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Variational principles for conservative and dissipative diffusions
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A stochastic variational principle is formulated for the conservative diffusions of stochastic
mechanics in terms of the classical action. A suitable class of variations is chosen taking into ac-
count the time-reversal invariance of the theory. The resulting equations of motion are the stochastic
Euler-Lagrange equations. Moreover a derivation of the Navier-Stokes equation is presented.

I. INTRODUCTION

Stochastic mechanics, introduced by Nelson in 1966,"
has been formulated in a variational way in recent years.
Different variational formulations of stochastic mechanics
have been proposed, each one suggested by the different
forms of the variational principle in classical mechanics.

The Czuerra-Morato variational approach' is a generali-
zation to the stochastic case of the Hamilton-Jacobi
scheme. The starting point is an action functional define
as follows: for an R"-valued Markov diffusion process
q (t) consider the expectation

dtE —,'mj'tq't —Vq t

for some scalar potential V. This formal expression be-
comes meaningful after the subtraction of an infinite con-
stant. ' The functional of the process so obtained is called
the mean classical action. The stationarity condition of
this action functional with respect to variations of the drift
field leads to the stochastic Hamilton-Jacobi equation.

The formulation above relies on the variations of the ve-
locity field. It is also natural to consider variations of the
trajectories of the process. Such an approach is usually
called pathwise. The first attempt in this direction is due
to Yasue (see also Ref. 5 for recent developments) who
considers a different action functional: namely, an
energy-type one in the sense that the value of the function-
al on the physical process q (t) is the time integral of the
quantum Hamiltonian (g, Hg) on the state g described by
the process q (t). On the contrary the mean classical ac-
tion (1) evaluated on the physical velocity field is connect-
ed to the standard quantum Lagrangian.

Recently Morato" has proposed a stochastic pathwise
variational principle using the mean classical action. The
equations of motions are different from the stochastic
Newton law since in this new formulation nonirrotational
drift fields are also present. If the gradient condition for
the drift field is assumed then the equation reduces to the
stochastic Newton equation. Therefore the Hamilton-
Jacobi variational formulation and the Lagrangian path-
wise one give different stochastic dynamics.

The main result of this paper is that the two variational
approaches are actually equivalent in stochastic mechan-
ics, as they are in classical mechanics, if a suitable notion
of variation is introduced. It is shown that two different
kinds of variations have to be considered in order to re-

cover this equivalence. The time-reversal symmetry prop-
erties of such variations play an important role for achiev-
ing the time reversibility of the stochastic mechanics. In
fact a characteristic feature of the variational principle in
Ref. 6 is that the solutions do not share the same tern-
poral symmetry as the action functional. Because of that,
this approach is very natural in order to describe dissipa-
tive diffusions. '

Finally a perspective of this work is that a pathwise pic-
ture of the stochastic mechanics, derived from a variation-
al principle, could open the way to the construction of the
canonical structure of the theory.

The paper is organized as follows. In Secs. II and III
the time-reversal symmetry properties of the stochastic
variational structure are analyzed. In Sec. IV the path-
wise variational principle is formulated for the conserva-
tive diffusions of the stochastic mechanics. In Sec. V an
example is given of a variational principle for the dissipa-
tive diffusions describing a Navier-Stokes incompressible
fluid.

II. TIME-REVERSAL SYMMETRY BREAKING
IN MORATO'S PATHWISE VARIATIONAL PRINCIPLE

where

6, +q (t) =q (t + b, t) q(t), —

b, q (t) =q (t) q(t b,t)— —

are the forward and the backward increments, P, (2, ) is
an increasing (decreasing) family of o algebras such that
each q (t) is P, measurable ( J, measurable). Then

lim (At) 'EIb, +q(t)
~
P, I =u (q(t), t),

b, i —0+

lim (At) 'EIE q(t)
~
J, I

=U (q(t), t) .
br 0+

Moreover v+ and v are related by

(2.3)

