2.21a)

QP'(k)=a)*(k)+J$( —k)/(2k' ) . (2.21b)

We note that we can express bo and 8;II;+Jo in the form

b( = —i a g (k )
' [QP(k)e'" "—IIP*(k)e '"'"]

k

and

Q IIP+ J~ y Q3/2[@ (k)e «+IMP~(k)e ]
k

(2.22)

(2.23)

QP(k)
~

v) =0
for all

~

v) in [ ~

v) I. In that subspace

(2.24)

With these representation we can define a subspace I ~

v ) I

of an indefinite-metric space with the condition

&=-,'II,".II, + —,'f,,'f,, +b, .B, II, +g (Pm —iu, B, )g
(v'~bp~v&=0 (2.25a)

+2ebo (b; X II, ) —j; b; +jo bo (2.20)

after —8;bo II; has been integrated by parts to antici-
pate the freedom to drop a surface term on a spacelike
surface when H is evaluated. All the operator products
that appear in & involve commuting operators except
for the f (pm —ia~t)J. )p which requires the same opera-
tor ordering as does the identical term in QED. The
Hamiltonian H properly implements the time-
displacement operation. The commutation rules in Eqs.
(2.3a) —(2.3c), together with the commutator i [H, g] used
as an explicit representation of the time derivative Bog,
reproduces Eq. (2.2a) and the Euler-Lagrange equations
(2.4)-(2.7).

To impose Gauss's law and the gauge condition we
define the operators

(v'
~
(8, II;+J )

~

v) =0 . (2.25b)

The identities Bobo ——0 and Bo(B;II;+Jo)=0 then
preserve Eqs. (2.25a) and (2.25b) for all time, even
though the constraint represented by Eq. (2.24) has been
imposed at one time only. Independent verification of
this fact is obtained from [HQp(, k)]=0, which follows
from a direct calculation using Eq. (2.20). Qp(k)

~

v) =0
then implies that Qp(k) exp( iHt)

~

v) =—0 and the con-
straint, imposed at one time holds at all other times too.

In order to evaluate the propagators for the gluon field

in the temporal gauge we establish an interaction picture
by separating H into Ho, which is the e~O limit of H,
and H] such that H =Ho+H]. We find that Ho is given

by

H = f dx[ —,'II; II;+—'(8 b; —8;b ) (8 b; —8;b )+b 8;II;+@(pm —ia t) )@]

and H& by

H
~

——f dx[2e(b; Xb, ).B;bj +e (b; Xb~ ) (b; Xb~ )+2ebo (b; X II; ) —j; b;+ jo bo] .

(2.26)

(2.27)

Ho can be expressed in terms of momentum-space operators and then has the form

Ho ——g ~

k
~ g ap (k)ap(k)+a)'(k)ag(k)+ —,'(1—2ia)ag(k) (' a( —2k)+ —,'(1+2ia)a)*(k)a)*(—k)

k,p s=1,2

+ g (m '+
~

k
~

')'"[q„(k)q„(k)+q „(k)q„(k)], (2.26a)
k, n

where q„, q„, q„, and q „designate quark and antiquark operators with spin and isospin indices lumped into n. The lon-
gitudinal [bp(x, t)] in the interaction picture has the form

[bP(x, t)] = exp(iHot)[bP(x)] exp( iHot)—
which can be written as

[bp(x, t)] =[bp(x)] +it[HO, [bp(x)] ] .

