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The problem of determining the energy of two spinor particles interacting through massless-
particle exchange is analyzed using the path-integral method. A form for the long-range interac-
tion energy is obtained by analyzing an abridged vertex derived from the parent theory. This
abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-
integral formalism for calculating the energy of the radiation field associated with this abridged
vertex is developed and applications are made to determine the energy necessary for adiabatic sep-
aration of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The
latter theory is shown to be consistent with confinement via infrared slavery.

I. INTRODUCTION

It is the foundation of classical electrodynamics that
the energy required to separate two static electric
charges is inversely proportional to the distance between
them. The separation must take place adiabatically even
in the classical theory to avoid the complication of radi-
ated energy. The version of electrodynamics consistent
with quantum effects is quantum electrodynamics. Of
course, in the Coulomb-gauge formulation of quantum
electrodynamics, the Coulomb interaction is manifestly
present in the effective Hamiltonian used to calculate
transition elements. However, the presence of the
Coulomb interaction is obscured in the more commonly
used manifestly covariant formulations of quantum elec-
trodynamics. ' There the Coulomb interaction is present
in the long-distance behavior of the photon propagator,
which is the relativistic generalization of the Coulomb
potential. The form of the photon propagator depends
crucially on the masslessness of the photon.

Quantum electrodynamics is a unique theory in the
sense that its classical limit was known before the quan-
tized version was formulated. Most of the currently top-
ical field theories, including quantum chromodynamics,
do not enjoy this advantage. As a result, the form of the
forces transmitted by the nonlinear particle exchange
has remained problematic, and therefore, the spectra of
these theories have remained unknown. Of course, great
strides have been made through lattice gauge computa-
tional methods, but these have not explicitly revealed the
mechanism of confinement in the manner an analytical
approach would.

The purpose of this paper is to present another ap-
proach for extracting the long-distance behavior of a
theory when a massless particle is present. The method
is a direct descendant of the technique developed by
Faddeev and Kulish for removing the infrared diver-
gences from quantum electrodynamics. Their approach
was to find a vertex which emulates the standard vertex
of quantum electrodynamics only in the long-distance, or
low-momentum, limit. This was accomplished by con-

straining the standard vertex to induce no change in mo-
menta of the spinor particles during a scattering process.
When S-matrix elements are calculated with the
abridged vertex, the conservation of energy forces all ra-
diated photon lines to carry zero momentum.

The abridged vertex analyzed by Faddeev and Kulish
for quantum electrodynamics has the property that it
can be exactly diagonalized. The charged eigenstates of
this amended Hamiltonian are found to be dressed by
off-shell intermediate photons in a manner sufficient. to
create the correct classical magnetic and electric fields
familiar from solving the classical form of Maxwell's
equations with constant velocity point sources. The pur-
pose of their analysis, and that of subsequent authors,
was to develop a set of basis states, the eigenstates of the
abridged Hamiltonian, for perturbative analysis of the
full quantum-electrodynamic vertex. It was demonstrat-
ed that use of these states renders quantum electro-
dynamics perturbation theory free of infrared diver-
gences by altering the spinor propagator to possess a cut
rather than a simple pole. It was not the object of previ-
ous authors to examine the form of long-range forces
present in the abridged Hamiltonian. However, it
should be apparent that the removal of infrared diver-
gences is intimately related to the presence of the
Coulomb interaction, however well hidden, in quantum
electrodynamics.

It is the intent of this paper to generalize this method
so that the possible structure of long-range forces
present in the abridged version of the theory may be as-
certained. This generalization is most easily accom-
plished and is most transparent in application in a func-
tional formulation. However, the motivation for this ap-
proach stems from canonical quantization and perturba-
tion theory, although the final result is nonperturbative.
The idea is straightforward, and involves constructing a
vertex for the theory under consideration which ernu-
lates the full vertex in the low-momentum limit. This is
accomplished by arbitrarily constraining the massive ex-
citations of the theory, i.e., those excitations which begin
with a bare mass in the action, to suffer no deviation in
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energy-momentum through the vertex, while the mass-
less excitations are allowed to range over all values of
momentum. In effect, this vertex describes the radiation
of massless particles by a point source moving at con-
stant velocity.

If this vertex has a trivial S matrix for the massive ex-
citations, a fact which may be determined perturbative-
ly, then it will be diagonalized, at least approximately.
The massive eigenstates found from the diagonalization
process are used to determine the energy of the radiation
field which is dressing these states. It will be seen that
this energy is a function of time, and this allows the rela-
tion of energy to distance of separation and, therefore,
the calculation of the energy of interaction. The diago-
nalization will be performed using functional techniques,
since these most illuminate the relation of this approach
to classical solutions of the equations of motion in the
presence of point sources. By looking at adiabatic pro-
cesses, i.e., those involving only very-low-velocity point
sources, retardation effects may be ignored and static
Green's function techniques may be used to evaluate the
path integral. The importance of these solutions to
problems such as confinement has been discussed previ-
ously by Adler and Piran and Baker, Ball, and Za-
chariasen.

The outline of the paper is as follows. In Sec. II the
method for constructing the abridged vertex is present-
ed, and the motivation is given within an operator for-
malism. The path-integral form for calculating the ener-
gy of the particle states is then developed. In Sec. III
manifestly covariant quantum electrodynamics is evalu-
ated to demonstrate that the technique yields the famil-
iar Coulomb interaction. In Sec. IV an SU(2)-invariant
Yang-Mills theory is evaluated by the non-Abelian ex-
tension of the quantum electrodynamic vertex, and it is
shown that a Coulombic potential is not allowed. In-
stead, to the order of approximate diag onalization
presented in this paper, the theory is consistent with the
formation of Aux tubes between "color" singlets, and
this gives the radiation field an energy of interaction
consistent with confinement via infrared slavery.

II. METHODOLOGY

Throughout this paper consideration is limited to
theories with massive bisponor field(s) interacting
through massless vector fields. In Sec. III quantum elec-
trodynamics will be analyzed, while in Sec. IV the gen-
eralization of these results to non-Abelian fields will be
presented.

