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Quantum electrodynamics in the temporal gauge
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A canonical formulation is given for quantum electrodynamics in the temporal gauge. A pro-
cedure is developed for implementing the gauge-fixing condition Ao ——0 and Gauss's law as time-
independent constraints. The resulting formalism is shown to be physically equivalent to quantum
electrodynamics in the Coulomb and Lorentz gauges. It is demonstrated that photon ghosts are ap-
propriate for the representation of the longitudinal vector potential. Propagators for the longitudinal
vector potential are derived and compared to results obtained by other authors. Implications for
quantum chromodynamics are discussed.

I. INTRODUCTION

Temporal gauge formulations of gauge theories have
long attracted considerable attention. Most recently
questions have been raised about the propagator for the
longitudinal component of the gauge field A„.' " At
other times the implementation of the Gauss law con-
straint and the elimination of the redundant gauge de-
grees of freedom have been discussed. ' ' In spite of
this activity unresolved questions remain about the tem-
poral gauge. One such question deals with accounting
for the number of degrees of freedom in the gauge field.
A naive counting argument indicates that fixing the
gauge at Ao ——0 eliminates one degree of freedom and
leaves open the question of how to eliminate one addi-
tional degree of freedom so that only the two transverse
modes that propagate energy and momentum remain as
dynamical variables. An explicit canonical formulation,
in which Ao ——0 is implemented in the Lagrangian, and
the two transverse as well as the longitudinal modes are
quantized, illustrates this problem. " This work uses a
unitary transformation to generate charged states that
implement Gauss's law and are subject to the instantane-
ous Coulomb interaction. The positive-metric longitudi-
nal degree of freedom appears in even the interaction-
free Hamiltonian, arising in terms not diagonal in the
photon number. These terms take a form in which they
mimic the spontaneous generation or destruction of un-
physical longitudinal photon pairs. Although devices
are available to make such troublesome contributions
proportional to a switching parameter which can go to
zero, so that these unphysical terms can be attenuated
and even be made to vanish, the theory has a singular
and problematical limit in that case. To the best of this
author's knowledge, the question of how to treat the
unobservable degree of freedom, so that the time evolu-
tion of state vectors in the temporal gauge is in complete
agreement with that in other gauges, has not been given
a totally satisfactory answer, even in QED.

A related problem is that Gauss's law is not a conse-
quence of the Euler-Lagrange equations in the temporal
gauge, any more than in covariant gauges. It is there-
fore natural to suspect that the imposition of G-auss's
law as a constraint is related to the elimination of the

II. FORMULATION OF THE THEORY

We use the Lagrangian
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redundant mode left over after the gauge-fixing condi-
tion Ao ——0 has been imposed. But it is still necessary to
show how the Gauss law constraint eliminates the de-
gree of freedom left after gauge fixing and, in the case of
QED, that the resulting formulation is the properly
quantized form of Maxwell's theory. This problem will
be addressed and, we believe, resolved in this paper.

It will become apparent in the course of this work
that QED in the temporal gauge and QED in covariant
gauges have a great deal in common. In particular, in
both cases a consistent formulation requires the use of
photon ghost states. Some authors have expressed dis-
taste for ghost states and have claimed that they are un-
physical, unaesthetic, and responsible for unnecessary
complications in the algebraic structure of the Hilbert
space in which the gauge theory is embedded. We will
argue here the advantages of ghost states in gauge
theory. There are some familiar reasons for using ghost
modes. It is unlikely that there is any gauge in QCD in
which we can dispense with all ghost modes, the redun-
dant gluon polarizations as well as the Faddeev-Popov
ghosts. Also, it has been shown that ghosts are neces-
sary for a consistent formulation of QED in covariant
gauges. ' Our contribution to this discussion is to point
out that the ghost modes provide a physically realistic
and very satisfactory representation for the quantized
longitudinal electric field. The quanta of the longitudi-
nal electric field carry neither energy nor momentum;
they are not retarded relativistically and hence cannot
carry any probability of being detected. Ghost modes
provide a natural way of representing these properties.
We will see that the use of ghost modes also permits us
to give a very satisfactory account of the fate of the
redundant degrees of freedom in the temporal gauges.
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36 QUANTUM ELECTRODYNAMICS IN THE TEMPORAL GAUGE 1831

nor electrodynamics in the temporal gauge. We could
have set Ap ——0 and BpAp=0 identically without any
harm, but including —apApG and the Ap terms in X
leads to a generalized form of the temporal gauge that is
useful in evaluating the photon propagator for cases in
which the expectation value of Ap vanishes in the ap-
propriately defined Hilbert space, even when Ap does not
vanish identically. The choice of a charged spinor field to
interact with the electromagnetic field is quite incidental
to the main point. The gauge-fixing problem is indepen-
dent of the nature of the charged particle, and all essential
results of this work apply equally well to charged bosons
in this as well as other gauges.

