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We discuss the effect of certain aspects of curvature and topology on symmetry breaking in curved

spacetime with the aim of understanding phase transitions in the early Universe. We show that for
spacetimes with some compact spatial dimensions where the invariant operator of the scalar Auctua-

tion field has a discrete spectrum, the most important contribution to the infrared behavior comes
from its zero mode (or band). The decoupling of higher modes gives rise to dimensional reduction in

the infrared domain. We introduce the notion of effective infrared dimension and explain how it can
be useful for physically understanding the symmetry behavior in spacetimes of different topology.
We also introduce an eigenvalue analysis to study dimensional reduction in both direct-product
spaces and spaces which can approximate product spaces under extreme deformations. We illustrate
this method by analyzing the symmetry behavior of the Taub universe in the small- and large-

anisotropy limits. These geometric effects in curved space are of the same nature as finite-size effects

in condensed matter and surface physics. We use the two-particle-irreducible formalism and the
large-X approximation to derive the higher-loop corrections. We give the results of the effective mass

and the effective potential for various systems and spacetimes with compact dimensions. The ideas,

techniques, and results developed here are useful for the study of finite-size effects in field theory,
cosmology, and condensed-matter physics.

I. INTRODUCTION

One major area of research in quantum field theory in
curved spacetime in the 1980s has been on interacting
quantum fields and their implications. ' The emphasis has
since gradually shifted from the analysis of local proper-
ties of fields and geometry such as ultraviolet-divergence
and renormalization problems to more global aspects.
Examples are gravitational instantons in Euclidean quan-
tum gravity, the Gauss-Bonnet terms in the higher-
derivative corrections of gravitational Lagrangians, the
effect of the so-called kinetic terms and the quasilocal ex-
pansion in the effective action, renormalization-group
derivation of running coupling constants, etc. Under-
standing the full character of physical processes such as
particle production and back reaction in the early
Universe requires the full nonlocal form of the effective
action. Symmetry breaking in curved space is another
problem of this nature, wherein the global properties of
spacetime are expected to play an important role.

Work on symmetry breaking in curved space has pro-
gressed in several stages, from the somewhat formal and
illustrative problems to the more physical and realistic
ones. General relativists are naturally interested in the
effect of geometry, topology, and boundary conditions (in-
cluding twisted fields) on the symmetry behavior of a sys-
tem described by quantum fields. These preliminary in-
vestigations demonstrated the importance of the global
effects of geometry, but the problems initially studied
were perhaps mostly of academic interest. At the same
time field theorists were interested in symmetry breaking

in connection with unified theories at very high energies.
Interest in the decay of the false vacuum has led Cole-
man and others to consider the effect of gravity on tun-
neling as a form of symmetry breaking. This led to in-
teresting results but the effects of curved spacetime con-
sidered were mainly classical and the approaches used
were mainly Oat-space techniques. The advent of
inflationary cosmology' has spurred some serious in-
terest in phase transitions in the early Universe. " De-
tails even down to the precise form of the effective po-
tential have become important. Forrnal inquiries and
realistic problems merged to add the impetus for more
in-depth investigation of symmetry breaking in curved
spacetime. Systematic studies have since been carried
out, some using full-Hedged curved-space quantum-field-
theoretical techniques. '

Our interest in this topic stems from attempts to un-
derstand how quantum gravitational effects related to
global properties of spacetime such as topology and
geometry enter in the quantum-field-theoretical descrip-
tion of systems undergoing symmetry breaking. The ear-
ly Universe around the Planck time is a testing ground
for these inquiries. ' We are interested in the general
properties as well as the particular characteristics
describing specific spacetimes of realistic interest. For
this purpose we have carried out detailed analysis of the
symmetry behavior of systems (involving scalar and
gauge fields) in the Einstein, ' Taub, ' and de Sitter'
universes. This allows us to see how different geometric
and field-theoretical effects including the effects of topol-
ogy, curvature, deformation, and field coupling can be-
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come important under different conditions. In certain
cases we were able to draw implications of these results
for inflationary' and chaotic cosmologies. ' By compar-
ing their similarities we were able to see some general
behavior emerging. As we soon come to realize, as
much as topology and curvature effects are important in
their own right, the physically more relevant factor in
determining the symmetry behavior of systems in curved
space with some compact (or finite) dimension is the so-
called finite-size effect. The finite-size effect in curved-
space symmetry breaking is influenced both by the topol-
ogy (or boundary condition) and the curvature of space-
time, but is itself neither of them. It is the finiteness of
certain spatial (or temporal) dimensions which constrains
the range of the fluctuation fields and modifies the criti-
cal behavior of these systems.