In this section the structure of the stochastic calculus of
variations given in Refs. 6 and 7 is investigated. Let q (t)
be an R"-valued diffusion Markov process whose evolu-
tion is ruled by the stochastic integral equation

q(t)=q(to)+ f v, (q(s), s)ds+&a f dt's (s) . (2. 1)'o 'o

Consider the conditional expectations
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(u~ —u )(x, t) =aV lnp(x, t), (2.4) random variable, Morato's result" can be stated as

where p is the density.
The current velocity v and the osmotic velocity u are

defined by

U++U =2v, U+ —U =2u . (2.5)

The Morato variational principle assumes as action func-
tional the mean classical action

lim 6+ eEPme '5+(q(t, )) 5 (q(t, ))—V(q(t, )) IN~~
I

E I p—, q (t, ) I
=0 (2.8)

to first order in 6q for any 5q such that 5q(t, )=0 if and
only if the current and the osmotic velocities satisfy the
equation

, }(q)= f dtEIL(q(t), t)I, (2.6) B,u q(u. V)u —[(a/2)V'u q(u. V)u]qu h (V h v)

where

L (x, t)= —,'m (u~. u )(x, t) —V(x) . (2.7)

The class of variations 6q is defined in such a way that
(q+5q}(t)=q'(t) is a diffusion Markov process with the
same diffusion coefficient and the same initial density
po=p(, t, ) as q(t) Den. oting by It, I, , ~ a partition
of [t„t,] in N intervals of mesh e and by p, an arbitrary

I

+(a/2)V 6 (V 6 v) = —(1/m)V V (2.9)

with the final condition v (,t, ) =p, .

For the sake of simplicity we consider the case d=3.
Taking into account the continuity equation

Dp= —p(V v) and u =(a/2)V lnp

the evolution equations for u and U can be written as

B,u +(a/2)V'v ~(u. V)u ~(v.V)u ~(a/2)V h (V h v)+u h (V' hu) =0,
8, u ~ ( v V )v —( a /2 ) V'u —( u V )u ~ (a /2 ) V 6 ( V 6 u ) ~ u 6 ( V' P, v ) = —( 1/m )V V .

(2. 10)

The Morato equation (2.9) differs from the Newton sto-

chastic law"

B,u 4-(u. V'}u —(a/2)V'u —(u V) = —( 1 lm)V V

by the presence of the terms

u 6 (V hu) ~(a/2)V h (V hu) .

(2.1 1)

(2.12)

On the other hand, the Guerra-Morato variational prin-

ciple, based on the same action functional and on the vari-

ation of the drift field, leads to Madelung's fluid equations
which are equivalent to the stochastic Newton law.

Therefore the two different ways to vary the same action
functional, by varying the paths or the drifts of the pro-
cess, are not equivalent. Further Eq. (2.9) is not time-

reversal invariant. In fact let us denote by T the time-

reversal transformation (see, e.g. , Ref. 9)

dissipative processes. The possibility of describing dissi-
pative systems in a variational framework is an interesting
aspect of the Morato variational calculus. A development
along this line is contained in Ref. 8, where Eq. (2.9) is in-

terpreted as the evolution equation for a viscous quantum
fluid near zero temperature in some kind of mean-field ap-
proximation.

In conclusion the presence of dissipative diffusions
means that a direction of time has been chosen at some
step of the construction.

Let us look more closely at the class of variations.
Given a process q (t) with drift u+ and initial density p,
denoted by x (t) the path starting in x, at time t, con-
structed from a specific path w (t) of a standard Wiener
process by means of

x( )t= x~ f'dxu (x(s),s)~v'a f'dw(s) . (2.15)

(2.13}

v(t)~u'(t")= —u(t), u(t)~u*(t*)=u(t);
then under T (2.9) changes to

B,u ~(u V)v —(al2)V'u (u. V)u —u h (V 6 v)—
—(a/2)V 6 (V 6 v) = —(1/m)VV . (2.14)

Note that the terms involving V' h, U have changed sign.
On the contrary, the action functional (2.6) is time-

reversal invariant as one can see from (2.5) and (2.13}.
Then a typical phenomenon of symmetry breaking is in-
volved: the solutions of the variational principle do not
share the symmetry property of the action. The diffusion
processes whose drift evolves according to (2.9) may be