(2.28)

(2.28a)

Because of the commutation rules of the ghost operators [Ho, [bp(x)] ] commutes with Ho so that the series in Eq.
(2.28a) is complete. The result that the longitudinal b; in the interaction picture, is a linear function of the time coordi-
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nate is closely linked to the use of ghost operators in representing b; .
The explicit form of [bt'(x, t)] is

k;
[ b/'( x t)] = g (Iag (k)+a)(k)[y —2itk(1 i—a)])e'" "+ [ a)*(k)+ ati*(k)[y+2itk(1+ia)]Ie ' ") .

k

(2.28b)

The propagator for the longitudinal gluon field is the vacuum expectation value of the time-ordered product
Tr [b/'(xi, t, )] [bg(x~, tz)] I in the vacuum state

l
0) for which ag(k)

l
0) =a/(k)

l
0) =0. 0) is the lowest-energy

eigenstate of Ho It is. straightforward to use Eq. (2.28b) to evaluate the vacuum expectation value

(0
l
TI [bf(x, , ti)] [b~ (x~, tz)] I l

0) —5z ~Dj~(x, , t, ;x~, t~)

to find that

(2.29a)

Di (x, , t, ;xz, tz) =— 1 CL a,-

2
~ l+ —(ti+t~) ' fi(xi —x~)+i)' ' ' a(x2 xi)

2 p2 g2
(2.29b)

where

b(x) = i(2—n) J dk(2k )
' exp(ik x) .

In addition to oz ~D~ (xi, ti,'xz, tz), there is another non-
vanishing propagator in this gauge, consisting of the
time-ordered products of Ao and 3 . We find that

~0l TI[bP(xi, t&)) b((xz, t~)l 0)

ct ~i
=5~ q

— 6,(x, —x~) .
2 g2

(2.30)

III. DISCUSSION

In this section we will discuss questions on which the
material presented in earlier parts of this paper has bear-
ing. One such question deals with the implications of our
work to some unresolved issues about the part of the
propagator for longitudinal gluons that is not time-
translationally invariant. Another question deals with the
relation of the scattering amplitude for the particle states

l
v) that obey Eq. (2.24) to the perturbative S matrix

evaluated with the propagators for the temporal gauge.
The latter of these two questions is of central importance
because only the states that obey Gauss's law have a legi-
timate claim to be particle states for QCD. The theory
available for the temporal gauge is, in some sense, not
Yang-Mills theory (or QCD) at all unless we take the im-
portant step of implementing Gauss's law at one point in
time. We have every reason therefore to be extremely
cautious about using Feynman rules, since they include
propagators that are based on a Fock space whose states
violate Gauss's law. Our incomplete understanding of
confinement in QCD and the limitations of perturbation
theory in an asymptotically free theory are of course gen-
erally recognized. Here we want to suggest that the
failure of the vacuum state used to calculate vacuum ex-
pectation values for Feynman rules to obey Gauss's law

may play an important role in these aspects of non-
Abelian gauge theories. Not much concern has been ex-
pressed about the use of such a Fock space in evaluating

propagators in QCD because the substitution of just such
a Fock space for the coherent states that obey Gauss's law
is as much a feature of QED as of QCD. And in QED
we have extensive experience with the fact that this substi-
tution is entirely harmless and does not threaten the valid-
ity of the Feynman rules. ' ' However the use of such a
substitute Fock space has a much more precarious basis in

QCD than in QED. In QED there is sound theoretical
support for this practice. In that case the states v) that
obey Gauss's law and the Fock states

l
n ) used in deriv-

ing Feynman rules are related by a unitary transformation

l

n ) = U
l
v) with U* = U '. When such a unitary

equivalence obtains between
l
v) and

l

n ) the latter inay
be substituted for the former in representations of incident
and scattered particle states without affecting S-matrix
elements provided U satisfies some fairly general require-
ments, which it does in QED. This accounts for the fact
that in QED the S matrix is not harmed by the practice of
representing asymptotic charged particle states as solu-
tions of a free field equation (for example, the Dirac equa-
tion), and in the process amputating the electric field that
must accompany charged particles to preserve consistency
with Gauss's law.