Despite the sizable amount of work on symmetry be-
havior in curved space carried out previously we find
that the following two aspects remain somewhat
deficient: the treatment of infrared behavior which is
crucial to a complete and accurate description, and the
physical meaning of the results. We attempted to ad-
dress the first problem in a number of earlier papers,
especially using the de Sitter universe as an exam-
ple. ' ' This paper is devoted to the second problem.
We want to study the physical meaning of some of the
results obtained by us and others previously, and discuss
their significance in broader terms. We will discuss
finite-size effects in field theory and cosmology and draw
the parallels with critical phenomena in condensed-
matter physics. How one can identify finite-size effects
in more general systems using path-integral and spectral
analysis methods will be discussed in a later paper. '

This paper is organized as follows. In Sec. II we de-
scribe the effective action approach to the analysis of
symmetry behavior with the example of an ¹ omponent

field. We discuss the diff'erence between classical
and quantum effects of curvature in the nonminimal and
minimal coupling cases and point out that for the mass-
less minimally coupled scalar fields rather peculiar be-
havior near the symmetric state almost invariably
occurs. As it is associated with the appearance of in-
frared divergence, this case is often unjustifiably ignored
or mistreated. ' But it is precisely the one closest in na-
ture in curved space to the workings of the Coleman-
Weinberg mechanism responsible for new inflation. It
is also where the finite-size effect is most significant in
affecting the symmetry behavior. We show that in these
cases the infrared behavior is dominated by the lowest-
mode contribution of the scalar fluctuation operator. In
Sec. III we discuss the decoupling of higher modes and
infrared dimensional reduction. We introduce the no-
tion of effective infrared dimension and present an eigen-
value analysis for the discussion of dimensional reduc-
tion. We treat as an example the symmetry behavior of
the Taub universe in the large anisotropy limit. In Sec.
IV we discuss the higher-loop corrections to the effective
mass and the effective potential via the two-particle-
irreducible formalism. In Sec. V we use these results to
discuss the symmetry behavior of spacetirnes with
different number of compact dimensions: Examples

were drawn from de Sitter, Einstein universes as well as
finite-temperature and Kaluza-Klein theories. After this
we give a general discussion of results in terms of finite-
size effects in field theory and cosmology. Dynamical
effects of symmetry breaking in curved space will be dis-
cussed in later communications.

II. SYMMETRY BREAKING IN CURVED SPACETIME

A. Effective action of an N-component scalar field

S [N] = J d x &g —N'AC&'+ —m +1, , 1 2 (1 —g)R
2 2 6

q44
4'f

(2.1)

where b, = —&g c}„(&gg" 8,) is the Laplace-Beltrami
operator on scalars. For convenience we choose to devel-

op the formalism here in the Euclidean version. Perform
a background-field decomposition of the field N' into a
background field &f

' and a fluctuation field P', i.e. ,4' = &f '+ P'. The background field P
' is required to

satisfy the classical equations of motion with an arbitrary
external source. Such a shift eliminates the linear term in
the fluctuation field (it is equivalent to performing a
Legendre transform). The resultant action is

In the discussion of symmetry behavior, it is important
to know where and when minimum free energy states (lo-
cal and global minimum) exist and how the system
chooses between and evolves from these states. For these
purposes the approach based on the effective action proves
most powerful. The effective action I (P) gives the free
energy density of the system as a functional of the order-
parameter field P. One can compute directly from it the
field-theoretical and thermodynamic quantities of interest
in the system with relative ease. Since contributions from
the quantum and thermal fluctuations are built in, one
does not need to solve separately the equations of motion
for the background field and the fluctuation field and wor-
ry about their self-consistency in the iteration, as in the
effective-mass approach often used in stability analysis.
For dynamical spacetimes, as the background field (order
parameter) P depends on time, phase-transition processes
will possibly be accompanied by vacuum particle produc-
tion. To concentrate on the effect of symmetry breaking,
we can in this study restrict our attention to static space-
times (or spacetimes which admit static coordinatization
like the de Sitter universe} where the order parameter is a
constant. For constant background metrics and back-
ground fields, one can work with the eff'ective potential
V(P)= —(vol) 'I lg), where the spacetime four-volume
(vol) is factored out from the effective action.

Consider now an ¹component self-interacting scalar
field 4' (a = 1, . . . , N} on a manifold of dimension D,
coupled to the background spacetime with curvature R
and coupling constant g (conformal coupling for /=0 and
minimal coupling for g'= 1) described by the action
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T

S[k,4]=S[0]+J d x&g Z0' ~+m +(1 0—) —+ 0—&''+ 0—'0" 0'+ 60'0'0 + 4(4' (2.2)

The effective action I [P] is obtained by functionally in-
tegrating over the fluctuation fields:

e ~~~= d e (2.3)

function is defined by

g(v) = g ((Lt '((.„) (2.8)

by

~ b= ~+M2+ —P & &

2 2

w b

b. +M2+ —P 5'
6

(2.4)

The wave operator 3' for the fluctuating field is given

V'"(P) = ——,'fi(vol) '[g'(O)+g(O)/&] . (2.9)

where k„are the eigenvalues of the operator 3 on the
Euclideanized metric obtained by a Wick rotation to
imaginary time ~=it. Here a constant mass scale p is
introduced to make the measure d [P] of the functional
integral dimensionless. Using the regularization method
of Dowker and Critchley, one can express the one-loop
effective potential as'

where M =m +(1—j)R/6. Here o' ()I('P /—P ' and
/()( are orthogonal projectors, the former into an