The conjugate momenta are given by

ap(V E—jp)=0, (2.8b)

where E= —II is the electric field. The time integral of
Eq. (2.8b), i.e., Gauss's law, is not a consequence of the
Euler-Lagrange equations in this gauge.

The Hamiltonian density & is given by

a=II, a, A, +II,a, A, +iq'a, q (2.9)

+g (Pm —ia V)g (2.10)

and the Hamiltonian by H = f &dx. We find that & is
given by

&=—,'ll;II;+ ,'F;,F;~—+Apa;II; —j;A;+jp Ap

=(a, Ap+apA;) =II,a
a apA;

so that II; is the negative electric field,

a
a(apAp)

(2.2)

(2.3)

after integrating —II;0; Ap by parts to anticipate the free-
dom to drop a surface term on a spacelike surface when
H is evaluated. Next we choose a momentum-space rep-
resentation of the field variables that is consistent with the
equal-time commutation rules. For the transverse parts of
A and II we use the standard representation

and

(2.4)

e;(k)
A = g, [a;(k)e' '"+a; (k)e '"'"]

and

(2.11a)

Every field component has a canonically conjugate
momentum to serve as a partner in the equal-time com-
mutation rules,

II = i g—e;(k)
k, i =1,2

1/2
k [a;(k)e'"'"—a; (k)e '" "]

[A;(x),II, (y)] =i5,,6(x—y),

[Ap(x), G(y)] = i5(x y—), —

and the anticommutation rule

[g(x),g (y)] =&(x—y) .

The Euler-Lagrange equations lead to

A, +a, (a„A„)=j, ,

(2.5a)

(2.5b)

(2.5c)

(2.6a)

—a,6+a, rr, +~,=o,
and, from aX/aG =0,

a, A, =O.
In addition we obtain the spinor equation

(m +@.D)/=0,

(2.6b)

(2.6c)

(2.6d)

where D„=B„—ie A„, and the current-conservation equa-
tion ap„=0. Combining Eqs. (2.6a) and (2.6c) leads to

—DA;+a;(V. A)=j, . (2.7)

ap[ap(V A)+jp]=0
which can be reexpressed as

(2.8a)

Equation (2.7) is one of the inhomogeneous Maxwell
equations in which a;(V A) —V A; is the curl of the
magnetic field and BpBpA; is the displacement current in
the temporal gauge. Taking the divergence of Eq. (2.7)
leads to

(2.11b)

and for the spinor field

P(x)= g [e,(k)u, (k)e'"'"+e, (k)v, (k)e '" "] .
k, s=1,2

(2. 1 lc)

We represent the longitudinal and timelike parts of A„,
and their canonically conjugate momenta, in terms of
the ghost excitations a&(k) and az (k) and their adjoints
in an indefinite-metric space, a&(k) and ag(k), respec-
tively. We have used these operators previously for
QED (Ref. 13) as well as for QCD (Ref. 14). a&(k) is
the ghost annihilation operator (&2k ) '[k„a„(k)];
az(k) is the ghost annihilation operator
( 2k) '[k„az(k)] where k„differs from k„ in having
( —kp) instead of kp as its timelike component. The
algebra of the ghost sector requires a small generaliza-
tion of the algebra for positive-metric Hilbert spaces.
a~(k) and its adjoint a&(k) commute, as do aR(k) and
az (k). In contrast,

[ag(k) aR(k')]=[a~(k), ag(k')]=&k, k

The unit operator in the one-particle ghost-photon sec-
tor is

I = g [a&(k)
~

0) (0
~
az (k)+a~ (k)

~

0) (0
~
a~(k)]

(2. 12)
and, in the n-particle ghost sectors, the obvious generali-
zations of Eq. (2.12) apply. The norm of any state
a~ (k)

~ p ), where
~ p ) is any normalizable ghost-free
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+[a)(k)+yag(k)]e (2.13a)
I

state, vanishes because the commutation rules imply that
(p

I
a&(k)a~(k)

I p ) =0. The inner product of
ag(k)

I p ) and aR(k)
I p ) however fails to vanish;

(p I
aR(k)a~(k)

I p ) can absorb probability and thereby
threaten unitarity in the gauge-independent part of Hil-
bert space consisting of transverse photons (or gluons)
and charged particles. To preserve the consistency of a
gauge theory it is essential to eliminate that possibility.
Both ghost excitations, the R type as well as the Q type,
are necessary to represent the longitudinal and timelike