In QCD the situation is somewhat similar, but with
some crucial differences. We observe that in QCD, as
well as in QED, in implementing Gauss's law we take
the operator 0;H; +Jo and divide it into two non-
Hermitian parts, that are each others Hermitian ad-
joints: namely,

II(x) = g k Q(k) exp(ik x)
k

and

A*(x) = g k'~ II*(k) exp( —ik x) .
k

The identical procedure is applied in QED and QCD with
the exceptions that II(x) carries a Lie group index in

QCD but not in QED, and that the charge density in

QED is independent of photon fields while the gluons car-
ry color and contribute to Jo in QCD. In the temporal
gauge A(x) and Q*(x) are time independent in QED as
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well as in QCD; but Q(x) and Q*(x) commute in QED
only. The more general situation in gauge theories is that
the operators Q(x) and Q*(x) reflect the commutation
rules imposed on 8;II;+Jo by the Lie algebras of U(l) in
QED, of SU(2) in Yang-Mills theory, and of SU(3) in
QCD. In the case of Yang-Mills theory we find the fol-
lowing identities among commutators:

[Q'(x), Q~(y)]

&;, [&„11~(—,'(x —y))+J$( —'(x —y))]5(x+y)
(3.1)

and

[Q'(x), Q" (y) ]

e; [B„II"„(—,'(x+y))+ J$(—'(x+y))]5(x —y)

(3.2)

We see that the commutation rule for Q(x) and Q*(y) in
QED, [Q(x),Q*(y)]=0, is included in that rule as a de-
generate case since all structure constants for U(1) vanish.

It is nontrivial that the non-Hermitian Q(x) and
Q*(y) reflect the commutation rules of the Hermitian
Bl II~ +Jp in QED and QCD. In general it is not possible
to divide a Hermitian field of the form gzc(k)[a(k)e'""
+a (k)e'" "]+/, where a(k) and a (k) are annihilation
and creation operators, respectively, and c(k) is a c
number, into non-Hermitian parts that commute, be-
cause a(k) and a (k) cannot commute in a positive-
metric Hilbert space. It is only because the a&(k) in
Q(k) and the a&(k) in Q*(k) are ghost operators that
they commute with each other and that the commuta-
tion rules [Q(k), Q'(k')]=0 for QED and those of Eqs.
(3.1) and (3.2) for Yang-Mills theory are possible.

In contrast with Eqs. (3.1) and (3.2) the non-Abelian
operators a&(k) and a&*(k), which are the limiting forms
of Q'(k) and Q'*(k), respectively, as e~0, do not obey
the commutator algebras of SU(2) for Yang-Mills theory,
or of SU(3) for QCD. As was discussed in Sec. II,

[a~(k),a&~(k')] = [a~(k), a&J*(k')] =0

and the corresponding gzk a&(k)e'"* and
gz k a *(k)e '" " also commute. The conditions
a~(k)

~

n =0 and (Ho E„)
~

n ) =0 de—fine and select a
Fock space whose elements represent multiparticle states
of wholly noninteracting quarks and gluons, that serve
as incident and scattered states in perturbative calcula-
tions. These noninteracting multiparticle states, and the
vacuum state on which they are built, are sometimes ex-
plicitly referred to in deriving propagators, as in this
work; or their use is implicit as when path-integral tech-
niques are applied. But whether their use is explicit or
implicit, it is these Pock states whose scattering ampli-
tudes are perturbatively evaluated when Feynman rules
are used. The fact that the Q'(k) and their correspond-
ing e ~0 limits, a&(k ), do not obey identical algebras in
Yang-Mills theory and in QCD implies that they cannot
be unitarily equivalent to each other, and that the
coherent states

t
v ) that obey Eq. (2.24) and the

members of the Fock space [ ~

n ) } also cannot be relat-

ed by a unitary transformation. In contrast the
~

v) and
~

n ) states are unitarily equivalent in QED because in
that case, and in that case only, all structure constants
vanish so that Q(k) and a&(k) obey the same degenerate
Lie algebra; thus we observe that, in the Abelian QED,
the commutation rules [Q(k), Q(k')]=0 and [Q(k),
Q"(k')]=0 are exactly the same as the corresponding
[a&(k),a&(k')]=0 and [a&(k),a&(k')]=0, respectively.
As was previously shown, the unitary equivalence be-
tween