(N —1)-dimensional subspace orthowonal to the dir=ction
in the internal space picked out by P ', and the latter pro-
jects along the direction of p'. Note that the operator b,

does not commute with the projectors unless p
' is a con-

stant.
When the direction in group space picked out by &f'

does not vary from point to point around the mariifold
(this does not necessarily imply P is a constant ') the
Careen's function for A '" is easily seen to be given by

w b w b
Gab

p2 p2
(2.5)

where the G; (i =1,2) are the Green's functions for the
operators 6+M; and

M( ——M+ —P, M2 =M+ —P2
'

6
(2.6)

The one-loop correction is related to the sum of the log-
arithms of the determinants of the fluctuation operators.
So in this case, by using the projection operator. , the
one-loop effective action is given by

X —1I [P]=S[P]——Tr lnG, — Tr lnG2
2 2

cV —1=S[p]+—g d(ink, „+ g d(ink. 2(,
2

1
2 I

(2.7)

where S[P] is the classical action, ((,;( and d( are tlhe ei-
genvalues and degeneracies of the operators 6+M; . We
will discuss the ¹ omponent theory further in Secs. III
and IV, but for the purpose of this section it is sufficient
to just use the example of the one-component thecry in
which case the effective action is given by (2.7) without
the last term.

The determinant of 3 is formally divergent and needs
to be regularized. There are a number of commonly used
regularization methods. ' If the space is Riemannian and
has sufticient symmetry so that the spectrum of the invari-
ant operator is known explicitly, then the g-function
method is probably most convenient. The generalized g

The divergence in V"' will be canceled by the addition of
counterterms. A discussion of renormalization can be
found in standard references. '

B. Effective action in cosmological spacetimes

Consider the class of spatially homogeneous cosmolo-
gies with metric

3

ds =dt gy, b(t)a'—(x)o (x),
a, b =1

(2.10)

ds =dt —a dA (2. 1 1)

The de Sitter universe on the other hand is a maximally
symmetric (four-dimensional) spacetime which can be
viewed as a dynamical (three-dimensional) homogeneous
space. Depending on its spatial section there are many
ways to put coordinates on it. In the R ' XS
Robertson-Walker coordinates which cover the whole de
Sitter space, the line element is

ds =(H cos21) (121 —d03 ), (2.12)

=dt Hcosh (Ht)dQ3, ——oo &t&oo, (2.13)

where dA3 is the interval on the unit three-sphere. The
time coordinates t and g are related by

where y,b(t) is the metric tensor and cr'(x) are the in-
variant basis one-forms on the homogeneous hypersur-
faces, satisfying the structure condition d o'
= —,'Cb, o."Ao', where Cb, are the structure constants of
the underlying symmetry group. For a diagonal type-IX
(mixmaster) universe, Cb, =e,b, the totally antisym-
metric tensor, and y, b

——I, 6,b, where l, are the three
principal radii of curvature. The case when two of the
three I, 's are equal gives the Taub universe, ' that when
all three being equal gives the Robertson-Walker (RW)
universe. We will consider just the static geometries, in
which case the RW spacetime is known as the Einstein
universe. The spatial metric d 03 being maximally sym-
metric is that of a three-sphere with radius a:
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(cos7)) ' =coshHt, tang =sinhHt .

Define

a =H 'cosh(Ht) .

(2.14)

(2.15)

Notice that at late times the scale factor of S goes as
a —H 'e ', where H =a /a is the expansion rate (Hubble
constant). The Euclidean metric on S is obtained by re-

placing t by ~=it:

dsz ———[dr +(H 'cosHr) dfI& ] . (2.16)

One needs to know the spectrum of the invariant opera-
tors to compute the g function. For many-component
fields [see (2.4)] in static spatially homogeneous spaces
A,„=ko +trz +M2 where ko ——( —co, co ), andi'~. are the
eigenvalues of the Laplace operator 5 on the homogene-
ous three-space, and Mz is defined in (2.6). Here N
denotes the collective spatial quantum numbers. If a
periodic condition is imposed on the imaginary time as in
the finite-temperature theory, then ko ——2irn o /P,
no ——0, +1,+2, . . . . For the Einstein universe (R '&&S ),

the characteristic function is the hyperspherical function
with quantum numbers N=(n, l, m) with ranges
n =0, 1,2, . . . ; I =0, 1, . . . , n; and rn = —l, —I + 1, . . . , l.
For the mixmaster or the Taub universe, one can use the
SO(3)-invariant representation function DxM with quan-
tum numbers N = ( J,K, M) where J = 1, 1, . . . ;K,M = —J
to J (Ref. 33). For the Euclidean de Sitter space, ~ are the
quantum numbers of S . The spectrum for these spaces
are well known. The effective potentials for the Einstein,
Taub, and de Sitter spaces have been calculated before.

