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We present a real-time formalism enabling us to compute statistical averages of various quan-
tum string field correlation functions and scattering amplitudes in the context of perturbation
theory and functional methods. Second quantization of the string fields is carried out in the path-
integral representation. Our finite-temperature formalism is a generalization of thermo field dy-
namics to string field theory for which a doubling of the physical string field degrees of freedom is

required. Temperature formally enters our construction by imposing boundary conditions (Kubo-
Martin-Schwinger condition) in the generating functional for the string field. Some explicit com-
putations for the case of covariant open bosonic string theory are carried out.

I. INTRODUCTION

Recently, some interest has been devoted to the ther-
modynamical behavior of superstring theories' at high
temperature and high energy density. The obvious ap-
plications of such studies may lie in cosmology and in
the very early Universe. Standard scenarios for the evo-
lution of the Universe (such as inflationary or new
inflationary models) may require modifications if super-
strings truly describe the dynamics of the known funda-
mental interactions.

Although such recent works have made use of the
canonical as well as the more fundamental microcanoni-
cal ensemble for the computation of the partition func-
tion of an ideal gas of string and superstring excitations
at high energy density, we wish rather, in this paper, to
lay the basis for a real-time interacting (bosonic) string
field theory at finite temperature in the grand canonical
ensemble. Our finite-temperature formalism is a general-
ization of the so-called thermo field dynamics (TFD)
to string field theory. Such a formalism has already been
developed very satisfactorily in the usual quantum field
theory (QFT) for thermodynamical equilibrium" ' and
is being extended to nonequilibrium' cases. For a
recent general review on real- and imaginary-time field
theory at finite temperature and density, see Ref. 21.

String field theory differs fundamentally from or-
dinary field theory by the fact that it is multilocal.
However, it can be consistently formulated without
violating relativity, causality, or unitarity, and has usual-

ly softer ultraviolet behavior. Historically, canonical
quantization of string field theory has been carried out in
the so-called light-cone gauge where it is manifestly
unitary since unphysical longitudinal modes have been
eliminated by the gauge-fixing procedure. On the other
hand, a covariant canonical quantization of string field
theory may be more difficult and is not immediately at
hand. This state of affairs is rather unfortunate at the
present time since the light-cone gauge is not a con-
venient one to introduce thermal effects into the theory.
We are therefore prevented, for the time being, from us-

ing all the operator machinery of thermo field dynamics
to treat the thermal degrees of freedom in a canonical
way.

We shall therefore rely on the path-integral quantiza-
tion of covariant string field theory and we will
make use of functional methods to carry out perturba-
tion theory at finite temperature. Functional methods in
the context of TFD have been considered" for the case
of point-particle field theory, and there the temperature
formally enters the formalism through boundary condi-
tions [the so-called Kubo-Martin-Schwinger (KMS) con-
dition ' ] imposed on the propagator for free fields to-
gether with the necessary doubling of the physical de-
grees of freedom.

One should also mention the existence of geometric
approaches to the quantization of string theories and of
possible application to string field theory. ' This may
well lead to a third formalism for string field quantiza-
tion. Inclusion of temperature from such geometric ap-
proaches may also be an interesting problem.

As a practical example of our method, we will derive
the Feynman rules at finite temperature of recently pro-
posed covariant bosonic string field theories ' with cu-
bic and perhaps also quartic interactions, and obtain
general expressions for the tachyon four-point amplitude
in the tree and one-loop approximations. A brief men-
tion of a possible extension to the finite-temperature
theory of closed bosonic strings, fermionic strings, and
various types of superstrings is also made. Finally, we
comment on the renormalization problem' '' and the
zero-slope limit' ' of the open bosonic string at finite
temperature.

In the following we choose the signature diag g„
=( —1, 1, . . . , 1) for the metric tensor.

II. REVIEW OF TFD FORMALISM
AND FUNCTIONAL METHODS IN FIELD THEORY

In this section we briefly review thermo field dynamics
as a canonical formalism for quantum statistical
mechanics as well as its formulation in the path-integral
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representation and functional methods. "
The main idea and basic problem of canonical TFD is

to express the statistical average of a dynamical variable
A as a vacuum expectation value, that is,

thermal state conditions:

A(t, x)
~

0(P) ) =o A (t i—P/2, x)
~

0(I3) ),
(0(P)

~

A(t, x)=(0(P)
~

A (t+iPI2, x)o*,
(2.13)

(3.14)

( A )—:Z '(/3)Tr( Ae ) = (0(P)
~

A
~

0(P) ), (2.1)

where P is the inverse temperature, Z()cl) the partition
function defined as

where
~

o. = 1.
Axiom 5. The double tilde conjugation is defined as

follows:

Z(P)—:Tr(e ~ ), (2.2) A =crA (2.15)

In order to realize such a representation for the
thermal vacuum

~
0(P)), it has been recognized that

one must first implement an effective doubling of the
dynamical variables or degrees of freedom of the theory.
This is effected by introducing unphysical states

~

m )
(so-called "tilde" space) orthogonal to the original Fock
space. For the latter tilde subsystem one defines the
Hamiltonian H which acts on the tilde states as

a
~

n & =co„~ n &, (n
~

m ) =5„ (2.4)

The total Fock space is now spanned by the direct
product of the two orthogonal vector spaces. Defining
the thermal vacuum

~
0(f3)) as

and H is the Hamiltonian of the system with eigenvalues
Q)q,

(2.3)

P„=Pp —Pq, (2.16)

where P„ is the four-momentum operator. This in turn
implies that the total Lagrangian for the system is given
as

X=X—X . (2.17)

The (anti)commutator in (2.8) is for (fermionic) boson-
ic A, B. Also, there is some freedom with respect to the
choice of the phase factor a in the thermal state condi-
tions (2.13) and (2.14) and the double tilde conjugation
(2.15). Note that the thermal state condition has been
shown to be equivalent to the KMS condition ' of the
axiomatic C*-algebra approach to statistical mechanics.