A& and Hz consistently with the equal-time commuta-
tion rules. Even if Ap and BpAp were set equal to zero
at the start, the longitudinal components A and H
could not be represented with either Q or R operators
alone without violating their canonical commutation
rule. We therefore cannot eliminate the possibility of
unitarity violations by totally rejecting one or the other
type of ghost operators, R or Q, as elements used in

representing the gauge fields.
We will use the following representation of the gauge

field operators:

(x)= g Iz~ [[a~(k)+ya&(k)]e'""
(2k )

and

—ik;
II; (x) g =

&zz
[a&(k)e'"'"—a&(k)e '"'"] (2.13b)

k

for the longitudinal components, and

gp(x)= g, [a&(k)e'"'"—a&(k)e '"'"] (2.14a)
k

and

11p(x):g I [Qg (k) yag(k)]e
(i )t/2

k 2(x

+ [a~ (k) —ya& (k) ]e '" "I (2.14b)

for the timelike components. 0, and y are useful parame-
ters in these operator representations because the equa-
tions of motion as well as the commutation rules are in-
variant to changes in a and y.

The momentum-space representations in Eqs.
(2.13a)—(2.14b) allow us to express the Hamiltonian H in

the form

H =Hp+Hp' — j A dx+ k a& k a& k + —,'a& k a& —k 1 —2ia + —,'a& k a& —k 1+2ia

[az(k)+yag(k)] 3&& +[aR(k)+ya&(k)]
k. j( —k) k. j(k)
2e'" 2I '"

jp( —k) jp(k)
ia a—g(k), —ag(k) (2.15)

where

and

Hp g I

k——
I
a; (k)a;(k)

k, i =1,2

(2.16a)

It is easy to verify that setting Bpg=i[H, g], where
represents any operator, reproduces the identities in Eqs.
(2.6a) —(2.6d) as well as

BphpG =0 . (2.17)

A number of features of H are worth noting. One is
that the equations of motion are independent of the pa-
rameters a and y and that the +~0 limit of H is the
Hamiltonian we would have obtained had we set Ap ——0
and BpAp ——0 initially in the Lagrangian. It is also impor-
tant to realize that, as arbitrarily chosen state vectors
evolve in time under the influence of exp( —iHt), Q and
R-type excitations will both arise. It is possible to view Q
and R ghost modes as linear combinations of longitudinal
and timelike modes, and the form of H clearly shows that

H p
I —— g (m + k

I

)' [e, (k)e, (k)+e, (k)e, (k)] .
k, s =1,2

(2.16b)

Q G = g [II(k)e'" "+Q*(k)e '" "]k3

k

(2.18)

I

all 4 degrees of freedom in A„can be excited by the in-
teraction Hamiltonian. It is not at all obvious from the
form of H alone how the theory avoids the violations of
unitarity previously discussed, in which linear superposi-
tions of Q and R photon ghost-containing states drain
probability from the states consisting only of transverse
photons and charged particles.

It is also worth noting that H, given in Eq. (2.15) di(fers
conspicuously from the Hamiltonians that describe QED
in the Coulomb' and the manifestly covariant Lorentz
gauges. ' We need to verify therefore that all these Ham-
iltonians describe the same physical theory.

We begin the resolution of these questions with the ob-
servation that if we set the expectation value ( Ap) =0 in

some suitably chosen subspace at t =0, then the identity

Bpdp ——0 guarantees the continued validity of ( Ap) =0 at
all times. Similarly, since BpdpG is an identity, if we set

(BpG) =0 at t =0, Csauss's law too will hold at all times.
The conditions ( Ap) =0 and (BpG ) =0, imposed simul-

taneously, imply the validity of both, gauge fixing in the
temporal gauge and Gauss's law, for all times.

We note that we can represent BpG as
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where

Q(k) =a&(k)+jp(k)/(2k )

and A*(k) is its adjoint a&(k)+jp( —k)/(2k ~ ). Choos-
ing a subspace [ ~

v) },whose states obey

Q(k)
i
v) =0,

therefore guarantees the validity of Gauss's law:

(v'~a G ~v) =(v'~(V II+j )~v) =0

(2.19)

(2.19a)

for any
~

v) and
~

v') in [ ~

v) }. Equation (2.14a) shows
that Ao can be represented as

Ap(x) = ia g—(k) ' [Q(k)e'" "—Sl*(k)e '" "]
k

(2.20)

so that if a state vector is within [ ~

v) } initially it will
remain there forever.