The motivation for the technique used in this paper is
most readily given by a review of the Faddeev-Kulish
analysis of quantum electrodynamics. When written in
configuration space the standard vertex of quantum elec-
trodynamics takes the form

Hr — d'x eA„%@~% . (2. 1)

This theory is usually evaluated by invoking an
interaction-picture representation. In effect, the in-
teracting fields of (2. 1) are replaced by free fields (modu-
lo a choice of gauge) and a perturbation series is defined
to calculate S-matrix elements. In the Feynman gauge
the free fields have the momentum-space forms

d'k m%(x)= f g [b, (k)u(k, s) e
(2m. )

e„=k'+m '
+d, (k)U(k, s )e'"'),

(2.2a)

and

d k
&&(&)=f 3&2 (2cok )

' [a„(k)e '""+a„(k)e'""],
(2.2b)

COk =k

where b, and d, are electron-positron operators and a„
is the free photon operator. From (2. 1) the infrared ver-
tex first discussed by Faddeev and Kulish can be ob-
tained by inserting the forms (2.2) into (2.1) and con-
straining the spinor fields to undergo no deviation in
momentum as a result of the interaction. For such a
constraint the vertex becomes

H, (t) =f (2cok )
'~ a„(k)exp (t t ) +a„(k)exp ——(t —t ) p(p),ikp ikp

(2~)'" (2~)' (2.3)

where

2

p(p)=e g [b, (p)b, (p) —d, (p)d, (p)],
s=—1

(2.4)
kp =COg—

k p
Fp

The presence of the time t is merely an artifice for
placing all point charges at the same position at the time
t . This will become clearer when (2.3) is given a
configuration-space representation.

The vertex (2.3) does not commute with the total
momentum, and so the vertices do not conserve total

momentum. However, it is not dificult to see that any
S-matrix element calculated using the vertex (2.3) will be
trivial in the spinor sector. The constraint on the
spinor-field momentum results in an absence of scatter-
ing for asymptotic on-shell fermions, and the vertex de-
scribes spinor particles traveling at constant velocity.
However, these same constant velocity spinors may still
radiate through the vertex (2.3). It follows from the
form of (2.3) that any radiation matrix element for a
photon with three-momentum k from a spinor with
three-momentum p will be prefaced by a 5 function of
the form 5(kp/e~). It is clear that this 5 function leads
to the constraint on the three-momentum of radiated
photons of k=O. It follows that an asymptotic initial
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state with no photons can overlap only with outgoing
states containing additional zero-momentum photons. It
is tedious, but straightforward, to show that the vertex
(2.3) cannot defeat this limitation to zero-momentum
asymptotic photons in higher orders. In effect, all radi-
ated asymptotic photons are accompanied by a 6 func-
tion of the sort mentioned. Thus, the vertex (2.3) de-
scribes the radiation of zero-momentum photons by con-
stant velocity spinors, but in a manner similar to the
original vertex (2.1). Diagonalizing such a vertex pro-
vides one possible way to study the infrared or long-
distance behavior of the original theory. While this vari-
ant of the conservation of energy allows only zero-
momentum photons to escape the "scattering" region
into the asymptotic region, intermediate off-shell pho-

tons are not similarly constrained, and thus the time
dependence of the vertex is not moot. In effect, charged
eigenstates will have a cloud of virtual off-shell photons
possessing a net energy, and this will be reflected in the
fact that the expectation of the photon field, in the pres-
ence of spinor fields, will develop a nontrivial form at
finite times.

When expressed in configuration space the vertex (2.3)
takes the form

Ht(t)= f d x d'y d z +, (x, t)V,b(x, y, z, t)+b(y, t),
(2.5)

where the function V,b(x, y, z, t) is given by

V,b(x, y, z, t )=, , A„(z, t )6' z — (t t )—
(2~) ep

(2.6)

H(t)=HO[A„, % ]+Ht(t)+ f d3x 6m%'0', (2.7)

The A —are the standard spinor projection operators.
Form (2.5) makes it apparent that the Hamiltonian for

the system described by (2.3) is time dependent since V,b

itself is time dependent. A simple physical argument re-
veals why this must be so. Since the spinor particles are
constrained to move at a constant velocity their kinetic
energy remains the same. However, the energy of the
radiation field changes to reflect the fact that the vertex
does not conserve total momentum. The change in ener-

gy can be related to the spinors' relative position. The
vertex (2.3) cannot therefore describe a closed system,
and the Hamiltonian must be manifestly time dependent.
In passing, it is to be noted that the eigenstates of this
Hamiltonian can serve as asymptotic states only if the
change in energy of these eigenstates tends to zero for
sufficiently asymptotic times, a condition which will be
shown to be satisfied for the infrared quantum electro-
dynamic vertex in the next section. However, for the
purposes of this paper, this time dependence of the ener-

gy does not present a difficulty since the object is pre-
cisely to calculate the change in energy necessary to
separate the spinor particles. Upon examination of (2.6)
it becomes apparent that the vertex in configuration
space describes a point source moving in such a way that
it is at the origin at t=t ~ It follows that all fields
whose expectation values are calculated will describe
particles which have this property since their time devel-
opment is given by the same Hamiltonian.

It is assumed that the form of the vertex remains un-
changed when written in terms of the interacting fields.
This will involve both wave-function renormalization
and mass renormalization of the spinor field in the case
of quantum electrodynamics, and wave-function renor-
malization for the gauge fields in the non-Abelian case
(see Sec. IV). The full Hamiltonian H(t) for quantum
electrodynamics, to be analyzed in Sec. III, is written

H(t) ip, t)=E (t)
~ p, t),

where

i p, t ) =%(t)U(t, t )
i
p), %(t)= (p i

U(t, t )
i p)

{2.8a)

(2.8b)

In (2.8a) H (t) is the full Hamiltonian written in terms of
free interaction-picture fields evaluated at the time t,
while in (2.8b) the state

~
p) is in the Heisenberg pic-

ture, which has been chosen to coincide with the interac-

where Ho is the free Feynman-gauge Hamiltonian. The
Feynman gauge is chosen so that the method being
developed may be demonstrated on a form of quantum
electrodynamics which does not manifestly exhibit the
Coulomb interaction.