The above axioms can be used to obtain the total gen-
erator of space-time translations P„ in TFD,

~0(P))—:Z '~ (P)ge "
~n, n) (2.5)

The thermal state condition also leads to the existence
of operators att( t ) and a~(t ) which annihilate the
thermal vacuum

and

(m, n
(

A (n', m')=(n
[

A (n')=6 (2.6)

and making use of the orthogonality of the subspaces a~(t)
~

0(f3) ) =a~(t)
~

0(/3) )

= (0(P)
~

ap(t)

=(0(P)
~

a~(t)=0. (2.18)

(m, n
~

A n', m ')=(m
~

A m ')=5„„ (2.7) Introducing the thermal doublet notation A

one then shows easily that Eq. (2.1) is satisfied.
In ordinary quantum field theory, the TFD formalism

is best constructed from the following axioms. '

Axiom 1. Dynamical variables belonging to different
subspaces are independent:

A 0,'=2,
(2.19)

the latter operators are related to the zero-temperature
operator a (t) by the Bogoliubov transformation

[A(t),B(t)]+——0 . (2.8) ap( t) = U '( i B, ) ~ar(—t ), (2.20)

Axiom 2. There is a mapping between the two orthog-
onal subspaces called tilde conjugation, defined by the
following rules:

where

U '(co)=n'~ (co)

Pco /2

Pcs /2 (2.21)

(a) ( AB) = AB

(b) (c&A+czB) =c;A+czB,
(c) (A ) =(A )

(2.9)

(2.10)

(2. 1 1) U~(co)rUe(co)=r, UF(co)UF (co)=1 . (2.22)

and which is normalized for bosons (B) and fermions (R
as

~~(P)&= ~0(P)& . (2.12)

with c numbers c i and c2.
Axiom 3. The thermal vacuum is invariant under the

tilde conjugation:

In the above equations, we defined

1 0 1n(cu)=
e —p

(2.23)

Axiom 4. The thermal vacuum satisfies the following
where p is +1 ( —1) for bosons (fermions). One also has
the inverse transformation
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a (t)=U( —i'() ~ah(t), (2.24)
I
0(P) & =e 'G(~)

I
0,0&, (2.27)

which can also be expressed in the canonical form

~( —
& eiG(P) ( —) —iG(P)ap e

with generator G(P) satisfying

G(P)=G (P)= —G(P),

The thermal vacuum is then given as

(2.25)

(2.26)

which can be shown to reproduce the expression (2.5) by
explicit computation of the generator G(p).

The canonical formalism presented so far accommo-
dates a perturbation theory analogous to the zero-
temperature case. In particular, X-point correlation
functions in the Heisenberg representation are given by
the following Gell-Mann —Low formula:

C'(8) TP, '( ) x()„"(x„)exp i f d xC, ( x) @(P))
(o(P)

I
Ty, '(x, )

. y„"(x„)
I
o(P&=

(@(P) T exp i f d x Xt(x) g&(P)
(2.28)

in which
I

C&(p) & denotes the (free) thermal vacuum since the right-hand side of (2.28) is in the interaction representa-
tion. The above relation together with Wick s theorem yield the Feynman rules of the theory at finite temperature.
The rules are similar to the zero-temperature case except for the fact that vertices now carry thermal indices which
should be summed over and that propagators are now finite-temperature causal propagators. That this is so is due to
the normal-ordering procedure in the Wick expansion. Normal ordering should be carried out with respect to the
thermal operators exp and ap instead of the corresponding zero-temperature operators since the vacuum is the thermal
vacuum. This is the origin of temperature-dependent factors in the causal propagator of our Feynman rules. It has
been shown that these Feynman rules are equivalent to those obtained in the complex-time or path-ordering method
under a suitable choice of the complex-time integration contour. ' '

Finite-temperature free propagators have the following matrix from and spectral representation in TFD:

ho~(x, y):i (N(P)
I
TP (x—)P~(y)

I
@(P)& = „ f d p e'~ ho~(p),1

(2m. )"

where

(2.29)

' ap

~0 {p) UB( lpo I
) ~ 2 . Ua( lpo I

)
p +M~ —i&6

dco cr(co, p;Mb ) Ue(co) Us(co)
OO P0 —Ct) + 1 V6

(2.30)

for real bosons, and

So~{x,y):i (@(P)
I P—(x)P~(y)

I
@(P)&

= f d'p e'~ S ~(p),1

(2' )

where

1
'ap

So {p)={ tP+MF) UF{
I po I

) z
—

2 . UF '{
I
po)

p +MF —iw5

(2.31)

QO 1 —1= —f dco cp(co, p;MF )( —c6 gf+MF ) UF(co—) UF (co)
oo P0 —M+ l V5

ap

(2.32)

Us(co)=ns ' (co)

pea/2 1

pcs/2 (2.33)

for fermions. The Bogoliubov matrices Uz (co ) and
UF(co) are given by Eq. (2.21) as

The spectral function cr(co, p;M ) is also obtained as

cr(co, p;M)= [6(co—
coq) —5(co+co )],1

2'~
p

2 p2+ M 2
(2.35)

and

UF(co) =nF '~ (co)
peg /2

pcs /2 (2.34)

with the choice cr = —1 ( —i) for bosons (fermions). 3s

In general, one can show that if a full thermal Green's
function possesses a spectral representation

6 "(ko,k)= f dcop{co,k)50"(k(),co), (2.36)
0

with a real spectral function p(co, k), and b,o(k) given by
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(2.30) with cok replaced by co, then the propagator

5"(t,x)= f d k e'" b, "(ko,k), (2.37)
1

(2')
satisfies the KMS condition. " A similar theorem natu-
rally also holds for fermion propagators.