~

v) and
I
n) states in QED permits us to make

the more or less ad hoc substitution of
~

n ) states for
~

v) states in perturbative calculations even though the
~

n ) states do not obey Gauss's law. The fact that such
a unitary equivalence between

~
v) and

~

n ) states does
not obtain in Yang-Mills theory or in QCD has a
significant implication for perturbative QCD: The per-
turbative S matrix for QCD, evaluated with Feynman
rules, may significantly misrepresent the correct scatter-
ing amplitudes for the theory in which Gauss's law is
implemented.

One possible interpretation of the phenomenon that we
call "confinement" is the following: When two hadrons
(for example, p —p) collide, only color-singlet combina-
tions of quarks and gluons emerge from the interaction re-
gion as observable scattered particles. But when the two
colliding hadrons are treated as combinations of "free"
quarks that are eigenstates of Ho, the perturbative Feyn-
man rules predict color-bearing final scattered states, such
as free quarks and gluons. The speculation, to which our
work naturally leads, is that if we were to use the states

~

v), that implement Gauss's law and the gauge-fixing
constraint, that discrepancy might be avoided.

The preceding considerations make it very pertinent
and desirable to identify as many of the properties of the

~

v) states as possible. From

[Q'(k), QJ(k')]
3/2

=—e; ~ [Q~(k+ k')+ Q~*( —(k+ k') )]

(3.3)
we can infer that the set of states that obey Q'(k)

~

v) =0
for all i and k also obey [Q'(k), QJ(k')]

~

v) =0 and there-
fore also obey Q'*(k)

~
v) =0 as well as Q'(k)

~

v) =0.
This leads to the interesting conclusion that, because of
the Lie algebras of Yang-Mills theory and QCD, the
states

~

v) for which Gauss's law as well as the gauge-
fixing condition are implemented obey Q'(k)

~

v) =0,
(v

~

Q'(k)=0, Q'*(k)
~

v) =0, and (v
~

Q'*(k)=0. These
conditions impose very severe constraints on the states in
I ~

v) }. One such constraint is that the states
~

v) cannot
be normalizable. From (v

~

Q'(k)=0 and Q'(k)
~
v) =0

we can infer that for any operator
(v

~

[Q'(k), g']
~

v) =0. Since there are numerous choices
for g for which [Q'(k), g']=X so that (v

~

X
I
v)~0,

~
v)

cannot be normalizable. It is worth noting that the simul-
taneous validity of Q'(k)

~

v) =0 and Q'*(k)
~

v) =0 is
more constraining on the state

~

v) than is the condition

(8;II;+J$)
~

4) =0 (3.4)

which has been proposed in other work. Equation (3.4)
can also be expressed as
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y k 3/2[Imp(k)e ik x+
+pe�(k)e

—ik x.
] ~

@) 0 (3.4a)

and

bo ——e bo (3.6a)

V= exp i dx(bo. G+Cx b—o)
2

(3.&)

used to transform g'=V/V ', where g designates any
operator, leads to

Equation (3.4a) is a consequence of the two separate con-
ditions AP(k)

~

N) =0 and IIP*(k)
~

N) =0 but it does not,
in turn, imply them both. Equation (3.4) is often used in

a formulation of the temporal gauge in which bo and all
space-time derivatives of bo are set =0 in the Lagrangian
and G never appears. The Hamiltonian that follows from
this procedure can be obtained by setting bo ——0 in our Eq.
(2.20). The propagator that follows from the resulting
formalism is our (2.29b) with a and y restricted to the
values a=y=0. The option of choosing nonvanishing
values of n and y is therefore precluded by implementing
bo ——0 as an operator identity. It is also worth noting that
this Hamiltonian [i.e., Eq. (2.20) with bo=0] implies
i[H, bo]=Bobo=O, but does not automatically constrain
expectation values of bo to vanish.