Since the spinor particles are being modeled as point
sources it will be assumed that the spinor states can be
described by a Fock space. That this is possible must be
determined self-consistently. No assumption will be
made regarding the radiation field states. While the
form of the interaction (2.5) was motivated by a Fock
decomposition of the radiation field, it will be assumed
that the form of the interaction is unchanged even if the
radiation field were to obey a nonstandard equation of
motion or to possess unusual boundary conditions. Such
an assumption is usually made in the opposite sense in
field-theoretical analyses; the nonperturbative aspects of
a theory are assumed to be retrieved by a summation of
infinite numbers of Feynman diagrams. Here it is as-
sumed that a nonperturbative solution subsumes the per-
turbation series which motivated it. However, the
reader should bear in mind that the argument regarding
the limitation to radiation of zero-momentum particles
may break down if non-Fock decompositions of the radi-
ation field are made.

In the interaction picture the spinor eigenstates p, t )
satisfy the eigenvalue equation, suppressing spin argu-
ments,
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tion picture at t=t . U(t, t ) is the evolution operator
in the interaction picture, and has the representation

The energy E~(t) of the state (2.8) at time t is then given
by

U(t, t )= T exp i— dq. Ht(r) (2.9) E (t)=N(t)(p
~

H(t)U(t, t )
i p) . (2. 1 1)

(p
~
p) = f d'x&d'xzu~(xi, t ) u~( xz, t )

X(0
~
0(x„t )% (x„t )

~

0)

= f d x u
~(

xt )u~( x, t )=5 (0) . (2.10)

where Hz is expressed in terms of the interaction picture
fields. The Heisenberg picture spinor states will be given
a 6-function normalization, as opposed to the normaliza-
tion of Ref. 6. If uz(x) is the normalized free bispinor
solutions of the massive Dirac equation, then, in terms
of the interaction picture fields,

For maximum clarity expression (2.11) will be convert-
ed into a path-integral form. In order to do this (2.11)
must be written completely in terms of time-ordered
products of operators since the path integral generates
time-ordered products. However, this must be done in
such a manner that the act of time ordering simply
reproduces the sequence of operators which appears in
(2.11). Taking advantage of the form of the functions
u~(x) and the fact that the interaction picture field time
development is the same as the free field, it is straight-
forward to show that the time-ordered product

E~(t)=N(t) f d'x, d'x, u~( x, , t) u~( x, , t )(0
~

T[%( x, , t)H(t)+'( x, , t )U(t, t )]
~
0) (2.12)

reproduces the operator sequence originally present in
(2.11). Of course, a similar form may be given to the
normalizing factor N(t). The two-particle states may be
evaluated as well, differing only by the insertion of extra
fields at the times t and t, respectively. Since the sepa-
ration of the particles in the two-particle state begins att, (t —t ) can be related to the distance of separation
of the particles through the relative velocity of the parti-
cles.

The methods for converting the matrix element of the
time-ordered product appearing in (2.12) into a function-
al integral are well known. The most straightforward
technique is to use coherent states, written in terms of
the interaction picture fields, to evaluate matrix ele-
ments. Such an approach uses a functional projection
operator of the form

f [dA„d+ d+]
~
A„,V, +,t)( A„,V, +, t

~

=1, (2.13)

where [dA„d4' d4] represents an integration over the
modes of the fields. Whether this measure can be made
sensible or even exists for a given theory is a difficult
question which continues to draw attention. '

Throughout the remainder of this paper it will be as-
sumed that this measure is defined in configuration space
by partitioning the space into small cells and treating the
field strengths over the cell at the time t as a variable of
integration. There is no known demonstration that this
is a more general measure than integrating over all pos-
sible Fock modes, although the two are equivalent when
a continuum of states is available to the theory.

The matrix element is evaluated by partitioning the
time interval (t t ) int—o arbitrarily small elements of
duration At and inserting the coherent-state projection
operator at the respective times. It follows that, for the
one-particle state of momentum p,

N '(t)Ep(t) = fd'x, d'x, u~t(x„t )u~(x„t )

X f [d&„d+ d+](0~ +(x, , t)H(t)U(t, t bt)
~ &„,Pt, +, t —&t)—

X f [dA„'d% d%']U(t +At, t )+ (x2, t )
~

3„',l, l', t )(3„',Pt, %', t ~0) . (2.14)

A similar expression follows for the two-particle state. It is not difficult to show that, by virtue of At being
infinitesimal, each individual matrix element takes the form

(A„,%, Il, t Nht
~

U(t —Nht, t —(N+—1)bt)
~

2„',+,4', t —(N+1)bt )

=exp iht f d x L[A„,+,+, t Nbt]—
where L is the Lagrangian density of the theory. Therefore, in the limit, the Hamiltonian matrix element for the
two-particle state of momenta p and q is given by

N '(t)E(t)= fd x& d x4u~(x&, t) uq(x4, t )

X f [d&&d'P d'0]'P( &, tx)%'( &, xt )H(t)'0 (x3, t )'0 (x4, t )exp i f dt' f d3x L(x, t') (2.16)
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where the measure now runs over all space-time ele-
ments between t and t. Clearly, the normalization can
be given a path-integral form as well, and would differ
from the right-hand side of (2.16) solely by the absence
of the Hamiltonian. Result (2.16) is the starting point
for the determination of the energy of interaction be-
tween two spinor particles and will be evaluated for
several theories in Secs. III and IV.

d3
4(x, t)= fd'x' [A+(p)e' '"

(2it)

+A —
( )

—iP (x —x')]

—ic (tj
Xyoe ' 4(x', t),

where the phase Cp(t) is given by

(3.1)

III. QUANTUM ELECTRODYNAMICS Cp(t)= f d z f dt'e A„(z, t')S(t —t')

In both this section and the following, several applica-
tions of the method developed in the previous section
will be made. Consideration will be limited to calculat-
ing the energy of states with two charged particles. One
will be chosen to be at rest, while the other will possess
an infinitesimal momentum p. The charges will be arbi-
trary, and this is reflected by allowing either particles or
antiparticles in the eigenstate. While the formula (2.16)
is expressed for particle states, a similar expression for
antiparticles is obtained by replacing + by 0 and u by
U.