It is interesting that the constraint equations that define
the subspace, and the dynamical effects that keep the state
vector within the subspace, are very similar in the tem-
poral gauge and in covariant gauges. In the temporal
gauge, as well as in the covariant gauges, the gauge con-
straints and Gauss's law are implemented by confining
state vectors within an appropriately chosen subspace. '

In both gauges that constraint is imposed by the same
equation: i.e., Eq. (2.19). In both gauges two initial con-
ditions specify the initial-value problem completely. It
does appear, from configuration space considerations, that
in the manifestly covariant Lorentz gauges (we choose the
Feynman gauge as an illustrative example) the initial-
value problem takes on a very different form. There we
find that 8& A„obeys the second-order equation

(()„A„)=0, so that, if we define a subspace in which
both (()A~ ) =0 and (()p(()A„)) =0 at t =0,
( ()„A„)=0 at all times. But when we study the
momentum-space representations of these operators the
similarity between the convariant gauges and the temporal
gauge becomes clear. 0„A„, in the Feynman gauge, can
be represented as

so that confining a state vector to the subspace [ ~

v) } at
t =0 guarantees both, (Ap) =0 and (()oG) =0 for all
other times. The same fact can also be verified indepen-
dently of these considerations. Explicit calculations show
that [H, A(k)] = [H, II*(k)]=0. Therefore if Q(k)

~

v)
=0,

Q(k)exp( —iHt)
~

v) =exp( iHt)II—(k)
~

v)

variant gauges; and the gauge constraint as well as
Gauss's law hold in [ v) } for the temporal as well as for
convariant gauges. In the Feynman gauge [H, Il(k)]
= —kQ(k) and [H, II'(k)]=kQ*(k), whereas in the tem-
poral gauge both these commutators vanish identically.
But in the Feynman gauge we still obtain the result

Q(k)exp( iHt) —
~

v) =exp( iHt—)e '"'A(k)
~

v) =0,

fn&=eD]v&, (2.23)

where e is unitary and D is given by

D = —g (2k ) '[a~ (k)jp( —k) —a~ (k)jp(k)]
k

(2.24a)

and we carry out the corresponding transformations on all
operators g, which in the new representation have the
form

g=e Dye
—D

The transformed operators take the form

A; (x)= A; (x),

(2.24b)

(2.25a)

ft;(x)=II;(x)+ f dy,a jo(y)
Bx; 4m. x —y

(2.25b)

Ao(x) = Ao(x) ~ (2.25c)

A,(x) = 11,(x)

+ f dy (2m) f exp[ik (x y)]-dk
a 2k

x jp(y), (2.25d)

and

Sl(k) =ag (k), (2.25e)

so that, if a state vector is in [ ~

v) } initially, it remains
there forever in covariant gauges as well as in the tem-
poral gauge.

To study further consequences of this formulation of
the temporal gauge we will apply a procedure introduced
in earlier work. ' We carry out a similarity transforma-
tion to a new set of states, given by

() A„=i g k'~ [0(k)e'" —II*(k)e '"'
]

k

(2.21) P(x)=exp —g(2k ~
) '[az(k)e'"" —az(k)e '"'"]

k

and ()p(()„A„) is X P(x) (2.25f)

()p(()„A„)= g k [Q(k)e'" +Q*(k)e ' ' ], (2.22)
k

where Q(k) is the same operator as in the temporal gauge.
The identical subspace [ ~

v) }, defined by Eq. (2.19),
confines state vectors for both the temporal and the co-

as well as

j„(x)=j„(x) .

The transformed Hamiltonian is given by

(2.25g)
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H=Hp +Hp — j- A"d, + k a& k a& k + —,'a& k a& —k 1 —2io' + —,'a& k a& —k 1+2iu
k

r

—(k ) jp( —k) +y ag (k) —(k) jp(k)+ y a& (k)
—1/2 k j( —k) —itz k j(k)

2~k[

jp(x)jp(y)
+ dxdy (2.26)

ag(k) ~n)=0. (2.27)

The set of states [ ~

n ) j, the "allowed subspace, " in-
cludes the set of states [ ~

p) j, the "quotient space, "
which consists of the Fock states for all charged parti-
cles (electrons), and the transverse photon Fock states.
It is important to note however that in this new repre-
sentation ( e~

~

V.A+ jp )
~ e~ ) =0, so that the electron

Fock states carry their static electric field with them and
obey Gauss's law. That is because these electron Fock
states are unitarily equivalent, in the old representation,
to coherent states of electrons and photon ghosts which

The transform of Eq. (2.19), which defines the subspace
in which the constraints ( A p ) =0 and ( V.II+jp ) =0
hold, in the new representation is

constitute the electron's Coulomb field.
In addition to the set [ p ) j, the allowed sub-

space [ ~

n ) j includes all states of the form
aJ(k)

~ p ), . . . , [ag(ki ) . ag(k;)]
~ p ); but it excludes

any state of the form aR(k)
~

n ). The allowed subspace
[ ~

n ) j, in the new representation, is unitarily equivalent
to the set [ ~

v) j in the old representation. Part of the
Hamiltonian 8 for QED in the temporal gauge, in the
new representation, is given by H, where