C. Symmetry behavior

For the study of symmetry behavior in curved space-
time one should use a high curvature approximation
(M2 a «1) to the etfective action instead of a local (e.g. ,

Schwinger-DeWitt small-proper-time) expansion, as was
erroneously assumed in some previous work. This would
correspond to examining the infrared domain. One can
distinguish between classical versus quantum effects and
conformal versus minimal couplings, ' ' but the case of
special interest here is when Mq ——m + (1 —j)R /6
+A.$ /6=0. This corresponds to massless minimal cou-
pling or R =0 with arbitrary coupling at the symmetric
state. In such cases, symmetry considerations are deter-
mined solely by quantum effects. We found that in the
large-curvature limit the one-loop effective potential V"'
for these cases has a leading

~ P ~

behavior near the sym-
metric state /=0 in the Einstein and Taub universes, ' ''

and a leading ln i))
~

behavior in the de Sitter universe. '

This hitherto undetected behavior has interesting implica-
tions in cosmological phase transitions. ' '

As remarked in our earlier papers' ' this rather pecu-
liar behavior near the symmetric state is due to the zero
mode of the fluctuation operator and varies with the to-

pology of the underlying spaces. We learned that in
spacetimes with some compact dimensions the lowest
mode of the fluctuation operator has the strongest effect
on the symmetry behavior of the system. In the next sec-

III. INFRARED BEHAVIOR AND DIMENSIONAL
REDUCTION

A. Decoupling of the higher modes (or bands)

The discussion in this section applies to cases where
the eigenvalues of the fluctuation operator takes on a
band structure. By band structure we mean that the ei-
genvalues occur in continua with each continuum having
a higher lowest eigenvalue than the previous one. This
is true for fields on spacetimes with compact sections or
for operators with discrete spectrum (e.g. , the harmonic
oscillator). The procedure is to expand the fields in

terms of the band eigenfunctions and convert the func-
tional integral over the fields to an integral over the am-
plitudes of the individual modes. When the lowest mode
is massless it will give the dominant contribution to the
effective action. The low-energy behavior corresponds to
a lower-dimensional system.

Consider quantum fields on a manifold with topology
R ' &(8" where B is compact. Consider the situation
where the fluctuation operator 3 has the general form of
a direct sum of operators D and B:

,4' (x,y)=D' (x)+8' (y) (F 1)

with coordinates x on R and y on B". Assume that the
eigenvalues cu„of the operator B are discrete:

(3.2)

Decomposing the field P'(x,y) in terms of the eigenfunc-
tions lfr, (y) of 8'"

(3.3)

one obtains for the quadratic part of the action

d~ dy &g~" " l d~ & jg&~

where f„=Jdy g„(y)g (y). When d)„are properly nor-

malized f„=6„(wewill make such a choice here) the

tion we will show that this mode in fact dominates the in-
frared behavior: the system can be described by a field
theory in a lower dimension. We will give a formal
derivation of infrared dimensional reduction by examining
the result of the decoupling of the higher modes (or
bands, 'in the functional integral for the effective action.
We will then give a physical explanation in terms of
correlation lengths and the notion of effective IR dimen-
sion (EIRD). It then becomes clear that the infrared be-
havior of S de Sitter universe is equivalent to a zero-
dimensional system and the S &R ' Einstein universe has
a one-dimensional infrared behavior. An alternative way
of seeing this problem of dimensional reduction is by
spectral analysis. This is applied to direct product spaces
with some compact dimensions and to spaces which can
be reduced to product spaces. We use the Taub universe
as example. We also mention analogous behavior in
quantum-mechanical perturbation problems.
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resulting theory in terms of the new fields P'„will involve
massive fields with masses determined by the matrix A,"„,
even if the fields in terms of the old variables appeared
massless. We will take the smallest eigenvalue to be given
by n =0 and assume that its only degeneracy is labeled by
the indices a and b. Assume also that the operator D ' is

simply minus the Laplacian on R" times 5', the n =0
mode is then governed by the action whose quadratic
term is

2 f d'x(4o~0o+~o"foo0o0o) . (3.5)

The apparent mass matrix of this field is cop". For the
case of an N component A,P theory the action after this
decomposition takes the form

S[p+p]= f d "x —p'„(3,'5'"+co'b)p"„

a b b a a b b+
6 gnlm Nl lm +

~
fknlm 0k 0n Al 0m

(3.6)

where g„'~ ——fdy P'P„PIP and fk„l ——fdy PkP„P&it
The effective action is now given by the functional integral

e
—"~'= f [dp']e '(k+~)— (3.7)

The interesting case occurs when the lowest eigenvalue
approaches zero. At low energy the Appelquist-
Carazzone decoup1ing theorem assures us that with
higher modes decoupled from the dynamics, the infrared
behavior is governed by the lowest band. We are then
left with a purely lower-dimensional theory. The
higher modes do play a role in the ultraviolet diver-
gences present in the theory (e.g., renormalization prob-
lem in Kaluza-Klein theories ) and therefore determine
the high-energy running of coupling constants, but the
infrared region of the theory is governed by the lower
d-dimensional theory.