The vertex (2.5) has already been developed for quan-
tum electrodynamics. For the case of two particles the
Hamiltonian matrix element is given by (2.16). The first
step in evaluation of (2.16) is to decouple the spinors
from the gauge field via the transformation"

X5' z — (t' t )—
Ep

and S(t t') is th—e standard step function given by

(3.2)

1 if t)t',
0 if t &t'. (3.3)

It is not diScult to show that both the measure of the
path integral and the vertex are form invariant under the
change of variables (3.2). However, this transformation
decouples the spinor field from the gauge field, leaving
the spinor fields with an effectively free action. Setting
the momentum q=O, using the fact that the phase C (t)
vanishes at t =t, and the properties of the A —,it fol-
lows that expression (2.16) becomes

'E(t)= f d'x, d'x4up(x„t) u (0x4t ) f [dA„d+tdC ]4(x„t)C&(x„t)H[A„,@,t]

X@ (x3, t )N (x4, t )e ' ' exp i f dt' f d'x Lo

(3.4)

H =Ho[@]+Ho[A ]+Ht[ A, C ]
where

Ho[4]= f d x[i4+@+5m+4] .

(3.5)

(3.6)

whel e L p is the free action in the Feynman gauge for
both the spinor field N and the gauge field A„. As a re-
sult of the transformation it is trivial to integrate the fer-
mion variables completely out of the path integral. In
order to demonstrate the result it is convenient to split
the Hamiltonian appearing in (3.4) into three pieces. In
terms of the new variables the Hamiltonian is written

The second and third terms in (3.5) are the free
Feynman-gauge radiation field Hamiltonian and the
abridged interaction Hamiltonian (2.5), respectively.
The second term in (3.6) is a mass renormalization
present to control divergences in the radiation field ener-

gy, for which the necessity will become apparent shortly.
The mass renormalization term is also present in the
bare mass in the Lagrangian.

The phases C (pt) of the transformation may now be
absorbed into the exponential argument of the path in-
tegral where each acts as a point source for the gauge
field. The Hamiltonian matrix element then becomes

N 'E(t)= f d x) . d x4up(x, , t) . uo(x4, t ) f [dAqd@ d&]@(x„t)@( xt2)H[ A@,t]
tX@ (x3, t )@ (x4, t )exp i dt'd x(LO+j„A") (3.7)

where j„is given by with Q~ and Qz the respective charges of the (anti)spinor
particles with momentum p and momentum zero, re-
spectively. From examining (3.8) it is obvious that j„
acts as two classical point sources: one stationary at the
origin, the other moving away from the origin with the
velocity p/e~.+ Q25„OS(t t')5 (x), —(3.8)

j„(x,t, t')=Q, "S(t—t')5' x — (t' t )—
Ep
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The remaining path integral, solely a functional of the
gauge field, may now be evaluated exactly. The gauge
field picks up an expectation value due to the presence of
the point charges despite there being no external pho-
tons explicitly present in the initial state. This expecta-
tion value is precisely the classical field of the point
sources and is most easily evaluated in the adiabatic lim-
it in which p is infinitesimal ~ In this approximation the
magnetic field, proportional to p, will be suppressed. In
addition, the time dependence of the radiation field, also
proportional to p will be suppressed as well. The upshot
of the adiabatic limit is to cause 3 p to be the only
relevent component of the vector potential, and in that
limit it is approximately static, i.e. , Ap =0. The remain-
ing effective Lagrangian of the gauge field is then given
by

L,„,= ——,'0; Ap0; Ap+ jp ~p . (3.9)

Ap( xt) = Q2

/x/
(3.11)

which does indeed satisfy the restrictions of the adiabat-
ic approximation as long as p=0. It is important to
note that the boundary conditions placed on Ap deter-
mine its form, and this will in turn determine the form
of the spinor interaction energy. The Coulomb solution
to (3.10) arises from demanding a solution over all space.

After integrating out the spinor variables and using
the normalization N '=[6 (0)], it is a textbook exer-
cise' to evaluate the radiation field Hamiltonian, which,
in the adiabatic limit, is dominated by the static piece

(H„„„&=jd'x,'a, ~,a, ~, . (3.12)

Inserting the solution (3.11) into (3.12) it follows that

(a„„&= QiQz

(t t )—
Ep

d3+(Q('+Qi') f, . (3.13)

Clearly the second term is divergent. It may be removed
by cutting off the lower limit of integration over the ra-
dial coordinate at R0 (equivalent to giving the charge a
classical radius) and removing the Coulomb self-energy
with the mass counterterm

e6m=-
Rp

(3.14)

In expression (3.14) the small-p limit of the mass coun-
terterm has been used. For finite p the magnetic field
contribution to the self-energy must also be canceled,
and this is automatically satisfied by the form of the

It is obvious that this Lagrangian will cause the path in-
tegral to oscillate about the classical solution of the
equation

AAp ———jp . (3.10)

Equation (3.10) possesses the familiar Coulomb potential
solution

mass counterterm. The final result is that the energy of
the radiation field associated with the two-particle state
is given by

E„,g(t) = QiQz

(t t—)
Ep

(3.15)

Clearly,
~
(p/e~)(t t )

~

—is simply the distance of sepa-
ration of the two charges as a function of time. Thus,
the standard result of the Coulomb interaction has been
recovered in the adiabatic limit from the abridged in-
frared vertex of the theory.

IV. SU(2) YANG-MILLS THEORY

The techniques applied to QED in the previous sec-
tion can be generalized to a non-Abelian gauge theory.
The basic idea is to solve, at least partially, the theory
defined by the quadratic piece of the Yang-Mills La-
grangian plus a non-Abelian generalization of the
spinor-gauge vertex (2.3). Considerable work' has been
focused on the problem of cancellation of infrared diver-
gences in non-Abelian theories via a Bloch-Nordsieck
procedure. It is not the intent of this paper to reexam-
ine this problem. Instead, attention will be placed on
the approach to infrared cancellation advocated by Nel-
son and co-workers, ' but solely in the context of under-
standing the classical field configurations associated with
the generalization of the vertex (2.3).