H =Hp +Hp — j- A dx+ dxdyT (e) - T jp(x)jp(y)
8m /x —y/

(2.28a)
H, is the Hamiltonian for QED in the Coulomb gauge.
The remaining parts of 8 are given by

Hg ——g k [ag (k)ag (k)+ —,'ag (k)ag ( —k)(1 2i a )—+ —,'ag (k)ag ( —k)(1+2i )a]

k

—(& ) jp( —k)+y ~g(k) —(&) jp(k)+) Qg(k)
—i/z k j( —k) —1/2 k j(k)

2/k/ 2/k/
(2.28b)

All parts of Hg contain either the factor ag(k), or its ad-
joint ag(k), or bilinear combinations of either or both.
Since ag(k) and ag(k) commute with each other, and
with all other operators appearing in H, H& cannot con-
tribute to any internal loop processes. The only effect H&
can have on states in the allowed subspace [ ~

n ) j is to
produce further states of the form ag(k, ) ag(k, )

~

n ),
which are in [ ~

n ) j again. All states that Hg can gen-
erate have zero norm and zero inner product with all oth-
er states in [ ~

n ) j. They cannot absorb probability, can
never carry energy or momentum, and can never affect
the unitarity of the theory adversely. It is a trivial conse-
quence of the form of H that all state vectors

~
p), con-

sisting of electrons and transverse photons, have precisely
the same time evolution in the quotient space [ p ) j, and
therefore lead to identical physical predictions, as they
would in the Coulomb gauge. Whatever components
state vectors develop in [ ~

n ) j outside the quotient space
[ ~

p) j are physically irrelevant. Because Hg is included
in H, time derivates, and with them equations of motion,
for gauge-dependent parts of A„change with the gauge.
But the presence of H& in H is totally without conse-
quence for the time evolution of state vectors that
represent physically realizable configurations of photons
and charged particles.

It is much easier to clarify how gauge-fixing eliminates
redundant degrees of freedom in the transformed repre-

sentation of the temporal gauge, in which exp( —iHt) is
the time-evolution operator and [ ~

n ) j the set of states
in which constraints are implemented. Both ( Ap) =0
and ( BpG ) =0 are required to eliminate the
az(k)

~

n ), . . . , aR(k, ) . . a~(k;)
~

n ) set of ghost
states from the allowed subspace by implying Eq. (2.19)
in the original, and Eq. (2.27) in the transformed repre-
sentation. But once the degree of freedom that corre-
sponds to the presence of the R ghost is eliminated, both
degrees of freedom, Q as well as R, are eff'ectively re-
moved from the theory, because as we have shown, the
Q-ghost degree of freedom, without the simultaneous
presence of R-ghost states, is irrelevant to the predic-
tions of this theory.

III. THE INTERACTION PICTURE AND THE
PROPAGATOR FOR THE GAUGE FIELD

In the preceding section we have discussed two unitari-
ly equivalent representations of QED in the temporal
gauge. In one (the "original" representation) the time
evolution operator exp( —iHt) acts on a set of states

[ ~

v) j. In the other (the "transformed" representation)
the time-evolution operator exp( —iHt) acts on a set of
states [ ~

n ) j. Both of these representations aff'ord us the
basis for a consistent description in which state vectors
originally confined to [ ~

v) j in the original, or [ ~

n ) j in
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the transformed representation, are kept within that set of
states (the allowed subspace) by the equations of motion.
In contrast with these two consistent representations, the
perturbative expansion of S-matrix elements with Feyn-
man rules makes implicit use of the time-evolution opera-
tor exp( iH—t) together with the set of states [ ~

n ) } in-
stead of [ ~

v) }. The time-evolution operator exp( iH—t)
I

appears in the disguised but entirely equivalent form in
which the interaction Hamiltonian ( —

~ j A d x
+ f joAodx) is used in an interaction picture driven by
exp( iH—ot). The f joAodx term vanishes in the a~O
limit, and Ho is the e~O limit of H in Eq. (2.10), and is
given by

Ho-—-Ho +Ho'+ g [k[a(i(k)ag(k)+ —,'ag(k)a(i( —k)(1 2—ict)+ —,'ag(k)ag( —k)(1+2ia)] } .
k

(3.1)

The combination of the Hamiltonian H appropriate for
the original representation, together with the set of states
[ ~

n) } appropriate for the transformed representation,
falls short of guaranteeing that state vectors originally
confined to [ ~

n ) } will permanently remain in that sub-
space. In fact state vectors in [ ~

n ) } do develop
ag(k&) aii(k, )

~

n ) components under the influence of
the time-evolution operator exp( iHt) —This . identical sit-
uation prevails also in the covariant gauges.