The condition that 0;H;+Jo and bo both vanish in
some suitable defined subspace requires fI'(k)

~

v) =0 as
well as II'*(k)

~

v) =0 simultaneously.
In spite of the fact that the perturbative S matrix fails

to account for the confinement mechanism, there is evi-
dence that inclusive processes, interpreted as hadronized
perturbative S-matrix elements give satisfactory agreement
with high-energy collision processes. It is tempting to
speculate that this very important feature of inclusive "ha-
dronized" perturbative S-matrix theory can be understood
in terms of a relation between the

~

v) states and the
Fock states

~

n ) that is a generalization of unitary
equivalence, consistent with the fact that the fI'(k) and
0'*(k), and their e~O limits, obey different commutator
algebras.

The other question we want to address is whether all
values of the parameter a in the propagator for longitudi-
nal gluons are equally acceptable in perturbative calcula-
tions. There has been considerable discussion of this
point in the literature. ' ' Caracciolo, Curci, and
Menotti (CCM) have claimed that the propagator can be
used for perturbative calculations in QCD only when the
parameter a in Eq. (2.29b) has the value a=+i, but that
all values of a are permissible in QED (Ref. 10). Other
authors have argued that special values of a are necessary
in QED as well as in QCD and we have discussed that
point, as it applies to QED, in earlier work. ' In a recent
paper Landshoff offers evidence that a propagator that
lacks time-translation invariance is not necessary even in

QCD (Ref. 17)
We will argue here that the restriction to special values

of cz is neither necessary nor appropriate in perturbative
S-matrix calculations.

We begin with the observation that there is a unitary
transformation V that shifts the value of n in bo and Cr

and therefore also in the Hamiltonian H. The unitary

G'=e G . (3.6b)

For all other fields, b;, II;,g, f, the primed transforms
are identical to the original operators. If we choose the
parameter A, = In(a2/a, ) then bo and Cx' correspond to
bo and Cs, respectively, with the value of a shifted from
a& to e2. We now make use of the equation we dis-
cussed in earlier work on QED (Refs. 7 and 18):

Tf; ——Tf;+(Ef F.; )—Vf;+ieTj", , (3.7)

HI(F.; —H'+i@) —'(V —1)]
~

() . (3.7b)

Since only ghost operators appear in V, and no ghost
operators appear in either

~

i ) or
~
f ), (Ef E, )Vf;

and i EVE must vanish as (Ef E, )~0 a—nd i e~O, re-
spectively, except in graphs including self-energy radia-
tive corrections to external lines. We conclude therefore
that on-shell transition amplitudes (and therefore S-
matrix elements) do not depend on the value of a in the
propagator in Eq. (2.29b), except for graphs with self-
energy insertion in external lines which are absorbed in
the wave-function renormalization. An argument has
been given by Bialynicki-Birula that the renorrnalized S
matrix in QED is invariant to changes in the gauge pa-
rameters in the propagator even though the unrenormal-
ized S matrix is not. ' It is likely that this argument can
readily be extended to this case and that any a depen-
dence of the wave-function renormalization constants
drops out of the renormalized S matrix. Of course
specific calculations with these propagators can be very
sensitive to regularization procedures and these can
mask the basic a independence of the S matrix. Also it
needs to be remembered that unlike QED this a-
independent S matrix has not been shown to be the same
as the S matrix in the formulation in which incident and
scattered particles are represented by coherent superpo-
sitions that obey Gauss's law.
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where Tf; and Tf; represent the transition amplitudes
when H' and H, respectively, are the Hamiltonians, and

i ),
~ f ) are initial and final states that obey

(Ho E; )
~

i ) =—0 and (Ho Ef )
~ f—) =0, and where 7&,'

and Vg are given by

Vy; = (f
~

(1 —V)[l+(E; —H —i e) 'H& ] ~

i ) (3.7a)

and
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