The process of decoupling the spinors from the gauge
fields consists of a series of nonlocal SU(2) gauge trans-
formations on the spinors, and this process generates
phases for the spinor fields which are nonlinear in the
gauge fields. In turn, these phases may be absorbed into
the action of the path integral to create an effective
gauge field action, as was done in the previous section
for QED.

It will be shown that the equations of motion for the
gauge fields derived from this effective action do not al-
low a Coulombic solution over all space as in the case of
QED. Instead, to the order of approximation evaluated
in this paper, these equations of motion are consistent
with an idealized (infinitely thin) flux-tube solution for
the gauge fields, and this flux-tube solution possesses
finite energy only in the presence of SU(2)-"color" sin-
glets, and then is proportional to the distance of separa-
tion.

These results are obtained without consideration of
the nonlinear terms in the gauge fields which are already
present in the Yang-Mills Lagrangian. It will be seen
that their neglect is consistent with the adiabatic limit,
but this neglect is conceptually troublesome since their
contribution is so critical to the renormalization-group
demonstration of asymptotic freedom. Of course,
asymptotic freedom is at best only an indication that in-
frared effects may cause confinement, since its demon-
stration depends on perturbation theory, which in turn
will be valid only in the high-momentum or non-
adiabatic limit. Nevertheless, it is generally accepted
that the terms nonlinear in the gauge fields are the
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d k

( 2~ )
3 /2

( 2~ k )
1 /2

X a„' (k)exp i (t —t )
. kp

+a„'(k)exp —t (t —t ) p'(p),

(4.1a)

where

2

p'(p) =o.'b g [b, '(p)b, (p) —d, '(p)d, '(p)],
s =1

(4. lb)

where o' is the ith Pauli spin matrix. Such a vertex has
already been considered by Nelson and co-workers. '

They demonstrate that dressing the spinor states with a
pseudounitary operator derived from this vertex renders
the non-Abelian theory infrared finite at least to O(g )

in the coupling constant. Again, the form (4.1) is ob-
tained from the full vertex of the standard theory by first
assuming free interaction picture fields and then con-
straining the spinor momenta to be unchanged by the
vertex. As a result, any external gauge field lines gen-
erated by this vertex will necessarily carry zero momen-
tum.

In configuration space (4.1) takes the form

H&(t)=g fd'x d y d'z +' (x, t)

X V'p(x, y, z, t )%p(y, t ), (4.2)

where V~& is given by

source of confinement. There are several plausible but
unverified mechanisms which may allow the approach of
this paper, and its neglect of the original nonlinear
terms, to be reconciled with the renormalization-group
arguments. It is possible that the nonlinear terms which
are generated by decoupling the spinors mimic, in a
low-energy sense, the dynamical effect which the original
nonlinear terms bring to the renormalization-group
equations. On the other hand, it may be that a realistic
Aux tube, i.e., one with spatial extension and depen-
dence, would arise from the inclusion of the original
nonlinear terms, or some part of them, in the action
which serves to define the basis states. This brief discus-
sion serves only to point out that there are difficult and
currently unanswered questions which merit further con-
sideration.

The starting point is the generalization of the QED
vertex (2.3). Such a vertex takes the form

V'p(x, y, z, t) = f A„'(z, t)o', q
(2m. ) e~

Xfi' z — (t t—)

X [&+ (p)e'~'"

+A (p)e '~'* "']y p . (4.3)

L =L m~tteI +L ggUge +L ghost +LI
where

L „„,=i I&'(y"a„+im )4',

L,„s,——,'Tr(F„„F"')——,'(a" A „')—

F„.=(a„A', a„A'„ge'&"A—& A.")~—',
L, „„,=a"q'(a„q'+ge'&"&&A „" ),
f d'x L, (x, t)= —g fd'x d'y d'z%' (x, t)

X V'p(x, y, z, t)%p(y, t),

(4.4)

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

so that the standard vertex has been replaced by (4.2).
Form (4.4d) is the Faddeev-Popov ghost Lagrangian in
the Feynman gauge.

As before, the expectation value of the Hamiltonian in
the two-spinor state is given by

Clearly, forms (4.1) and (4.2) coincide only in the event
that all fields are given a Fock decomposition in the
Feynman gauge. Therefore, (4.1) can serve only as a
motivation for the form (4.2). This must certainly be
true if confinement is to be generated by (4.2), for in that
case a Fock decomposition of the fields is a poor, if not
completely incorrect, choice of basis states in the gauge
sector. It will be assumed that (4.2) has validity as the
infrared piece of the interaction above and beyond the
Fock-space form (4.1). This was certainly true in the
Abelian case of the previous section.

It is possible to motivate (4.2) in a somewhat more
general manner. It is commonly believed that the spinor
particles will remain pointlike, i.e., Fock, even when
confined. Under such an assumption it is easy to see
that (4.2) will allow only the zero-momentum part of the
gauge field to contribute. It will be seen later in this sec-
tion that the spinors will remain Fock-like up to a phase
generated by the decoupling transformations.