6+q (t) = ds[u'~ (q'(s), s) —u (q (s),s)] .
fp

(2.17)

Therefore the process 5+q (t) has differentiable sample
paths and it is P, measurable since it depends on q (s) for
t, (s (t, but it is not independent of J, . These peculiar

Now associate to the same realization w(t) a different
path x'(t) in such a way that

x'(t)=xo+ f ds u'+(x'(s), s)+&a f dw(s) (2.16)
fp fp

for some smooth drift v'+.
By this procedure we obtain a mapping from the sam-

ple path space of the Wiener process to a sample path
space of a smooth Markovian diffusion q'(t), with drift u'+

and initial density p, . So the variation process
6+q (t) —=q'(t) —q (t) satisfies the equation
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x (t) =x, —j ds v (x (s),s) —&a f dw(s)
l

we construct a trajectory x "(t ) from

x"(t)=x, —f dx v" (x"(s),s)—&a f dw(s)

(2. 19)

(2.20)

for some smooth function v" (x, t) In th.is way we obtain
a smooth Markov process q "(t) with the same diffusion
constant as q (t) and the same final density. The variation
process

(5 q)(t)—=q"(t) —q(t) (2.21)

satisfies the equation

(5 q)(t)= —f ' ds[v" (q"(s),s) —v (q(s),s)] . (2.22)

Then the variations, 6 q have differentiable sample
paths, but have different measurability properties than
5+q; in fact 5 q(t) is J, measurable, since it depends on
q(s) for t &s & ti. So we can obtain the set of the varied
processes with the same diffusion constant by means of
two kinds of variations 5+q and 6 q that we call forward
and backward variations, respectively.

Up to now the emphasis has been put on the process,
but in this kind of pathwise variational approach the paths
play the main role. Therefore let us look at the variations
of the paths rather than the variations of the processes.
As an example let us consider two smooth Markovian
diffusions q and q', with drifts v+ and U'+, respectively,
for a fixed diffusion constant a, having the same initial
density p, and also the same final density p, . Let x (t) be
a sainple path of the process q (t) starting in x, at time t,
and such that q (t, ) =x, . Suppose that the process q'(t)
has been chosen in such a way that, if we regard q' as

q +5+q, with 5+q (t, ) =0, there exists a sample path of q',
x (t), such that

x+(t) —x (t) = f ds[v'+ (x+(s),s) —v (x (s),s)] (2.23)

and x+(t, ) =x, .
If we look at the process q (t) backward in time then

x (t) =x, —f ds[u (x (s),s)]—&a f dw(s) .
1

On the other hand, q'(t) =q +5 q, with 5 q(t, )=0, im-

plies that there exists a path x (t) associated to the same
w(t) such that

x (t)=x, —f ds v' (x (s),s}—&a f dw(s) (2.24)

properties of the variation processes are responsible for
the presence of non-time-reversal-invariant solutions. "

Let us now exploit another possible construction of
variation processes. A diffusion process can be viewed as
a solution of the backward differential stochastic equation

q (t) =x, —f ds u (q (s),s}—&a f dw(s) (2.18)

where iv(s) is the Wiener backward process. In this way

q (t) can be reconstructed backward in time from a final
condition q (t, ) =x, . Starting from the representation
(2.18) we can construct a varied process with the same
rule as before. For any realization w (t) such that

115'qll= sup lx «}—«t}
I

u, t) T

f15 qll= sup lx «}—«t}I .
u, t(T

(2.26)

We call forward variation 6+F and backward variation
5 F of a functional F on II(a):

(5~F)(q) = F (q + A, 5—q)
X=0

(2.27)

Then a functional F on Q(a) is said to be forward (back-
ward) differentiable on q(t) if

F (q +5+q) F(q) =5+F +o (—II5+q II ),
F(q +5 q) F(q)=5 F +—o (II5 q II)

(2.28)

(2.29)

This differential structure will allow us to formulate a
symmetric variational principle.