B. Correlation length and eft'ective infrared dimension

The above result of dimensional reduction from a for-
rnal derivation of mode decoupling can be understood in
a more physical way by using the concept of effective in-
frared dimensions (EIRD). By EIRD we mean the di-
mension of space or spacetime wherein the system at low
energy efFectively behaves. One well-known example is
the Kaluza-Klein theory of unification and cosmology.
After spontaneous compactification an 11-dimensional
spacetime with full diffeomorphism symmetry reduces at
energy below the Planck scale to the physical four-
dimensional space with GL(4,R ) covariance and a
seven-dimensional interna1 space with symmetry group
containing the standard SU(3) X SU(2) && U(1) subgroups
of strong and electroweak interactions. For observers
today of very low energy the effective IR dimension of
spacetime is four, even though the complete theory is
eleven dimensional. By the same token, Einstein's
theory of general relativity can presumably be regarded
as the EIR limit of an otherwise more complete theory
of higher-derivative gravity, induced gravity, super-
strings, or possibly some other as yet undetermined
theory. For curved-space symmetry-breaking considera-
tions, the EIRD which the system "feels" is governed by
a parameter g which is the ratio of the correlation
length:" and the scale length L of the background space
g==/L. For compact spaces like S, L is simply 2m

times the "radius" of S, the only geometric scale pa-
rameter. For product spaces R &(B with B" some
compact space, there are two scale lengths, Lb is finite in
the compact dimensions and Ld ——ap in the noncornpact
dimensions. Examples are Kaluza-Klein theories d =4,
b = 1, 6, 7, or others, finite-temperature field theory
(imaginary-time formalism L =P, inverse temperature)
d =3, b = 1, and Einstein (or RW) universe d = 1, b =3.

The symmetry behavior of the system (described here
by a A,P scalar field as example) is determined by the
correlation length:- defined as the inverse of the effective
mass M, tr related to the effective potential V,s by (we
use subscript eff to denote quantities containing higher
loop corrections)

~ ~ea
luau

2
:M ff ( =curvature-induced mass M i z + radiative corrections )

&min
(3.g)

It measures the curvature of the effective potential at a
minimum-energy state Pm;n ()=0 for the symmetric state
or the false vacuum, P=cr for the broken-symmetry state
or the true vacuum. ) The effective mass is defined to in-
clude radiative corrections to the same order correspond-
ing to the effective potential. (This quantity is called the
generalized susceptibility function in condensed-matter
physics. ) The critical point of a system is reached when
:-~oo or M,z—+0. In Aat or open spaces or for bulk sys-
tems, the critical point can be reached without restriction
from the geometry {note that in dynamical situations, ex-
ponential expansion can effectively introduce a finite-size

effect equivalent to event horizons, see Refs. 7 and 23).
However, in spaces with compact dimensions, the corre1a-
tion length of fluctuations can only extend to infinity in
the remaining noncompact dimensions, and thus the criti-
cal behavior becomes effectively equivalent to a lower d-
dimensional system. One can also think of:- as the
Compton wavelength A=2~/M, z of a system of quasi-
particles with effective mass M,~. Any fine structure of
the background spacetime with scale L is relevant only if
A & L. Thus when A is small or g « 1 (far away from crit-
ical point, at higher energy, higher modes contribute) it
sees the details of a spacetime of full dimensionality. At
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this wavelength, the apparent size of the universe is large
in both compact and noncompact dimensions. When
A~ oo or rI && 1 (near critical point, IR limit, lowest mode
dominant) structures of finite-size or compact dimensions
will not be important. The apparent size of the universe
will be determined by the scales associated with the non-
compact space and the EIRD is measured by the number
of noncompact dimensions. g very large is an indicator of
when dimensional reduction can take place.

Notice that in Hat-space critical phenomena the
effective potential V (free energy density) depends on the
coupling constants of fields which run with energy and
temperature. In curved-space coupling parameters run
also with curvature or the scale length of the space.
This makes the concept of EIRD even more interesting,
as there is now an interplay between = and L; and g can
either decrease or increase with curvature. For example,
for A, P fields in the Einstein universe' near the sym-
metric state /=0, the EIRD is equal to 1, but near the
global minimum of the broken-symmetry state, P=o.
(called P;„ in Ref. 15), it is equal to 4. Near the sym-
metric state, g~&1 signifies reduction of EIRD to one.
This is consistent with the theorem of Hohenberg, Mer-
min, and Wagner ' (for statistical mechanics on a lattice)
and Coleman (for continuum field theory) which states
that in dimensions less than or equal to two, the infrared
divergence of the scalar field is so severe that there could
be no possibility of spontaneous symmetry breaking: the
only vacuum expectation value for P allowed is zero.
Away from the region /=0 the one-dimensional behav-
ior no longer prevails. Indeed a global minimum of the
effective potential exists at P;„(see discussion in Sec.
IV of Ref. 15). Near P;„, i) &&1 and decreases with cur-
vature. Thus the apparent size of the Universe near the
global minimum actually increases with increasing cur-
vature. There is therefore no dimensional reduction and
the system has a full four-dimensional IR behavior. A
transition to the asymmetric ground state is not preclud-
ed as symmetry breaking via tunneling is in principle
possible. The complete picture extending from /=0 to

;„ is a combination of one-dimensional and four-
dimensional infrared behavior. Similar arguments can
be applied to other spacetimes or field theories. Using
this notion one can understand, for example, why it is
often said that at high-temperatures (small radius limit
of S') the finite-temperature theory becomes an effective
three-dimensional theory.