In spite of the questionable consistency of mixing a
time-evolution operator from one representation with a set
of states from another, the S matrix that results from this
combination is substantially correct. If a wave function is
entirely within the subspace [ ~

n ) } in the limit t~ —~
then, even though it will not remain entirely within

[ ~

n ) } at all times under the effect of the time-evolution
operator exp( iHt), —it will again be entirely within

[ ~

n ) } in the limit t ~+ oo.
The theoretical support for this use of Feynman rules

for a gauge theory in a formulation that fails to imple-
ment the gauge constraint and Gauss's law, can be given
in terms of what we have called a "hybrid transforma-
tion. "' In a hybrid transformation the states of a
theory are unitarily transformed but the operators, in
particular the time-evolution operator, are left un-
transformed. It is possible to derive an expression for
the change in a transition amplitude that results from a
hybrid transformation. This derivation relates the fol-
lowing two transition amplitudes for transitions from an
initial state

~

i ) to a final state
~ f ): One is Tf,i, the

transition amplitude based on the Hamiltonian 8 and
the subspace [ ~

n ) } (or equivalently on H and [ ~
v) } )

and is given by

~f,; =(f ~Hi+Hi(E; —8+ie) 'H, ~i), (3.2)

where H[ ——H —Ho. The other is Tf;, the transition am-
plitude that corresponds to Feynman rules for the pertur-
bative S matrix, and is given by

+f;= (f
~
Hi +Hi(E; —H+ie) 'Hi

~

i ), (3.3)

where H& ——H —Ho. In earlier work we have obtained
the equation' '

gg,~= (f
~

[(e —l)(E, H+ie)—'H-,

Hi(E; —H+ie) —'(e 1 )—]i) . (3.4b)
For the S-matrix elements only the Ef~E; and the
ie~O limits of Tf; and ff; are significant so that, un-
less Vp develops an (Ef E; )

' —or Ng an (i e)
singularity, the S-matrix elements in the consistent for-
mulation and in the hybrid-transformed representation
will agree. e transforms "bare" charged-particle Fock
states, devoid of any electric fields, into coherent states
that obey Gauss's law. It does not endow them with the
complement of transverse photons that an actual
charged particle with nonvanishing momentum requires.
For that reason its effect is relatively benign. Because of
the inclusion of only a single variety of ghost, and the
absence of transverse photons in the unitary e, there
are no infrared singularities that keep the

~

v) and
~

n )
charged-particle states from differing by infinite normali-
zation constants. In fact

~

v) and
~

n ) states have the
identical norms. Moreover the only cases in which V~
can develop an (Ef E; )

' or 7—$ an (ie) ' singularity,
are self-energy correction to external electron lines and
these only affect the electron wave-function renormaliza-
tion constant. The fact that these singularities arise is
responsible for the fact that renormalized rather than
unrenormalized S-matrix elements are identical in
different gauges. ' '

Once we have established on-shell identity of Tf; and
Tf, we have also established identity of the perturbative S
matrix, based on Feynman rules for the temporal gauge,
with the S matrix in the Coulomb gauge. Since in earlier
work the same proof was given for perturbative Feynman
rules for covariant gauges and the Coulomb gauge, we can
infer the identity of the perturbative S matrix in the tem-
poral gauge and in covariant gauges. '

We now turn to the Feynman rules in the temporal
gauge. The propagators are given by the vacuum expecta-
tion value of time-ordered products in the } ~

n ) } space
vacuum. The vacuum expectation values for the trans-
verse parts of A and for the spinor field are the same in
all gauges and need not be reevaluated here. The longitu-
dinal part of A, in the interaction picture, is given by

Tf /
——Tf; + (Ef—E; )7f; + lE7f;' (3.4) A; (x, t)=exp(iHot)A; (x)exp( iHot) . —(3.5a)

where

7'g = (f
~

(I —e )
~

i )

+(f t
(1 eD)(E; H+ie) 'H—

i fi)—
and

Expansion of Eq. (3.5a) leads to

(3.5b)

and all higher-order commutators vanish. Equation (3.1)
and the ghost operator commutation rules lead to
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k;
A; (x, t) = g ( [az(k)+a~(k)[) —2itk(1 —ia)]Ie'"'"+ [az (k)+a&(k)[y+2itk (1+ia)]Ie '" ")

k

and to the vacuum expectation value

I a 0
g a, a

(0
l
T(A; (xt, t, )A (xz, tz)) 0) — ——

l
t~ —tz

l

——(t&+tz) 5(xz —x&)+ty A(xz —x&),J 2 2 p2 p2

(3.6)