Before discussing the path-integral quantization prob-
lem, one would like to point out that, in general, the free
propagators (2.30) and (2.32) can be expressed as a sum
of zero-temperature and temperature-dependent parts.
Since the latter part of the propagator is on the mass
shell with a factor 5(k +M ), it seems equivalent at first
glance to use either one of the matrices Us F(

I
ko

I
) or

Us F(cok) in (2.30) and (2.32). However, when comput-
ing chain diagrams similar to those occurring in the ex-
pression for the self-energy, divergences caused by the

pinching of the integration contour cap be created be-
cause of powers of free propagators at the same energy-
momenta k. These singularities are multiple poles
around the mass shell, 5 (k +M ) and occur only at
finite temperature. It has been shown, ' however, that
the cancellation of these 5 -singularities occurs if the
prescription U~ F(

I
ko

I
) is chosen instead of Us F(cok ).

This enables the Bogoliubov transformation matrices to
factorize and to appear only at both ends of a chain dia-
gram. This also implies that the full propagators have
spectral representations similar to the free case.

Finally, we close this section with some comments on
the path-integral quantization and functional methods in
TFD.

A generating functional in quantum field theory has
the property

~ —n5n ~ —m5m
(0

I
T[P(x~) ' ' P(x„)P(y~) g(y )i'(z~) P(zi)] I0) =

5J x„' ' ' 5J x
& 5i)(y) )

~ 5ii(y )

—lg I

x
5 ( 5 (

)Z[J,g, q] (2.38)

—i5 —i5 —i5
5J'5q'

i5 i5 i5
5J 5g

J=g=g=0

where the external sources J, ri commuting and anticommuting c numbers, respectively. Note that the symbols 5/5'
and 5/5g mean that the respective functional derivatives operate from the left and the right of the generating func-
tional.

At finite temperature, in the context of the operator formalism of TFD, an explicit expression for the generating
functional of interacting bosons and fermions fields has been obtained in Ref. 11. It is given by

2[J,ri, il]=/V' ' exp i f d x,Xq

X exp i f d x d y[ —,'[J(x)who(x —y)rJ(y)] +[i)(x)rSo(x —y)re(y)] (2.39)

in which summation should be carried out over repeated thermal indices and where

(2.40)

Also the propagators and the matrix r have been defined already in Eqs. (2.23), (2.29), and (2.31). The Feynman rules
obtained from (2.39) are very similar to those obtained at zero temperature. This is the main computational advan-
tage of TFD. Considering only the real boson case for simplicity, one also shows that the finite-temperature generat-
ing functional of Eq. (2.39) can be rewritten in the following path-integral representation:

2[J] f g [dP (x)] exp i f d x[—,'P (x)b, ' P( —i')P~(x)+X (P') —X'(~)) )+J (x)r i'~(x)]
a, x

(2.41)

—1( ~

g) ikz g —l(k) ikx (2.42)

At zero temperature, the inverse propagator is diago-
nal,

Note that the inverse propagator b, o '( —iB) is defined
as

with respect to the thermal information is the fact that
the Feynman convergence factor ( —i 5 term) emerges in
a nondiagonal form when inverting the thermal propaga-
tor (2.30). It is through this boundary condition that
temperature comes in, since this nondiagonal Feynman
term mixes both sectors P' and P,

bo '(k)=(k +M )r i5, — (2.43) bo '(k) =(k +M')r
and consequently the two sectors P& and Pz decouple and
lead to two independent zero-temperature theories.
What makes the theory described by (2.41) nontrivial

—i5[rUa(
I ko

I
»s(

I
ko I

)&] .

Similar reasoning also holds for the fermion case.

(2.44)
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We have now described a consistent and very elegant
real-time formalism of QFT at finite temperature.

In the next section we discuss general features of
gauge fixed Becchi-Rouet-Stora-Tyutin- (BRST) invari-
ant bosonic string field theories and carry out covariant
quantization in the path-integral method. We shall see
that even though a covariant operator (or canonical) for-
malism is not available at the present time, the statistical
mechanics of string field theory can be formulated in the
path-integral representation in a way analogous to the
one discussed in this section for ordinary QFT.

III. STRING FIELD THEORY

Thus far, canonical quantization of string field theory
has been performed only in the light. -cone gauge.
The unfortunate lack of a manifestly covariant operator
formalism for string fields is an obstacle for the study of
the statistical mechanics of such theories since the light-
cone gauge is not a suitable gauge for which thermal
effects can be introduced.

All covariant formulations of various kinds of
string field theories have been expressed in the path-
integral representation. We shall therefore seek a way of
describing the quantum statistical mechanics of string
field in such a representation. In this section we restrict
our discussion to bosonic string fields only.

In general, a (bosonic) string field 4 is a functional of
the string coordinate X„(cr) (Refs. 22 —30), of Faddeev-
Popov (FP) ghosts and antighosts c(o. ) and b(o. ), and
also, in some cases, of an unphysical length parameter
a ( —ao & a & co ),

N = %[X„(o. ), c ( o. ), b ( a ); ( a ) ] . (3.1)

Ic„,c j
= [b„,b j =0, [c„,b j =6„+

(3.2)

which follows directly from the first quantization of
X&(o ), c(cr ), and b(cr ) (with appropriate boundary con-
ditions), usually spans states in a space with an indefinite
metric since the time components a have a minus sign
in their commutation relations. A subsidiary condition
(first-class constraint) is then imposed on the Hilbert
space in order that the physical subspace be free from
the negative-norm states. Such a condition takes the
form