C. Dimensional reduction: An eigenvalue analysis

In the above we have introduced the notion of EIRD
and suggested the ratio of the correlation length:- to the
geometric scale of spacetime L as a measure of the condi-
tions for the system to behave effectively in the infrared
regime as in a reduced dimension. We suggested that for
product spaces R "&B with some noncompact dimension
d, the EIRD is usually just d. In this section we will veri-
fy this assertion by analyzing the spectrum of the Auctua-
tion operators in these spacetimes directly. We will first
discuss direct-product spaces and then discuss spacetimes
which can be reduced to product spaces in some limit of
continuous deformation.

1. Direct-product spaces

L,
a a2 1

(3.9)

The eigenfunction is a product of Y~ (0,$)e'" belonging
to the eigenvalues

2 l (I +1) n
KQ — +

a a
(3.10)

where N =(l, m, n), I =0, . . . , co, m = —1 to I,
n =0, +1,. . . . The eigenvalues of 3 are then
A.& ——K& +M2 . In the infrared region we are interested
in the contribution of the lowest eigenvalue (zero mode)
to the effective potential. We will consider the two lim-
iting cases of (a) S XR ' and (b) R XS' obtained when
a& and a&~ ~, respectively, and show that the EIRD is
equal to 1 and 2, respectively.

The effective potential V can be constructed from the
g function (2.8), which in this setting reads

g(v) =p 'g (2l +1)
z + z +My2V 1 (1 + 1) n '

l, n a2 a&

—V

(3.1 1)

where 2l +1 is the degeneracy of m. In the limiting cases
the summation over discrete quantum numbers will be re-
placed by integrals of the form jk 'dk. We will derive

the dimensionality of the reduced system by finding D. In
the following, constants independent of P will be ignored
since our main focus is on the dependence of Green's
functions and the effective potential on P. Thus in case
(a) a, ~oo, the lowest eigenvalues belong to the band
I =O. As aI~~, define k=n/a&, which assumes con-
tinuous value, g(v) becomes

g(v)-a, f dk(k +M2 )

a) ~, M2a2 ((1 . (3.12)

This is a one-dimensional integral. In case (b) a2 ~ ao, the
lowest eigenvalues come from the lowest band n =0 given
by the first term in (3.10), where I assumes continuous
values as az~ oo. Now call k =l/a&, g(v) becomes
(n =0)

Some of the examples we discussed above are direct-
product spaces: relativistic cosmology has topology
M =R ' (time) XS (or R,H, T ), Kaluza-Klein cosmol-
ogy has M XS (or other internal space), finite-
temperature theory has R &S'. Let us analyze a simple
example S XS' for illustration. (This could be the spa-
tial geometry of a "handled" Gowdy universe. ) Similar
reasoning can be extended to a wide range of product
spaces.

The wave operator 2 governing the fluctuation fields
in the large-1V limit is 3:—6+M2, where 6 is the
Laplace-Beltrami operator. For S &S' with radii a2
and a&, respectively, 6 is a sum of the total angular
momentum operator L on S, and L, on S':
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g(v)-2az J~ ™
dk k(k~+Mz )

0

a~~gp, M2 a, &&1 . (3.13)

The extra factor of k comes from the degeneracy of m
for nonzero I. The integral is two dimensional, as ex-
pected.

The direct-product space in this example can also be
obtained as a limit of S ~S )&S'. The eigenfunctions
of S which are the hyper spherical harmonics
Y„i (X,O, Q) ean be expressed as a product of the spheri-
cal harmonics Yi (8,$) and the Gegenbauer polynomi-
als G„i(g). The eigenfunction e'" on S' we saw above
are obtained as limits of G„i(X) as the angular momen-
tum of S is decoupled from the "radial" equations
governing G„~. This we will see in subsection 2 below.