The theory to be examined is described by the La-
grangian density

'E(t)= f d x, d x4u~(x), t) . u (x4, t )f [dA„d+ d4&]%'(x), t) I& (x2, t)H(t)

X%" (x, , t )'I& (x4, t )exp i f dt' f d'x L(x, t') (4.5)
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In order to evaluate (4.5) the spinors are decoupled from
the gauge fields as in the Abelian case of Sec. III. This
is accomplished by an infinite series of gaugelike trans-
formations on the spinors. In order to give an explicit
representation for the transformations the gauge fields
are given the basis representation

Ap Ap —iAq
(4.6)

P P P

iII'(x t)= fd x' [A+(p)ed m

(2m. )

+~—
( } ip (x —x')]

Xy'U. b(8 p t)C'(x', t), (4.7)

The spinors are then subjected to the change of variable
in the path integral given by the unitary transformation

where the A* are defined as in (2.6). The matrix
U(8, p, t ) is given by

—i 81 —i 81e (cosgqcos83 i sin—82sin83) e ( —sing&cosgi —i cos83singi)
U(g, p, t )= i8)

e (sin83cosgi —i cos83sin82)
i8)

e (cos82cos83+i singzsin83)
(4.8)

8,(p, t)= f d z f dt'g
Ep

A „'(z, t ')S(t t '}—
&&5' z — (t' t )—

Ep
(4.9a)

82(p, t)= f d z f dt'g [cos(28i)A„(z, t')
Ep

+sin(28, ) A„(z, t')]

The 0; are functions of p„A z, and t, and have the expli-
cit representations in the basis (4.6):

matrix which decouples A„', and leaves a residue of the
phase 0i in the off-diagonal elements of the gauge field
matrix after the transformation. Of course, this aspect
of decoupling the spinors was absent in the Abelian case
of Sec. III. The matrix (4.8) is then the product of an
SU(2) transformation which decouples the spinors from
A „' with another which would decouple the spinors from
the forms of A„and A&. However, because of the SU(2)
algebra, the fields A& and A& have been altered by the
application of the first transformation, and the forms of
(4.9b} and (4.9c) refiect this. Of course, this second
transformation decouples the gauge field only to O(8),
or, equivalently, to O(g). Under the action of the trans-
formation (4.7), the vertex (4.2) becomes

Ht(t)= f d x d y d z N' (x, t)V,'b(x, y, z, t)@, (4. 10)
XS(t t'}5' z — (t' ——t )

E'~

(4.9b)

83(p, t )= f d z f dt'g [cos(28, )A„(z,t')
Ep

—sin(28, ) A „(z,t')]

XS(t —t')5' z — (t' t )—
(4.9c)

In expressions (4.9b) and (4.9c) the phase angle 8i is a
function of p and t', but is otherwise identical to (4.9a).
It is apparent that (4.8) has the form of a product of
finite SU(2) transformations. The phases 82 and 83 are
nonlinear in the gauge fields due to the appearance of
the phase 0& in their definition. This nonlinearity is
present for the following reason. Expressions (4.8) and
(4.9) were determined by first decoupling the color-
diagonal piece of the interaction, involving A&. Howev-
er, the matrix in the gauge fields, appearing in the
definition (4.3) of the vertex, does not commute with the

where V' is a complicated function of the 0;, but is
O(8').

Clearly, the process of decoupling the spinors from
the gauge fields could be continued through an infinite
series of transformations similar to (4.7). Such a process
quickly generates a complicated set of nonlinear phases
for the spinors. For the sake of simplicity the diagonali-
zation procedure will be terminated with (4.7). To be
consistent with this termination solutions for the A „will
be sought which render 0; small. Such a restriction will
allow the remaining interaction (4.10), and all the trans-
formations necessary to decouple it, to be ignored. To
see this it need only be noted that the spinor variables in
the path integral may be formally integrated keeping the
action term (4.10). Doing so gives the fermionic deter-
minant det(g+ V') where B is the free Dirac operator
and V is the potential appearing in (4.10). This deter-
minant can be given a power-series representation in the
0; whose first nonvanishing term in the 0; can be shown
to be O(8 ). The phases induced by the change of vari-
able (4.7} are clearly O(8). Since a solution for small 8
is being sought, the O(8 ) terms, and V', will now be
suppressed for consistency. To this order of approxima-
tion the spinors are therefore decoupled, and the new
spinor variables N are governed by a free spinor action.
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gA @=Z3gA p

(4.11a)

(4.11b)

It is now possible to calculate, in the small-0 approxi-
mation, the energy of a color singlet, where one particle
is held fixed and the other adiabatically removed. In
terms of the original spinor variables the Heisenberg
state is given by

p, q=0) = — d x1d xu2~(,xt )up(x2 t )

Xe' 1I1" (x1, t )1P (x, , t )
~

0), (4.12)

A second important point is that the gauge fields and
coupling constant appearing in the definitions of the 0;
and in the action are understood to be bare quantities.
Normally wave function and coupling constant renor-
malizations are associated with ultraviolet divergences.
However, here it is assumed that the renormalization
constants for the infrared-finite theory factorize into two
pieces: one to remove the infrared divergences of the
vertex (4.2), the other to remove the ultraviolet diver-
gences of the full vertex which are familiar from pertur-
bation theory. Such a procedure has been examined pre-
viously by Stapp' for the spinor propagator in QED. It
is clear that the photon field in QED requires no wave-
function renormalization for the infrared theory of Sec.
III. However, the non-Abelian fields of this section re-
quire it, and it must be done in a manner consistent with
the Slavnov-Taylor identities. Denoting bare quantities
with an overbar and the renormalized quantities
without, it follows that

where e' is the Levi-Civita tensor which guarantees an-
tisymmetry on the two color indices available for SU(2).
The spin arguments will be suppressed since they have
no dynamical content. The evaluation of the energy is
greatly simplified by using the following facts. First, the
incoming state (or, alternatively, the field at the time t )

is left unchanged by the transformation (4.7) since all the
0; vanish at t=t . The state is thus given by

lp q —0)= — d x1d x2 u(x1, t )up(x2 t —)
2

Xe'1I' (x, , t )4' (x, , t )
~

0)
(4.13)

after the transformation. Second, since the &0's are be-
ing treated as free spinor fields after the transformation,
when integrated against the external free spinor func-
tions the fermionic variables' phases develop the same
momentum dependence as the external momenta, i.e., p
and 0. Thus, when the transformed spinor variables are
integrated out of the path integral, apart from a trivial
spinor determinant, the only residue will be the phases
on the respective fields at the time t, and only the subset
which resulted from contractions against the in state
(4. 13). This is, of course, identical to the Abelian case of
Sec. III, except that the phases are nonlinear, and the re-
sults remain an approximation, whereas the Abelian case
gave an exact result. In this approximation the normali-
zation of the two-particle state is N '=[|i (0)] . It is
shown in the Appendix that the expectation value of the
energy of the gauge field for the color singlet of (4.12)
reduces to

Eg g
( t ) f

[date

pd 2) d 2) ][cos( 03 03 )cos( 02 —02 )cos( 01 —0'1 ) + sin( 03 —03 )sin( 02 +02 )sin( 0, —01 ) ]

& [Hg, „g,(t)+Hgh„, (t)]exp i f d'x f dt'(Lg, „g, +Lg„„„) (4.14)

where 0; is the ith phase evaluated at p, and 0,
' is the ith phase evaluated at 0.