Q I X,h,.& =o (3.3)

where Q is the canonical Becchi-Rouet-Stora-Tyutin
(BRST) charge associated with the reparametrization in-
variance. In a free string theory, the nilpotency of the
BRST generator is equivalent to the Virasoro algebra for

The coordinates X„(o.), c(o. ), and b(cr ) are the first-
quantized operators of a string theory with reparametri-
zation invariance of the world sheet. In such a theory,
constraints must be imposed to ensure unitarity in the
physical sector of the Hilbert space. Such a Hilbert
space is the Fock space 7 of the states spanned by the
oscillator modes of the string and ghost coordinates.
The oscillator algebra for open bosonic strings,

[am& m]= g firn n+o&,

which the central extension (the anomaly) vanishes, a
case known to occur only for D =26 dimensions in the
bosonic case. Note that an algebra similar to (3.2)
holds for the closed-string case, the only difference being
the presence of left and right movers in the algebra. In
a Lagrangian formulation of string field theory, the
BRST charge must be conserved. In other words, the
action must be invariant under the BRST transforma-
tion. For the interacting case, however, the BRST trans-
formation is a nonlinear one. ' Nilpotency of the non-
linear BRST transformation severely restricts the form
of the interaction. Gauge-fixed BRST-invariant actions
have been successfully constructed ' for both the open
and the closed bosonic string cases.

In general, a field functional of the string coordinates
can be viewed as a Dirac bracket,

~=&X„( ),.( ), b( ) ~e&,
where

~

+& is a state in the Fock space of the BRST
first-quantized string in the oscillator basis (3.2). This in
turn implies that one can expand the ket

~

4 & as

e&=y s&a, , (3.5)

S =S[i}),],
which is usually expressed as

s=s, [y, ]+s,[y, ],

(3.6)

(3.7)

where So and SI are the free and interaction actions, re-
spectively, and in which the ghost zero-modes have been
integrated over or eliminated by the gauge-fixing pro-
cedure (this is why we use P, instead of N, ). Recently,
two gauge-fixed actions have been proposed for the open
bosonic string field theory and both seem to lead to con-
sistent theories (except for the tachyon problem) repro-

where
~

s & denotes a state of the string (including zero
modes).

In the light-cone gauge of a second-quantized
theory, the coeScient 4, characterizing the state of
the field

~

iIi & is a second-quantized field operator acting
on the Hilbert space.& of the physical states. The space
& is also a Fock space which is spanned by the action of
creation operators 3, on the vacuum state. The
creation and annihilation operators in such a formalism
create and annihilate entire strings and should not be
confused with the operators of the oscillator algebra of
the single string modes. Statistical averages in the con-
text of canonical quantization of string field theory
should involve a trace operation taken among the states
of the space .B', not those of the space V for the oscilla-
tor modes of the string. As mentioned earlier, however,
the light-cone gauge is not a suitable gauge to describe
thermodynamics. Consequently, we regard N, in Eq.
(3.5) as a c-number field for which second quantization is
carried out in the path-integral formalism. Thermo-
dynamics will be introduced in the next section through
boundary conditions.

A gauge-fixed BRST-invariant action is, in general, a
functional of a field P, ,
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ducing the scattering amplitudes of the covariant first
quantized bosonic string theory. While one model is
based on Witten s action for open string with a cubic in-
teraction term, the other uses a difFerent representation
for vertices and contains a quartic interaction term in
addition to the cubic term. Accordingly, the BRST
transformation takes a slightly more complicated form
in the latter model. In both cases, the nilpotency of the
BRST transformation is achieved. While in the first
model this is done with the use of the equations of
motion, nilpotency is obtained ofF-shell in the second
case, pending the introduction of a new unphysical
"string length" parameter a. It has been shown, howev-
er, that on-shell physical amplitudes are independent of

So[/, ]= —,
' g b

sls2
(3.8)

for the free part and

a to all orders in perturbation theory. A closed-string
model with cubic interaction has also been proposed.
Since our purpose here is not to discuss the specifics of
the gauge-fixing procedure of proposed models but rath-
er to show in general how one can extend such models
to finite temperature situations, we shall not dwell fur-
ther upon their detailed characteristics. It is enough to
remark that, in general, the gauge-fixed action (3.7) can
be written in the form

Sl [p. ]= 3g g V, ~, , ~(t, ~p, ~p,
~

5, 515 )

+ —'.g'
51525354

(3.9)

for the interaction part and where the large parentheses
in (3.9) means that in some models the quartic coupling
may be omitted. In the open-string case, internal-
symmetry quantum numbers may also be incorporated in
the theory by letting the string fields be matrix values in
a given representation of the internal- (Yang-Mills) sym-
metry group. For an orientable string, the internal-
symmetry group is restricted to be U{N).

String field correlation functions can be obtained from
the path-integral formula

where

Lp —a(0)=—a'(k) +M ), (3.15)

Note that the Feynman convergence factor must be
included in the propagator 6, , This is a necessary

2 1

prescription if one wants to perform the Gaussian in-
tegrations explicitly.

A useful expression for the free string field propagator
is

1
z, )(2m )~5(k, +k, ),

Lp —a 0 —ia'6
(3.14)

d. . .-, exp iS and in which the mass operator is given as

d, exp iS
(3.10) M = 1 a „a+ gn(c „b+b „c )

n=1 n=1

a(0)

in which one must assume BRST invariance of the func-
tional integral measure. To obtain the Feynman rules of
this field theory, one adds usual source terms i g, J,P,
to the action, express the moments as well as the interac-
tion action in terms of functional derivatives of external
currents, and perform the Gaussian functional integra-
tions given by the free part of the action. The result is
given by the expression

@[s]=cb, = (s
] y & = & z

/
y(k) & =y, (k) . (3.17)

(3.16)
where a' is the Regge slope and a(0) is the intercept of a
given trajectory.