Physically, the two limiting cases may represent two
different symmetry states of the system: one with cylin-
drical symmetry where the quantum states with good
quantum number m are eigenstates of the L, operator
(on S ), the other with spherical symmetry with good
quantum numbers I associated with the L operator. As
a result of symmetry breaking the original system can
end up in one of these states with a different symmetry.
External perturbations with a particular symmetry and
sufficient magnitude will influence the selection of the
end state of the system. A simple example in elementary
quantum mechanics is the Zeeman versus the Paschen-
Bach effects associated with many electron atoms sub-
jected to an external magnetic field. The total magnetic
quantum number of the system will become a good
quantum number at very strong fields. More sophisticat-
ed examples can be found in the consideration of classes
of internal spaces admitting larger symmetry groups
with the strong and electroweak gauge groups as sub-
groups in the Kaluza-Klein theory. By the same
analysis, it is not difficult to see that the EIRD of any
homogeneous cosmology with compact spatial section is
one; the spatial metrics of the Einstein-Rosen waves
S &R ', the Kantowski-Sachs universe with spatial
metric dl =dz +a dQ2, black-hole spacetimes, and
the whole class of stationary axisymmetric metrics in
relativistic astrophysics have EIRD=2. Similarly, the
(imaginary-time) finite-temperature theory R &&S' has
EIRD=3 and the Kaluza-Klein theory on M )&B"with
compact internal space B has EIRD=4.

case (iii). As we will see, using the eigenvalue analysis
introduced above these intuitions are indeed correct—
except for the "prolate" case. This is because our intui-
tive picture of the Taub universe (as described by a
"spheroid") is formed with scale lengths substituting the
curvature radii, which are what I; really are. The ex-
treme "prolate" limit I&

——l2 « l3 simply does not corre-
spond to a line in the ordinary sense, from which one
may form the erroneous impression of reduction to a
one-dimensional system. Let us consider the system case
by case. The eigenvalues of the Laplace-Beltrami opera-
tor are given by

J(J+1) 1
K~ —— +

I) I 2

1

I 2
(3.14)

where N =(J,K,M), J =0, 1, . . . , oo, K,M = —J, —J
+1, . . . , J.

In ease (i) 1 i ——12 ——13 it is just the Einstein universe S .
In this limit the g function is given by

oo J J
g(v)

J=O K= —J M= —J
J(J+1)

+M2 (3.15)

Now the quantum number J corresponding to the Casimir
operator in the SO(3)-symmetric eigenfunctions
Dx~(8, $,$) are related to the principal quantum number
n corresponding to the Casimir operator in the SO(4)-
symmetric eigenfunctions (hyperspherical harmonics)
Y„i (X,O, Q) by J =n/2. Similarly 1 =a/2 where a is the
radius of S . Rewriting g in terms of n and a gives

oo

g(v)- g q +M~' =Z(v, x),
q=1

(3.16)

space.
In case (ii) we increase the deformation in the oblate

direction, i.e., we are interested in the limit I&
——l2 &~I3.

To analyze this case it is useful to note the identity

where q =n + 1, x =M2 a —1, and the Z function was
defined in Ref. 14. Now when a is held finite and

M2 a «1 the lowest mode corresponding to n =0 or
q =1 gives the most dominant contribution to g. This
single-mode contribution comes from a zero-dimensional
integral (just a c number, g-[Mz ] ). This shows ex-
plicitly why compact spaces should have zero EIRD. If
however a —+ oo we recover a three-dimensional flat

2. Reduced product spaces f(J,K)= g g f (J,K) (3 17)

We now consider spaces which are not direct-product
spaces but can approach product spaces in the limit of
extreme deformations or large perturbations. One con-
venient example is the (static) Taub universe. '3 In
Ref. 15 we have analyzed its symmetry behavior for (i)
small anisotropy near the Einstein space. Here we want
to study the large anisotropy limits, i.e., under the condi-
tions (ii) li ——12 »13 ("oblate" configuration) and (iii)
1, = lz «13 ("prolate" configuration). Intuitively one
may be tempted to view the space to have geometry S
in case (i), R XS' in case (ii), and R 'XS in case (iii).
From discussions above one may also expect the system
to have an EIRD=O in case (i), 2 in case (ii), and 1 in

J=O K= —J K=—

With this (3.15) can be reexpressed as

g(v)= g (2J+1) +M2
J(J+1)

J=0 I(

oo oo J J+1) 1+2 g g (2J+I), +
K=1 J=K I) I 2

Replacing J/I
& by k and letting I

&
~ oo we get

1

12

(3.18)



1708 B. L. HU AND D. J. O' CONNOR 36

g(v)=2li f dk k(k +M2 )
0

oo K+41,' g f dk k k'+, +M, '
K =1 j' 2

—V

(3.19)

So as long as l3 is small relative to M2 ', this is dominat-
ed by the first term arising from K =0. This shows that
in the IR limit

g(v)-4l, f dk k(k +M, ')
0

(3.20)

i.e., the system behaves like a two-dimensional system.
Finally for case (iii), the limit l, =12 «13. In this limit

the curvature of the Taub space

R =(4t, —l3 )/21i (3.21)

becomes R ——l3 /(21, '-). In the limit l, ~ao the curva-
ture becomes infinitely negative. We are left with two
possibilities. Either hold l] and I3 fixed but finite, in
which case the spectrum remains discrete and in the IR
limit is dominated by the lowest mode J =K =0, giving
a zero EIRD as in the Einstein universe; or hold the ra-
tio of l, and I3 fixed and send them both to infinity
simultaneously, in which case the curvature becomes
zero, and we recover the fIkat three-dimensional space
with an EIRD of 3. So contrary to intuition (which uses
the erroneous picture of "stretching" the scale factors),
the deformed three-sphere does not approach a one-
dimensional "line" (which is indeed the case for Bianchi
type-I universe). This can be seen clearly from a plot
of the eigenvalues of the Laplace-Beltrami operator as a
function of deformation. In Fig. 4 of Ref. 33 the eigen-
values of the mixmaster universe from J =0 to J =8 are
plotted. The shape and deformation parameters (a,P)
used there are related to I; by

'jT

1~ ——loexp p cos a ——
3

12 = loexp p cos a+—
3

(3.22)

l3 ——loexp( —pcosa) .