(3.7)

b(x)=, J exp(ik x) .
—i dk

(2~)' (2k)
The time-ordered product

&Ol T( Ap( x), t))Ap( x,zt z)) l0)
vanishes identically, but

(0
l
T(A; (x»t, )Ap(xz, tz))

l
0)

gives the contribution

L a«
I
T(A, (xi, ti)Ap(xz, tz)) l0) = — 5(x, —x, )

g2

(3.7a)

(3.8)

where b, (xz —x&) is the massless Feynman propagator for
the interval x=x; —x2, and t& —t2 ——O. It is given by

which vanishes in the o.~0 limit.
The a and y dependence of propagators does not inter-

fere with the validity of Eq. (3.4), so that the S matrix
evaluated with different values of o; and y will still agree
with the S matrix evaluated in the Coulomb or in the co-
variant gauges. The Hamiltonian, the Green's functions
and the off-shell transition amplitudes may depend on a
and y, but the scattering amplitudes are free from any a
or y dependence.

It is straightforward to use Eqs. (2. 13a) —(2. 14b) to
evaluate the four-point function in the interaction picture.
We represent (0 T(A; (x&, t&)Aj (xz, tz)}

l
0) in the tem-

poral gauge, given in Eq. (3.7) as Dj (x, , t, ;xz, tz0 and find
that

(0
l
T( A L(x t ) A (x t )A (x t3 )A (x4, t4))

l
0) =D; (x), t), xz, tz)Dg„(x3, t3, x4, t4)+Dig(x& l ix3i 3)Djn(xz 2 x4 4 }

+D;„(x&,t&, x4, t4)Djt, (xz, tz', x3i 3 (3.9)

IV. DISCUSSION

In this section we will discuss the relationship of our

result to work based on different approaches to the tem-

poral gauge. For example, the propagator for longitudinal

photons in the temporal gauge, given in our Eq. (3.7), is

also evaluated by Caracciolo, Curci, and Menotti' (CCM).
In their work CCM makes a comparison, to fourth-order

perturbation theory, of the Wilson loop in the 30 ——0
gauge, with the results obtained in the Coulomb and

Feynman gauges. Their propagator has the form

(x]it]ixzitz)= — [ l
t] —tz

l
+a (t]+tz)+y ]

p2 53(xz —x, ) (4. 1)

and they do not report any 2 —AD propagator.
Our propagator has a part proportional to

l t& —tz
l

and devoid of arbitrary parameters. This part is identi-
cal to the temporal-gauge propagator obtained by a
number of workers with a principal-value prescription,
and agrees with a corresponding part in the CCM propa-
gator. There is another part of our propagator that
lacks time-translation invariance and is proportional to
a(t

& + tz ), where a is a real parameter that can be varied
at will, and in particular may be set equal to zero. CCM
find a similar arbitrarily variable part of the propagator
for QED in the temporal gauge, but conclude that it is
imaginary (in the case of QCD they report that, in their
notation, a =+1 is required for consistency with other
gauges}. Finally our propagator has a time-independent

part proportional to an additional variable parameter y,
which also may assume any real value, including zero.
CCM also have a time-independent part, proportional to
a variable parameter, in their propagator, but whereas in
our case the spatial dependence of the time-independent
part is given by (8;0, )h(xz —x& ), CCM give it as

(&;&, /V )53(xz —x, ) .

The functional form (B,Bj/7 )b, (xz —x, ) that we ob-
tain in Eq. (3.7) also appears in the time-independent
part of the propagator evaluated by Dahmen, Schulz,
and Steiner (DSS); their propagator is not a special case
of the CCM propagator and needs to be regularized by a
limiting procedure that cannot be carried out until later
stages of the S-matrix calculations have been completed.
Their effective propagator, which incorporates the re-
sults of that limiting procedure, has a (t & + tz )-dependent
part that agrees with ours in being imaginary with
respect to the principal-value part proportional to

l
t~ —tz

l
. Landshoff' has also proposed an alternate

form of the propagator; his form retains time-
translation invariance and still reproduces CCM's Wil-
son loop calculation in perturbation theory up to fourth
order in the coupling constant. Landshoff stresses the
importance of not neglecting the nonlinear time depen-
dence that stems from finite displacements of k0 poles
from the real axis in the limiting process in which these
k0 poles approach the real axis.