In the expression (3.14), the states
~
z, ) and

~

zz)
denote the states of the string modes in the oscillator
basis with the string zero modes k~1 and k~2 excluded.
Contact with earlier notation is established through the
relations

Srt 52 Sl J=0

where

—i5Z[J]=N ' exp iSI
5

Zo[J]

in which Zp[J] has been obtained as

(3.12)

Therefore one has

(3.18)

&(ki, k2)= ((
~
y(k, )&&/(k2)~ ))

=a'b, lk, )(2') 5(k, + k~ ), (3.19)

«$, , $,, ))—:(zi
~

&&
~

y(ki))(y(k2)
~

)) ~z2) .

In view of (3.14) one can now define the following propa-
gator in an operator form:

Zo[J ]= exp —g J, b.. . J,
l 2

Equations (3.11)—(3.13) yield the Feynman rules of the
theory.

where

A(k) =— I

L p
—a(0) —i a'5 (3.20)

The propagator (3.20) is a very useful operator and ap-
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pears regularly in the computation of string scattering
amplitudes in the covariant formulation of the first-
quantized string theory (BRST formalism).

One is now ready to introduce statistical mechanics in
our second quantized string theory.

IV. STRING FIELD THEORY AT FINITE
TEMPERATURE AND KMS CONDITION

In this section we shall formulate the string field
theory at finite temperature in the path-integral quanti-
zation outlined in the previous section and with help
from the real-time formalism (TFD) presented in Sec. II.
In order to appreciate the similarities between string
field theory and ordinary quantum field theory, let us
write down the following expression for the generating
functional of the free string field theory:

Zp[J]=X ' J +dP, exp(imp[(h, ]+iJ,P, ) . (4. 1)

Recalling the decomposition (3.17) for the zero-mode
and realizing that the functional integral measure in (4.1)
involves an infinite product over string modes z and
zero-modes k (or x), that is,

IId&. = II H «.(k) ~

S z k

(4.2)

Zp[J]= Q Zp[J;z], (4.3)

where

and realizing that the free string propagator is diagonal,
one can then rewrite the generating functional (4.1) as a
product over z of the functionals

Zp[J;z]=N, ' f Q dP, (k) exp i g P, (k)b, '(k;z)P, ( k)+i g—J, (k)P, ( —k)
k k k

(4.4)

One easily recognizes that Zp[J;z] coincides with the
generating functional of an ordinary field theory describ-
ing a free particle of mass M[z] labeled by the string
mode z. The statistical mechanics for such a case has
been described in Sec. II. The prescription is now clear.
We first introduce unphysical fields P, and currents J, in
the theory and define, following (2.17), the total action
SJ as

Z[J]=1V ' exp iSr
S

i6
Sr

6J,

Zp[J]= exp —g (J, rb, , rJ, )

sls2, a

in which Zp[J] is given explicitly by

Zp[J]

(4.10)

(4. 1 1)

SJ =S[0,] S*—[k, ]+J—,0, —J, (t, . (4.5)

Temperature now formally enters the picture through
the Feynman boundary term. Since it takes similar form
for all the string modes z [see Eq. (2.44)] it is introduced
in a universal way through the operator form (3.20) of
the free propagator. Introducing thermal doublet nota-
tions

The form of the interacting action in (4.10) is motivated
by tilde conjugation rules (2.9)—(2.11).

Note that r ~ has been defined by Eq. (2.23) and e is
+1 ( —1) for a= 1 (2). The results (4.9)—(4.11) are ob-
tained directly from the following functional integral
form for Z[J]:

2

Z[J]= '
J + g dP, exp(iS[P] iS*[P]—

S
a

S

Ja
S (4.6)

a=1 s

+iJ,P, —iJ,P,

one then has

« ~y (k ))&y (k, )
~

)) = '(2 ) &(k +k )& ~(k, ),
(4.7)

where
aP

(4.8)

~ —n al. . . an6n
Z[J]

6J " . 6J '
(4.9)

where

in which the Bogoliubov transformation matrix Uii(rp) is
given by Eq. (2.33).

Finite-temperature string field correlation functions
are now readily expressed as

+boundary term) .

(4.12)

It is interesting to note that, in the zero-slope limit
(a'~0), bosonic string field theory is known to repro-
duce (in the open-string case) the A.y theory or the
Yang-Mills theory at zero temperature. That it is so is
due to the fact that all massive string modes become
infinitely massive in such a limit and decouple from the
dynamics leaving an effective theory of self-interacting
massless particles. At finite temperature, since thermal
eff'ects are introduced only through boundary conditions,
one can see that our formalism reduces to the statistical
mechanics of a gas of self-interacting scalar bosons or
non-Abelian gauge vector particles in the limit o."~0.

The Feynman rules of our string field theory are
therefore given by Eqs. (4.7) —(4.11). The rules are simi-
lar to the zero-temperature case.

Before closing this section we would like to comment
on the choice of the boundary term (2.44) for the free
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b„,, (t) = « (t, ,
(t)y„(0) & ) (4.13)

and

thermal propagator. Rewriting string field correlation
functions in the space representation of the zero-mode,
one defines the function

also ensures that one recovers correct dispersion rela-
tions for the relativistic particles which emerge from the
string theory in the zero-slope limit.

In the next section we apply the finite-temperature
Feynman rules obtained in this section to explicit com-
putations of string amplitudes.

b... (t)=« P, (0)P, (t)) ), (4.14)

where t is the string zero mode x (quantum-mechanical
tiilie).