III. TIME REVERSAL OF VARIATIONS

Classical mechanics is a time-reversible theory. The
variation of the action functional or the variation of the
time-inverted one yields the same equations of motion
which are in fact time-reversal invariant. On the con-
trary, in stochastic mechanics, at least in the stochastic
calculus we are investigating, this is no longer true. For a
process q&Q(a), corresponding to a drift u+ and to a
given density p=p(, T) for some instant T, let us consider
the time-inverted process q*(t*) satisfying the time-
inverted equation

q*(t'*)=q*(t*)+ f ', ds*v+ (q*(s*),s" )

++a, dw (s ), t &t (3.1)

so that

x-(t) —x(t)= —f ds[u' (x (s),s}—u (x(s),s)],
t e [t„t,] (2.25)

is a sample path of 6 q.
It is evident that x+(t) and x (t) are in general

different. We can think of them as the trajectory varied
forward and backward in time. Therefore two processes
can be compared looking at the past or future in terms of
trajectories. The Morato variational calculus chooses the
forward way to confront the processes.

In conclusion the set of varied processes is the same in
the path wise and in the control variational principle.
What is different is the topological structure, that is the
notion of vicinity of processes differs in the two cases. In
the Guerra-Morato approach two processes are considered
"near" if 6v =v' —v is "small, " while in the pathwise ap-
proach' the vicinity of the processes is induced by a no-
tion of vicinity of the forward trajectories. As a conse-
quence, different definitions of differentiability are in-
volved. Therefore in order to state our variational princi-
ple we need a definition of the difFerential of a functional
on the processes.

Let us denote by Q(a) the set of smooth Markovian
diffusions corresponding to the diffusion constant a. For
any q, q'CQ(a) with the same density at some time T let
us define
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Then we can construct the set of varied processes with
respect to q', with the same density p, by means of the
forward variations in t*. As explained in the preceding
section, we can consider (q*+5q*)(t*) with
(5+q*)(T')= 0 and the corresponding variation 6+q*
satisfying, for some v+',

(5 q*)(t*)= f ds*[v+'(q*'(s*),s') —u+(q(s*),s*)],

(q*,S0 )= A (() r)(q, S,), (3.&)

where

A(0 r)(q, S,)=E f L(q(s), s)ds+E[S, (q(0), 0)] .
0

Then the functional A* is related to an action functional
A' by

t'& T* . (3.2) (3.9)

(&'q*)(t*)=—(& q)(t) . (3.3)

Note that the variations transform under time reversal in
the same way as the forward and backward differentials
dq and d eq. This is an essential requirement on the vari-
ations if one is interested in introducing a canonical struc-
ture.

Now we want to state the relation between 6—+F and
o F for a functional F on II(a) such that F*(q*)=F(q).
From the definition (2.27) it follows that

(o+F* )(q
'

}= F*(q*+A 5+q *
)

d
dX

F(q + A,6 q)
d

A, =O

The P + measurability of (5+ q * )(t *
) implies the J,

measurability when it is regarded as a function of t. Tak-
ing into account that u+(q*(t*),t*)=—v (q(t), t) and
v +'(q '(t *),t *)= —v

'
(q (t), t ), we have that

A' differs from A in the fact that the Lagrangian multi-
plier S, is now a function of the variables at the initial
time. Therefore A' has to be used in the variational prin-
ciple when one wants to keep the final density fixed.

Finally for the variations we have

6+ A '(q*,SD ) = —5 A'(q, S, ) . (3.10)

We shall show in Sec. IV that the backward variation of
A' and the forward variation of A give rise to different
equations of motions, in which one turns out to be the
time reversal of the other. Therefore the variational prin-
ciple based on the forward variation gives different dy-
namics for the process and its time-inverted counterpart,
even if the Lagrangian is time-reversal invariant. We
could say that the variation does not commute with the
time-reversal transformation; hence, the variational prin-
ciple has to be formulated in a symmetric way.