Other workers, using different methods, obtain the
CCM propagator, but with a special value of a (in our
notation) for QED as well as for QCD. Thus Lim, by
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means of what he calls "stochastic quantization" finds
that a =+i is the correct choice for both QED and QCD
(Ref. 2). Girotti and Rothe also maintain the a=+i
choice for QED as does Yamagishi, the latter by gen-
erating solutions of the constraint equation
(V E —jo)

~
g) =0 by means of the Manlier operator ap-

plied to eigenstates of (V E)
~
P) =0. Lim, Yamagishi,

and GR attach importance to finding a definite value of
a, because, they argue, that only the propagator with a
definite value of a corresponds to a form of the theory in
which the gauge has been completely fixed and ambigui-
ties in the formulation eliminated.

We find that definite real values of a and y are neither
necessary for QED, nor are they appropriate, because
there is no compelling a priori reason for preferring one
set of values over another. Choosing different values of
a and y is as harmless, and quite analogous to choosing
the Feynman, ' Landau, or Fried-Yennie ' propaga-
tors in covariant QED, or choosing the unitary or the
renormalizable forms of propagators in gauge theories
with spontaneously broken symmetries. It is indeed
true that changes in y implicitly gauge-transform A,
and that changes in a change the gauge by determining
whether A 0

——0 holds as an operator identity or whether
only expectation values of Ao in the allowed subspace
vanish. But the effect of these changes of gauge in 3„
are without any significance to the dynamical implica-
tions of the theory as long as Maxwell's equations hold.
We should distinguish between choosing the gauge on
the one hand and, on the other, fully implementing the
gauge constraint as well as all other time-independent
constraints in the appropriate subspace. Dangerous am-
biguities in gauge theories can occur when Gauss's law is
not fully realized, though that does not threaten the va-
lidity of the perturbative S matrix in QED because Eq.
(3.4) supports the substitution of Tf; for Tf; for all
values of a and y in that case. Inspection of the a and
y dependence of 8 in Eq. (2.26) clearly demonstrates the
harmlessness of varying e and y.

There appears not to be any general acceptance by
other workers of the fact that the longitudinal gauge
field must involve ghost excitations and require an exten-
sion of the kinematic framework beyond that of a posi-
tive metric Hilbert space. That ghosts and such a kine-
matic extension are necessary has been pointed out by
Nakanishi, though his fears that their inclusion
threatens the consistency of the theory are unfounded.
Many other workers who treat the temporal gauge as a
canonically quantized theory, explicitly or implicitly
treat it as free of ghosts. Zeppenfeld, for example,
claims that Nakanishi's arguments in behalf of ghosts
are wrong. Interestingly, Zeppenfeld's and DSS (Ref. 3)
operators X(+( and X( ( [see the latter's Eq. (Bl), for ex-
ample] admit easily and naturally of a ghost representa-
tion. In our formulation 7[+) and 7[ ] given by DSS are
representable as

and

g( )
——g [(1 i—a)ag(k)e'"

k

+(1+ia)aJ(k)e '" "] (4.3)

and this representation leads to the commutation relation

and

[X(+)(x),X(+)(y)]=[X( I(x),X( )(y)]=0 (4.4)

[X(+)(x),X( )(y)]=i5(x—y) . (4.5)
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The process of transforming a state
~

(((() into
~
p) by a

unitary transformation, in which photon creation and
annihilation operators obey the positive metric rules
[a,a']=1, would require that

~

()(() and
~
g) differ by

infinite normalization factors and threaten the consisten-
cy of the theory. It is possible that the discrepancy be-
tween the DSS and the CCM propagator stems from the
efforts of DSS to implicitly use the formalism of a
positive-metric space of longitudinal photons, though
this author does not know of any proofs to that effect.

What implication does this formulation have for QCD
in the temporal gauge'7 Intuition alone suggests that
ghost mode repreentations of longitudinal gauge fields
and the form of the Lagrangian generalized to SU(n)
from the U(1) case are appropriate extensions from QED
to QCD. But it is apparent that the dynamics of non-
Abelian fields makes it harder to find the proper form of
Q(k) and to carry out the complete analysis of Sec. II.
In particular it is unclear whether the unitary transfor-
mation

~

n ) =exp(D)
~

v) has a suitable non-Abelian
analog. There is reason to suspect that the transforma-
tion, whose validity is required to justify the non-
Abelian Feynman rules, must be critically reexamined.

The canonical formalism we are using serves as a use-
ful framework for such an examination of the non-
Abelian case. It provides an apparatus for developing a
perturbative S matrix, and connecting it with a well-
defined Fock space. At the same time it permits analysis
of particle states consistent with constraints. The advan-
tages of a canonical theory, and the ambiguities inherent
in path-integral derivations have been discussed and do-
cumented by Cheng and Tsai. An extension of this
work to Yang-Mills theory and QCD is given in the fol-
lowing paper.

~(+~= — g I [a, (k)+) a~(k)]e'"-"
k

—[aÃ(k) +) a;(k)].—""I (4.2)
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