The KMS condition states that, in order to describe
equilibrium thermodynamics, the following relations
should be satisfied:

6;...(t)=b„', (t —ip) (4.15)

and

b„;,, (t) =&..., (t +tP), (4.16)

H =Lo+const. (4.17)

The generator of c-number space-time translation is the
D-momentum zero mode:

(4.18)

This is why the zero mode
l pp l

appears in the Bogo-
liubov transformation matrices in (4.8) instead of the
generator L, o of reparametrization, which one might
have naively chosen to describe the density matrix
(Boltzmann factor) e ~ . This justifies the boundary
term (2.44) for our case. The form (4.8) for the propaga-
tor has been sho~n" to satisfy the KMS conditions
(4. 15) and (4.16). Moreover, the Hamiltonian (4.17) is a
Lorentz-invariant operator, a quality known to be bro-
ken at finite-temperature in ordinary field theory (our P
is not an invariant temperature). The "choice" lpp

in which P is the c-number inverse temperature. It is
important to note that the c-number (imaginary) shift of
the time zero mode cannot be obtained from reparame-
trization, that is, it is not generated by the string Hamil-
tonian

V. CQMPUTATIQN QF STRING AMPLITUDES
AT FINITE TEMPERATURE

In this section we apply the finite-temperature formal-
ism developed in the previous section to practical prob-
lems such as the computation of string scattering ampli-
tudes. As an explicit example we calculate the four-
tachyon scattering amplitude for the open bosonic string
in the tree approximation following the steps of a similar
zero-temperature computation by Thorn. We then in-
dicate how the finite-temperature Feynman rules carry
over to the first-quantized (BRST-)covariant formalism
and then check the equivalence of the results with the
second-quantized formalism. We also compute the one-
loop correction to the four-tachyon amplitude.

Following Thorn, the four-tachyon tree amplitude
for the s tdiagram [s-= —(k&+k2); t:——(k2+k3) ] ls
given as (modulo a symmetry factor)

A 4(s, t) =g Vi 2,&
~

hb, Va (5.1)

where Vq, & is the vertex function describing the cou-
J t

pling of two on-shell tachyons to intermediate string
states

l
a ), and b, b, is the propagator for such inter-

mediate states. A summation over the states
l

b ) and
l
a ) is implicit in Eq. (5.1). The list of states which con-

tribute to the first three poles of the amplitude (5.1) is
given as (a'=1 in Thorn's convention)

l
0;p ), M = —1 ,

ai'
( l0;p), M =0, (5.2)

a& ia'i l0p& a", lop) c i& i l0p&, M =1.
Corresponding propagators and vertices have been worked
out and are given by

Ab, (p,p') =
2 6(p+p')(2'), M'= —1,

p
2 (5.3)

aild

bb, (p,p')= 8lp+p')(2m-), M'=0,
P

+p)tLg o'v+ pv o'p pv
&b, (p,p') =

2 (2ir) 5(p+p'), 5(p+p')(2ir),4(p'+ 1) 2(p'+ 1)
5(p +p ' )(27r ),p2+

(5.4)

(5.5)

4
3&3

2
p —1

5(p+k, +k, ), M'= —1, (5.6)

—(k2 —k, )"6(p+k)+k2), M2=0,v'2 (5.7)



1788 Y. LEBLANC 36

p +]
[—,'(k2 —k, )"(k~ k—, ) —

—,', g"']6(p+k, +kz),

Vk
3&3

p +1 3&2
k~p 5(p+k)+kq), M =1, (5.8)

4 p +1

3&3 [—'„' ]5(p +k, + k2 ) .

Insertion of the propagators and vertices (5.3)—(5.8) into Eq. (5.1) yields [dropping (27r) factors and 5 functions
for energy-momentum conservation]

27' 1 1 16 t st s 45 139
A, (s, t)=g'( —,", )

' +(2+t+ —,'s) + —+2t+ —+—+ s+
16 —s —1 —s 27 2 2 8 64 64

1 + ~ ~ ~

—s+1
(5.9)

where the dots stand for contributions from higher-order massive states and where k; =1 in the units for which
a'= 1.

wt nmte temperature, according to the rules (4.7) —(4. 11), vertices and propagators now carry thermal indices.
Therefore, V. . . and 5, , are now replaced bysl 2 3 1 2

(5.10)

and
aP

(p p')~~. (p p')= Us(
I po I

)
q q . Ua(

I po I
) 5(p+p')5. ~ (2'r)

1 2 1 2 p +M —i~6 1 2
Z

1

(5.1 1)

in which 6 ~~ is 1 for a=f3=@ and zero otherwise. The amplitude (5.1) now becomes

k2ak1 (5.12)

where one should sum over repeated thermal and state indices. Since the physical amplitude is given by a; =1 for all

i, one gets

(5.13)

Recalling Eq. (2.33) for the Bogoliubov transformation matrix Us(
~ po ~

), the propagator (5.11) can be written as

PI pp I
~2 '

2~i5(p +M, )

&lpp

1

~lpp I
~2

e
(5.14)5(p+p')(2~) 6.

1Z

where 6, , may have a complicated tensor structure.
1 2

Given the above considerations for the finite-temperature case and recalling the zero-temperature expression (5.9)
for the four-tachyon amplitude, one obtains

27 1 2' 5(s + 1)
Plkp +kp

e
+ 2+t+—

2
1 2vri6(s)

Plkp +kp

Therefore,

16 t st s 45 139+ —+2t+ —+—+ s+
27 2 2 8 64 64

1 2vri 5(s —1 )

Pl kp +kp
(5.15)

A""(s,t)=A (s, t)+g PI kp +kp

where
a(s) =a's+a(0),

I 6(a(s) )+ [a(t)+ 1]5(a(s)—1)+—,
' [a(t)+ 1][a(t)+2]6(a(s) —2)+

(5.16)

(5.17)

in which o."=a(0)=1.
It is easy to see that the expression (5.16) together with (5.9) reproduces the first three poles of the amplitude
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A ""(s,t)=g B(—a(s), —a(t))+
co

[a(t)+ 1][a(t)+ 2] [a(t) + n ]6(a(s) —n )
n=p

(5.18)

where B(a, b ) is the Euler beta function:

1 (a)1 (b)
I (a +b) (5.19)

I

in which X"(z) is defined as

oo
1X"(z)=x"—ip" lnz+i g —(agz "—a" „z") .

n=1 n
(5.24)

We now show that the result (5.18) can be obtained
through the first-quantized (BRST-)covariant string for-
malism by letting the finite-temperature Feynman rules
of the previous section be carried over to the first-
quantized operator formalism. This in turn enables us to
obtain finite-temperature expressions for various string
theories (such as fermionic strings and superstrings) for
which a field theory has not yet been constructed.