= —(6 F)(q) . (3.4)

IV. VARIATIONAL PRINCIPLE FOR CONSERVATIVE
DIFFUSIONS: STOCHASTIC NEWTON EQUATION

Stochastic mechanics, as a stochastic formulation of
quantum mechanics, is a time-reversible theory and the
diffusions associated to the quantum states are conserva-
tive. The control variational principle, which preserves
this time-reversal property, can be formulated starting
from the functional A, keeping the initial density fixed, as
well as for the functional A', with the final density fixed.
In the first case the controlling velocity field is v+, while

in the second one it is v . In the pathwise variational
principle instead, since the pathwise variations are intrin-

sically not symmetric in time, we have to consider the for-
ward variation for A and the backward one for A ', name-

ly, keeping fixed the initial or the final density, respective-
ly. The following proposition shows that in the pathwise
case the forward and the backward variational formula-
tions give different equations.

Proposition. A process q(t)EA(a) is extremal for the
functional A (0 r)(q, SD} under the variations 5 q (s),
s &[0,T], such that 5 q (T)=0 if and only if its drift
satisfies the equation

Therefore the operations 6+ and 6 play the same role as
the forward and backward derivatives' D+ and D when
nontemporal increments are considered. The role of the
time is played in this case by A, . Hence this differential
structure seems to put the time and the other variables on
the same footing. We plan to return to this subject in a
forthcoming paper. "

We shall be interested in the following in an action
functional defined by

A~0 &(q, S)=rE f L(q (s),s)ds E[Sr(q (T), T)—]
0

(3.5)

where Sr(, T) is an arbitrary function which will play the
role of a Lagrangian multiplier controlling the variation of
the density at time T in the variational principle. Now we
introduce the time-reversed version of this action func-
tional by

(q*,SD ) =E f L(q*(s*),s')ds*

E[S (q~"(0),0) j
—(T* (0) . (3.6) Btu +(v.V)v —[(a/2)V2u +(u.V)u] —u h (V h u)

SD (q', 0) = —S,(q, 0) . (3.7)

Since it will turn out from the variational principle that
the function S, is connected to the velocity field by the re-
lation mu(, 0)=V'S„(,0) we assume the following trans-
formation property under the time reversal T for S,:

—(a/2)V A (V 6 v) = —(1/m)VV (4.1)

and the boundary condition

mu (,0) =VSD(, 0) .

Proof. Denote by A' (q) the discretized action; that is,
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A'"(q) = g eE[ —,'me '6+q(t, )b, q(t, ) —V(q(t, ))I so that

A(p Tl(q, S,)= lim A' (q) .
N~ oo

(4.3)

+E[S,(q (0),0) I (4.2) Then the variation of 3 ' is given by

A'+(q +6q) —A' (q)= g eE[ —,'me [6+q(t; )b, (5 q(t; ))+b,+(5 q(t; ))6 q(t; )]—VV(q(t;))6 q(t; ){

E{V—Sp(q( 0), 0}6 —q(0}I+-o (~~5 q(~) . (4.4)

The measurability properties of 6 q imply

E[b+(5 q(t))A q(t)j =E[b +(5 q(t))E{b. q(t)
I

&i I I =«[x+(6-q(t)).u (q(t), t)I+o(E)
and

E{b+q(t)b (5 q(t))I=E{eu+(q(t), t).b, (5 q(t)}+&ah, +w. b, (6 q(t))I+o(e),
where we have exploited (2.1).

By means of summation by parts one has

(4.5)

(4.6)

E{u (q(t), t) b, +(5 q(t))+u+(q(t), t) 6 (5 q(t))I
=E[b+[v (q(t), t).5 q(t)]+6, [u+(q(t), t).5 q(t)] —b+u (q(t), t) 6 q(t) —b, u+(q(t), t} 6 q(t)I+o(e) .

(4.7)

Finally

E [5+v (q (t), t ).6 q (t) {=E [ED+ u (q (t), t ).5 q (t)+ &aV;u (q (t), t )b, +w'(t) 5 q (t) I + (oe),

E{h u+(q(t), t) 5 q(t)I =E[eD v+(q(t), t) 5 q(t){+o(e),
because 6 q is J, measurable.