Now the sine terms can be dropped since they are odd in the gauge fields, while the action in the adiabatic limit
(equivalent to keeping only the quadratic terms) is even. In addition, the ghost part of the Hamiltonian can be ig-
nored since it contributes only a zero-point energy even when A„develops an expectation value. Under these cir-
cumstances the cosine terms may be replaced with

cos(01 —01)cos(02—0,')cos(03 03)=exp[i(0, —0'1+ 02 —02+ 03 03)], (4.15)

which allows the phases to be absorbed into the action. If the adiabatic limit is taken it is again obvious that only the
Ao component of the phases survives. In the limit that A ~0, only the quadratic part of the gauge field action will
remain. Thus, in the adiabatic limit, the gauge field action reduces to

Lg,„g,(x, t ) = ——,'Z3Bpc4 IIB 2 p
—Z, 2 p'[j~ —jp] —Z, 3 p[(cos201+sin20, )j~ —(cos20', + sin20'1 )jp]

+Z3 A p [(cos20, —sin201) j~ —( cos20', —sin20', )jp ], (4. 16)

where jz is given by

jp(x, t)=g5 x — (t t )—p
E'p

(4.17)

Expression (4.16) gives rise to the following equations of

motion for the 2 0.

a'~o ——j~ —jo, (4.17a)

B2A p=(cos20, +sin20, )j~ —(cos20', +sin20', )jp, (4. 17b)

a2A p3 =(COS201 —Sin201)jp —(COS201 —Sin201)jp . (417C)
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The time t appearing in the equations must coincide
with time t of the Harniltonian in order for the equations
to have the form given. This is because the variation of
the phase 0& with respect to A p vanishes only if the time
of the phase coincides with the out-state. Of course,
choosing this time has the added advantage that it coin-
cides with the time of the Hamiltonian, which is a func-
tional of the field configurations at the time t. From the
form of (4.17a) it follows that A O=O when p=O. It is
not possible to make a similar assumption for the solu-
tions for A p and A p because of the appearance of the 0~
phase in Eqs. (4.17b) and (4.17c). However, this in no
way affects the validity of the adiabatic approximation
or the form of the equations derived so far, as the dili-
gent reader may verify.

Equation (4. 17a) is identical to the Abelian ease, and
thus it appears possible to obtain a Coulombic solution
over all space. However, because of the appearance of
0, in the equations for Ap and Ap, such a solution is not

possible. It is straightforward to show that if Ap is
given the Coulombic solution to (4.17a) then the phase
9& is divergent, in direct contradiction to the basic as-
surnption that 0; is small. The solution to this dilemma
is to seek a non-Coulombic form for the Ap, and this is
accomplished by invoking different boundary conditions
on the gauge fields. This is done by using a Aux tube
Green's function to solve the equations of (4.17). Such a
Green's function has been discussed previously by Baker,
Ball, and Zachariasen. ' The Green's function is con-
structed to be symmetric about the axis defined by the
particle motion, which will be chosen to be the z axis for
convenience. The Aux tube has a radius a which will be
given the limit a ~0. This limit is employed to simplify
calculations tremendously. The Green's function must
satisfy Neumann boundary conditions in the radial
direction, for otherwise, in the small-a limit it would be-
come trivially zero everywhere. The static Green's func-
tion then takes the form

dk Ki(ka )
G(x —x')= —f Io(kp& ) Ko(kp& )+ Io(kp ) eosk(z —z'),

4~2 Ii (ka)
(4.18)

if p& and p& are less than a, and is set zero if p& or p&
is greater than a. In (4.18) the I's and K's are the stan-
dard modified Bessel functions. In the limit of an
infinitely thin flux-tube expression (4.18), with suitable
choice of contour for k, reduces to

A 0(x)=, [[z—R (t)]S(z —R (t) }—zS(z) ),~a

if p &a and is zero if p & a. R (t) is given by

(4.20)

G(x —x')= (z —z')S(z —z') for p, p& &a, (4.19)
m.a

and vanishes everywhere outside the Aux tube. It is now
straightforward to show that the solution to (4.17a) is
given by

theory were a realistic model of nature, the values of Ep
and Rp would be chosen for phenomenological fit. For
this choice of Z3 the phase 0& becomes

ei ———E(t)(t t ), —

where

(4.24)

E(t)= R (t) .
3Rp

(4.25)

2 o(x) = [cosE(t)(t t ) —sinE(t—)(t t )]-
n.a

The solutions to the other two equations of (4.17) can
now be found by employing the same static Green's
function after inserting the value of 0&. It follows that

R (t) = (t t ), —
Ep

(4.21)
sin2E(t)[z —R (t)]

2E (t)

g 2

8,(p, t)= —Z3 R(t)(t t ) . —
27Ta

(4.22)

The small-a limit and the assumption of 0; small are
made consistent in (4.22) with the choice of renormaliza-
tion constant

and is clearly the distance of separation as a function of
time. Obviously, (4.20) describes a flux tube along the
axis of motion joining the current positions of the two
spinors. The phase 0& can now be evaluated to obtain

and

XS(z —R (t))—zS(z)

XS(z —R (t) }—zS(z)

3 o(x) = [eosE(t)(t t )+sinE(t)(t t )—]-
ma

sin2E(t}[z —R (t)]
2E (t)

(4.26a)

(4.26b}

Eo 2' 2

3
o g

(4.23)

where it will be seen shortly that Ep is the energy of the
color singlet at the distance of separation Ro. For the
moment these constants may be viewed as nothing more
than a choice of length scale for the theory. If an SU(2)