In the operator formalism of string theory, ' vertices
and propagators are operators acting on the Fock space
of the string modes. Correspondence with the rules
(4.7)—(4.11) suggests the following:

V(k) =Z(k) W(k),
where

Z(k) ik.x

and

(5.25)

(5.26)

oo oo

W(k) = exp k g —a „exp —k g —a„
n =1

n

n =1 n

(5.27)

Inserting (5.24) into (5.23) and taking into account
normal ordering, the vertex V(k) is obtained as

and

V(k), a=P=5=1,
V(k) V ~)'(k) = —V*(k), a=P=5=2,

0 otherwise

(5.20)

Note that we chose the convention a' = —,
' and set

a(0)= 1 in the expression for propagators and vertices of
the first-quantized operator formalism. From now on we
shall stick to this convention. Rewriting the 1-1 matrix
element of the propagator (5.21) as

&(p)~b ~(p)
r

UB(
I po ) L I

. , ~
Ua(

I po I
)I p

—1 —iu'w6
(5.21)

where Lo is given by (3.15) and (3.16). The physical on-
shell four-tachyon amplitude in the first-quantized
operator formalism is then written as

A4 (s, t)=g (0;k)
I

v'"(k2)ikk" v'"(k3)
I
0;k4),

Plop I

1&"(p)=
pIPp I

1 I p 1 —i''6

1 1

pIPp I

1 Lp —1+jCX
(5.28)

Lp —2 —ta'6
X

which can also be expressed in the parametrized form

PIupl
b "(p)= f dx

p Plop I

where the tachyon vertex V(k) is given as

V(k) . ek X(1).

(5.22)

(5.23)

1 L p
—2+ ia'6

PIap I

X

the amplitude (5.22) is now rewritten as

(5.29)

r

oo
1 oo 1 Qo oo

Ax (x, t)=g (0 exP ke Z —a „exP —ke Z —a„k"(k~+ke)exP kq Z —a „exP —kq Z —a„p)
n =1 n

n =1 n
n =1 n

n =1 n

=g' f 'dx
P kp +kp

1 2

Plkp, +kp
1 2

a'(k
l + k2 ) —2 —i a'6

X
1 a'(k)+k2 j —2+ia'5

PI kp +kp

oo D —1 a"„X+ Q 0 ep —k,„
n =1 p=p

a „a~ CX —npx "" "exp k~3
"

Q
n

(5.30)

where we used the commutator (3.2) for the zero modes together with the Baker-Campbell-Hausdorff formula as well
as the energy-momentum-conservation law g, k,i'=0. Applying well-known coherent states techniques, the amplitude
is obtained as

A4 (s, t)=g f dx
0

Plkp +kp
l 2e

plkp +kp
l 2

—a(s) —ia'6 —1X
—eg(s)+ia s —1

( 1 )
'—a(t) —1

P I kp +kp (5.31)
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Recalling that

B(a,b) = f dx x '(1 —x )
0

one gets immediately

(5.32)

A4 (s, t)=g
P ko +ko

1 2e
Pl kp +kp

2

B(—a(s) i—a'6, a(t—) )— 1

Pl kp +kp
1 2 —1

B( a—(s)+ia'5, —a(t)) (5.33)

Expressing the Euler beta function as an expansion about the poles in the s channel and making use of the formula

2rti 5 (y ) = 1 1

y —i5 y+i5
one obtains finally

OO

A4 (s, t)=g B(—a(s), —a(t))+ „g (a(t)+1)(a(t)+2) (a(t) +n )6(a( s) —n )

(5.34)

(5.35)

a result which agrees with the tachyon amplitude (5.16)—(5.18) of string field theory (except, of course, for the
diferent choice of the slope parameter a').

Next we consider one-loop corrections to (5.35) making use of the first-quantized operator formalism extended to
the finite-temperature case. The planar one-loop four-tachyon physical amplitude is given as

B4 ( k&, kz, k3k&) =g f d p Tr[b '' V(k
&

)b, "V(k2 )b, "V(k3 )b, "V(k4)], (5.36)

where the integration over the loop momentum can be seen as the trace operation over the zero mode p". Making use

of the Baker-Campbell-Hausdorff formula and the conservation law g, k/'=0, the planar amplitude (5.36) is rewritten

as

B4 (k~, k2, k3, k4)=g f d p Tr[b, "(p, )W(ki )b, "(p2)W(k2)b, "(pi ) W(k3)h "(p4) W'(k4)],

where W(k; ) has been given in (5.27) and the momentum p/' is defined as

p/': p" (k, +—k~+— +k, , )" .