Collecting all the terms we have
A' (q +5q) —A' (q)= g eE[ —,'m[e' '6+u (q(t;), t;).6 q(t; )+e 'b. v+(q(t; ), t; )-5 q(t; )

—(D+u +D u+)(q(t, ), t, ).5 q(t, )]—VV(q(t, )).5 q(t, ){

E[VSp(q (0)—0} 6 q (0) I

++ageE pmb+w "(t)[e b, (6 q (t; ))—e 'VI, v~ (q(t;), t;)6 q'(t;)]I
1

+o«)+o(116 qll) .

Let us examine the last term in (4.10). Taking into account the relations

(6 q"(t))=eV v" (q(t), t)5 q (t)+E(v' —v )(q(t), t)+o(~~5 q~~),

v'aA+w (t) =&ah, w(t +e)—2u(q (t), t }e+o(e),
the result is

+aEPmh+w "(t)[e b (5 q "(t))—e 'Vkuj (q(t), t)6 qj(t)]

=&aE[ —,'me 'b, +w (V, u" —V'kv' )5 q'(t)

=&aE {—,'me 6, w "(t +c)Fk, (q(t), t }5 q'(t) J
m. E[(u "Fk, )(q(—t), t )6 qj(t)j+o(e)+o(~~6 q ~~),

(4.8)

(4.9)

(4.10)

(4. 1 1)

(4. 12)

(4.13)

where we have set F,, = 7',-v —V', U

Using the Ito diAerential rule

F J(q (t), t ) =Fk, (q(t +a), t +e)—V', F„,(q(t +a), t +e)b. w '(t +e)+o(e),
the last term in (4.10) becomes

(4.14)
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Va ,'m—QE[b.w "(t;+e)V,Fk/(q(t;+e), t;+e}h w'(t;+e)5 q (t;+e)]

—m

+ATE[(u

"Fk/)(q(t;), t; }5 q~(t;)]+o(&)+o([[5 q(() . (4 I&)

Finally using again the measurability property of 5 q (4.15) transforms in

QE[e&a ,'m—[(VkFk~)(q(t;+e),t;+e)5 q'(t;+e)] —m(u Fk, )(q(t, ), t;)5 q (t;)+o(e)+o(~~5 q)~) (4.16)

In conclusion, the backward variation is given by

5 AID r}(q,S0)= —lim g emE [5+q(t, )[—,'(D+v +D v+) —VV+ —,'aV'h(Vh v)+u h(V A v)](q(t, ), t, }}N~ oo
I

+EI5 q(0) (mv —VS, )(q(0),0)I (4.17)

where we have used 5 q ( T) =0.
Then 5 AID r}(q,SD) =0 if the velocity field v satisfies

Eq. (4.1) and there exists a function S, such that
mv (x,O) =VS,(x,O).

The proof of the necessarity of these conditions can be
modeled on the proof given in Ref. 6 and it will not be re-
ported here.

Now we have to restore explicitly the temporal symme-
try. Since the variation 6+ transforms under time reversal
into —6, we look for the diffusions which are extremal
for A~«(q, Sr) under the variations 5+q: 5+q(0)=0 and
also extremal for A I0 r}(q,SD) under the variations 5 q:
5 q(T)=0. Then we claim 5 AID&(q, S,)=0 and
5+ A I0 &(q,Sr) =0 if and only if the process q (t) satisfies
the Newton stochastic law

—,'(D~ v +D v+ ) = —( I/m )V V (4.18)

(a/2)V'6 (V A v)+u h (V 6 v) =0,
BS0 and Sz.. mv (x, O) =VS0(x, O),

mv(x, T)=VS'(x, T) .

(4.19a)

(4.19b)

(4.19c)

The gradient condition at time 0 and the Newton stochas-
tic law (4.19a) imply a gradient condition for any time.
In fact, (4.19a) implies the Euler equation for the vorticity
co=Vs, U:

8tv =5, tv + ( v .V )co = (rv V ) v —tv( V v ) . (4.20)

Then as in the Euler case if cu is zero at some instant it is
zero for any time. Therefore (4.19b) is identically satisfied
as a consequence of (4.19a) and (4.19c).