It is not difficult to see that if E(t) =0, which occurs if
either Eo/RO=O or (t t )=0, the form—s (4.26) are
equivalent to (4.20). Of course, this restriction is also
necessary to make 0& small. It is straightforward to
evaluate the gauge field Harniltonian in this same limit.
The gauge field Hamiltonian develops the expectation
value
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2

E„„„(r)=Z,f d'x —,'(8, A', 8, A,'+ A ' A,')=Z, , f dz[S(z) —S(z —R(t))]
27Ta

2

+Z3 2
dz 1 —cos 2E t z —R t cos E t t —t, 4.27

~g R (I)

where terms proportional to E ( t ) and R ( t ) have been
suppressed for consistency with the adiabatic limit. The
second integral is formally divergent. However, expand-
ing the integral in a power series in E(t) shows that the
lowest-order term is proportional to E ( t ) and so it is
argued that this divergence is an artifact of the trunca-
tion process in 0. In the small-0 limit the second in-
tegral will be ignored, so that, in the limit that
E (t ) »E (t), expression (4.27) reduces to

EoE,„,(r)= R(t)gauge (4.28)

V. CONCLUSIONS

A method for extracting the long-distance forces
present in an abridged infrared vertices has been
developed and applied to several models. In order for
this particular approach to be applicable the spinor par-
ticle must be massive. Further, the transformation

Result (4.28) shows that the energy of the gauge field,
which is the energy of interaction of the spinors, is con-
sistent with a confining potential ~ It is to be noted that
the forms of the solutions for the A o which led to this
confining potential were determined by demanding con-
sistency with the infrared form of the interaction. The
path-integral formulation of the theory then allows a
ready incorporation of these classical configurations of
the gauge fields into the quantized version of the theory.

It is straightforward to examine a nonsinglet state,
e.g. , a single spinor state, using this technique. It be-
comes readily apparent that the phases 0' and/or 0 enter
into the action of the path integral with the same sign.
Solutions to the equations equivalent to (4.17) lead im-

mediately to an infinite-energy configuration, describing
a fiux tube from the particle(s) to infinity.

One of the most esthetic aspects of this result is that
states which are "gauge invariant" under the transfor-
mation (4.7) are efFectively free. Such states are comov-
ing spinor true gauge-singlet pairs. However, it is
stressed that these results have been obtained only in the
approximations made in this paper. The uniqueness of
these solutions, as well as whether they persist, at least
qualitatively, to higher orders of 0 is unknown.

which decouples the massive particle from the gauge
field has been found only for the spinor field so far. It is
thus impossible to apply this method to a theory where
both spinors and gauge fields begin as massless. Thus,
this approach cannot explain chiral-symmetry breaking
in the spinor sector.

However, this approach has the distinct advantage
that it can readily be incorporated into the quantized
theory through the path integral ~ It also exhibits the re-
lation of the quantized theory to the underlying classical
field configurations, and relates these to the energy of in-
teraction in a very obvious manner In the case of non-
Abelian fields it allows an escape from perturbative cal-
culations of particle spectra and interaction energies,
and demonstrates the fundamental differences between
non-Abelian and Abelian field theories.

APPENDIX

In order to derive expression (4.14) in a reasonable
amount of space a compact notation will be used. A
phase angle without a prime will denote the phase angle
evaluated at the momentum p, while primed phase an-
gles are evaluated at zero momentum. The expressions
c; and s; will refer to sin(8; ) and cos(8; ), respectively,
while c and s are cos(8,' ) and sin(8,' ). It is straightfor-
ward to show that

d x u~ x, t %" x, t = d x u~ x, t

X U,b(8, p, r )0 '(x, t )

after the transformation. It has already been pointed
out in (4.13) that the incoming color-singlet
configuration is unchanged by the transformation. The
only contractions (or alternatively functional integra-
tions of spinor fields) which will give a nonzero contribu-
tion to the energy are those between the fields at time t
and those at time t and those at time t ~ This means
that only the field products in (4.5) of the form N'4
need be kept, since all products of the form N'N' will
vanish when contracted against the in state (4.13). It
follows that the only field products which need be kept
take the form

f d 'x d y u~ (x )u to(y )[%"(x)%' (y) —+'(x )%"(y) ]

d x d y u (x)u()(y)P

I I—i(01 —0[ ) I I - I I i(0] 2
&& [ [e (c2c3 —is2s3 )(c 2c 3 +is 2s 3 ) —e (c2s3 —is2c3 )( —c 2s 3

—is 2c 3 )]4 (x )N (y)

I I—i(0l —0l ) ~ I I ~ I i(0l —01 ) ~ I I I I 1+ [e ( c2s3 is2c3 )(c 2$ 3 is 2c 3 ) e (c2c3 +is2s3 )(c 2c 3 is 2s 3 ) ]N (x)4& (y) ) . (A2)
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In contracting against the incoming fields it is useful to note that since the spinors are now effectively free fields,

f d3x d y d x'd y'ut(x, t)uo(y, t)(@t(x,t)42(y, t)@z(x', t )4,(y', t ))u~(x', t )uo(y', t )=0 (A3)

and

f d x d y d x'd y'u ~( xt)u o(y, t)(4 (txt)@2(y, t)4, (x', t )4&z(y', t ))u~(x', t )uo(y', t )=[5'(0)] (A4)

where angular brackets stand for the functional expectation value over the spinor variables only, and it is assumed
that p is nonzero. Using these results it follows that the spinor variables may be integrated out of the theory and the
normalization factor N cancels the 5 functions of (A4). The result is a functional integral over the gauge field with a
set of phase factors given from (A2) with the form

cos(0i —Oi )(c2c 2c3c 3 +$2S2$3s 3 +$2s 2c3c 3 +c2c 2S3s 3 ) —siti( l9t —0( )(cps pc3s 3
—c2$ 2$3c 3 +S2c 2c3$ i —cps 2s3c 3 )

=cos(0, —0't )cos(Oz —Oz)cos(03 l93) —sin(Oi —0& )sin(0&+0&)sin(03 03)

which is the desired result.
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