(5.37)

(5.38)

Now, inserting the parametrized form (5.29) for the propagator into Eq. (5.37) and given the fact that the trace over
the oscillator modes can be evaluated from the formula

Tr(g) f e
—

I I'(z
[

A [z), (5.39)

where
~

z ) is a coherent state, the amplitude (5.37) is obtained explicitly as

1 dx 1dx Pdx 3GX 4
B4 (k, , kz, k3, k4)=g d p

0 W (1—e
—& Is p,')(1 —e

—& lap, I

)(1—e

T (
"' nbn+b n n')-ly W

—&Iso, I

)(1—e
—& ls p4

dzdz', 2
4

X g g f e 'I z ~ exp
n =1 p=0 r =1

k„„a"„
p, " exp

n

~4
X1 X2 X3 S4 +

4 —~l&o, I (T4
e X X X1 i 4

i =1

—&lap. I -&lap. Ige e x ' . x ' x' . x1 l J 4

4

e
—~Is'o. I

—~I&o I

—~Iso, I

e Ic
~ ~ 0 X 0 ~

1 1 4

in which

—~ Imp& I i l~o2 I
—& IPp3 I ~ I Pp41 o

&
o& a3 o.

4 (5.40)
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Pr —X1X2 ' Xr, LO =p4, (5.41)

and

o. ;
—=e'p; —ia'5; .2 (5.42)

In the expression (5.40), the oscillator parts a „.a„of the mass operators have been moved to the right to create the
coherent state

~

w "z ).
Making use of the relation

4
e ' z Q exp

r=1

k„„a"„
p» exp

—k "p„" wz =e " I ' exp —g k„„k," (p —/p)"
n r(s

""'n

4

&& exp g k„„—p„"z*— —(w/p„)"z
n

(5.43)

which can be obtained from the general properties of coherent states, and recalling the formula for complex Gaussian
integration,

—c lz I
(az+bz )

7T C C
(5.44)

together with the contribution from the trace over ghost modes, '

Trsh(w " " " " )= g (1 —w") —= [f(w)]
n =1

the planar amplitude (5.40) takes the form

dX 1dX 2dX 3dX4
B4 ( k, , kz, k3k )4=g j d p f [f (w)] exp g k„k, ln(g'„, )

LU r (s
~ 1'p, I

1

—t lup2 I

1

—
) Pp&

1
&II'p4 I

)&(1—e '
) '(1 —e '

) '(1 —e '
) '(1 —e '

)

(5.45)

4
Ol O2 O3 04 a; e4X x&x~x3x4 + ge ' x~ x;' . . x4

i =1

—&lap. I

—&lapge e J X 0 ~ ~ X ~ ~ 0 X J ~ ~ ~

1 1 J 4

i =1
i&j,k, l

e ~ ~ e X ~ ~ o

1 1 4

—&lap, —&Iep, I

+e e e
13 pp —&leap

X[ X2 X3 X4 (5.46)

where we defined

c,"„+(w/c, „)"—2w"
ln(g„', )

—= —g n(1 —w")

in which

sr =Ps ~P» Xr+1 Xs

(5.47)

(5.48)

—&Isp I

the presence of Boltzmann factors e ' . One should
then perform the integrations over the parameters x;
first, leaving the integral a meromorphic function of po.
One is finally left with integrals over the spatial com-
ponents of the momentum. A more detailed analysis of
the result (5.46) will be given elsewhere.

O') Op O3 04In the zero-temperature limit, only the x1 x2 x3 x4
term survives in (5.46) and the momentum integration
can be performed explicitly (Gaussian integral) to yield
known results. ' At finite temperature, on the other
hand, the momentum integration is nontrivial because of

VI. SUMMARY

In this paper we presented a real-time finite-
temperature formalism for covariant bosonic string field
theory in the context of the path-integral quantization
and obtained the Feynman rules by making use of func-
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,tional methods. In such a formalism, temperature comes
into the theory through boundary conditions imposed
after having performed an effective doubling of the
string field degrees of freedom. This is a natural general-
ization of the thermo field dynamics formalism of ordi-
nary field theory as is easily recognized when one recalls
that string field theory can be viewed as the field theory
of an infinite number of particle species classified by
their masses. This is expressed mathematically by the
fact that the free string field generating functional (4.3) is
an infinite product over generating functionals of ordi-
nary fields. Our formalism is therefore expected to
reproduce the finite-temperature quantum field theory of
massless particles in the zero-slope limit. We also ar-
gued on the basis of the KMS condition that the
Boltzmann factors should be constructed from the gen-
erator of e-number time translation po, rather than the
Lorentz-invariant generator of world-sheet reparametri-
zation Lo. This also ensures correct dispersion relations
in the zero-slope limit.

We then proceeded to compute the four-tachyon
scattering amplitude in the tree approximation making
use of the rules obtained earlier and following closely a
recent computation by Thorn in the context of Witten's
model for bosonic string field theory. We further indi-
cated how the rules developed for covariant string field
theory carry over to the first-quantized (BRST-)covariant
formalism and reproduce the amplitude computed from
the string field theory model. We finally obtained an ex-
pression for the planar one-loop four-tachyon amplitude.

Although the lack of a canonical covariant formalism
is a setback when trying to build the statistical mechan-

ics of string fields on a more rigorous basis, we believe,
nevertheless, that the formalism presented here is con-
sistent and reproduces desirable features such as correct
finite-temperature field theories in the zero-slope limit.
Also, it shares similar computational efficiency with or-
dinary thermo field dynamics. That this is so is due to
the fact that the Feynman rules at finite temperature are
very similar to the zero-temperature case.

With the tools developed in this paper we can now
systematically address important physical issues such as
the existence of the so-called Hagedorn ' ' or max-
imum temperature in string systems as well as phase
transitions and extension to situations departing from
thermodynamical equilibrium. Given the physical
relevance of superstrings and their low-energy limits to
the problems of (super-) grand-unification, symmetry
breaking, and cosmic evolution, it may be very desirable
to compute the Gibbs free energy for such models as
well as consider the renormalization problem of the
string tension from a finite-temperature
renormalization-group approach. ' This is work for the
future.
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