It is worthwhile to remark that the equation for the
vorticity derived from (2.9) is

D tv=(tv. V)v —cv(V. v ) . (4.21)

In conclusion this symmetric variational principle im-

and there exist some function S (x, t) such that
mv(x, t)=VS(x, t) for t K[0,T].

In fact the vanishing of the forward and backward
differentials is equivalent to the following conditions:

B,v+(v V)v —[(a/2)V'u +(u.V)u]= —(I/m)VV,

which are equivalent, taking into account the gradient
condition for U, to the Schrodinger equation.

V. VARIATIONAL PRINCIPLE FOR DISSIPATIVE
DIFFUSIONS: NA VIER-STOKES EQUATION

An example of dissipative diffusions derived from a
variational principle is the one satisfying the Morato equa-
tion, that is, a process extremal for the classical mean ac-
tion with respect to forward variations.

Another example of a dissipative system which can be
described in this variational framework is the Navier-
Stokes incompressible fluid. The Navier-Stokes equation
was derived by means of a variational principle first by
Inoue-Funaki" and then by Yasue" (see also Ref. 13) who
extended the Arnold vaiiational principle for the Euler
flow to the stochastic case.

The stochastic calculus developed in Ref. 6 allows us to
give another derivation of the Navier-Stokes equation.
Let us emphasize that in this case the set of varied pro-
cesses is formed by the smooth diffusions corresponding
to the same viscosity coefficient.

If one imposes the incompressibility condition Eqs.
(2.10} become similar to the Navier-Stokes equations, if
one regards the potential V as the pressure. But the inter-
pretation is different since the pressure for an incompressi-
ble Navier-Stokes fluid is an unknown quantity while V in
(2.10) is a priori given. In order to avoid this unsatisfac-
tory feature one has to introduce the pressure field as a
Lagrangian multiplier associated to the constraint of in-
compressibility.

We consider as action functional the integral of the en-
ergy of the viscous fluid

A»(q) = f E I —,'v'{q (t), t }I dt . (5.1)

2» is defined on the space of the volume-preserving pro-
cesses, that is on the space of smooth Markovian
diffusions such that the density p is constant. Therefore
divU=O and U+ ——U . Hence we have

plies the following equations for the velocity fields:

B,u +(a/2)V'v +(u.V)v +(v.V)u =0,
(4.22)

B,v+(v V)v —(a/2)V'u —(u. V)u = —(I/m)VV,
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E[—,'v (q(t), t)I =E[—,'(v+ u )(q(t), t)I

,'e —E[b, +q (t) b, . q (t) j

+o(e) .

We construct 3» as the limit

(5.2)

where UT is an arbitrary random variable that will turn
out to be the final value of the velocity field.

Performing the same calculations as in Sec. IV we ob-
tain the expression of the forward variation of 3 zs

A Ns ( q ) = lim g eE [ ( Du —
—,
' ah v )( q ( t; ), t, ) .5 +q ( t, ) IN~ oo

I

ANs(q)= lim g eE[b+q(t; )b, q(t;)I
N~ oo

(5.3) +E [ [v(q (T), T)—uT]5+q ( T) I (5.6)

div6+q =0 (5.4)

almost surely, in order that the varied process q+6+q
also have the volume-preserving property. We consider
the variations 5+q such that 6+q (0)=0. Henceforth we
have to modify the functional into

We want to point out that it is impossible to derive the
Navier-Stokes equation from the action functional (5.2) by
varying the velocity field. We must use the pathwise cal-
culus. An analogous phenomenon is encountered in the
Euler fluid case. If one wants to derive the Euler equa-
tion by varying v, only the potential Euler flows are
found. In order to describe also nonirrotational velocity
fields more conditions have to be taken into account. "

We look for the volume-preserving processes such that
5+ A» ——0 where the variation is constructed by means of
the forward variation constrained by

Du ——,'aalu = —Vp, v(x (T), T) =ur .
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Taking into account the constraint of incompressibility on
the variations (5.4) it follows that 6+ A Ns(q) =0 for any
6+q such that div6+q=0 if and only if there is a scalar
function p such that

ANs(q)=A, +E[u q(T)I, (5.5)
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