The Taub universe corresponds to a =0' ("spheroid"). At
/3=0 [case (i), Einstein universe), all (2J + 1) levels of E
are degenerate, the lowest eigenvalue is J =0. At large
P&0 [case (ii) oblate deformation] the lowest K level of
each multiplet decreases and they all converge to zero as
the deformation increases. The "stacking up" of these
sublevels as the "pancake" flattens into an almost open
two-dimensional space gives rise to the degeneracy in the
lowest mode. This is what makes the infrared behavior
different from the "bulk" case of the Einstein universe. At
large p & 0 [case (iii), prolate deformation], the lower spec-
trum eigenvalue distribution is qualitatively not much
different from case (i). The lowest mode is distinct and
contains no degeneracy. Notice from Eq. (3.20) it is
indeed the degeneracy factor in the lowest mode which
gives a difFerent infrared behavior in case (ii). The re-
grouping of eigenvalues according to different J and K
values as the space is deformed is a manifestation of sym-

metry breaking in the system. Similar to our discussion in
the last section, here geometry is playing the role of the
magnetic field as in Zeernan effect in breaking and recon-
stituting the symmetry of the system.

Unlike product spaces discussed in the previous sec-
tion which are unrelated and disjoint, the above cases
can be related through continuous deformation. In the
minisuperspace picture, ' they correspond to points in
the world history (trajectory) of the Universe. In the
dynamical context, they represent different characteristic
solutions of the mixmaster universe. ' Specifically
cases (i), (ii), and (iii) correspond to the quasi-isotropic,
corner run (or small oscillation) and bounce (off the wall)
solutions. The changing symmetry behavior of the sys-
tem as a consequence of geometrodynamics is an in-
teresting phenomenon worthy of further studies. The
cosmological implications for inflation in the mixmaster
universe has been discussed in Ref. 18. The spectral
analysis we have discussed here for the type-IX universe
can be performed for other Bianchi types. It would be
interesting to see how the symmetry behavior of the sys-
tem changes as spaces with higher symmetry groups
reduce to lower ones as the Universe evolves (e.g. ,

type-VII', ~V I, etc.). The discussion in this section
would then provide a spectral depiction of geometro-
dynamics, which contains more direct information about
the low-energy infrared behavior.

IV. HIGHER-ORDER CORRECTED EFFECTIVE MASS
AND POTENTIAL

In Secs. II and III we have used the effective mass
M, s and eff'ective potential V,tr(P) for the discussion of
infrared behavior in curved spacetirnes. Already to one-
loop one sees that the effective potential in curved space-
times (with some compact dimension) behaves quite
differently from Oat space results near the symmetric
state, the difference due mainly to geometric effects. To
get a more accurate picture one should include higher
loop contributions. We will discuss in this section one
way of doing this and present the result for general
spacetimes. We find that when the dominant higher-
order terms are included, the effective potential behaves
only quantitatively different from the one-loop result.
For example, the ln

~ P ~

dependence in de Sitter space is
replaced by a power law near /=0. The qualitative
features of geometric effects on symmetry breaking de-
scribed in Sec. III are largely insensitive to these
modifications. However, for a quantitative description
of phase transitions in more realistic cosmological set-
tings, one needs a more exact form of the effective poten-
tial including these corrections. A convenient treatment
of higher-order corrections in the large-Ã (number of
fields) limit is via the two-particle-irreducible eff'ective
action of Cornwall, Jackiw, and Tomboulis and oth-
ers. ' We will construct this scheme for quantum
fields in curved space and use it to calculate the large-X
limit of the ¹omponent A.P field.

The main idea behind the construction is that, just as
one can solve by a variational calculation for the full
background field in a given situation, one can equally
well solve for the full propagator via a variational calcu-
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where we have used DeWitt's condensed index notation.
Defining

68 =(~'), =y',
5J;

=&C'e), =G'+y—f,
6K;~

(4.2)

lation. The relevant object is the two-particle-irreducible
(2PI) effective action I [Q, G], which is the Legendre
transform of a generating functional containing an addi-
tional external current. Functional derivatives with
respect to this external current generate vacuum expec-
tation values of an even number of products of P'. The
construction proceeds as follows. The generating func-
tional &[J,K] is given by the functional integral

—w[JK] dp + ~ ~ i ij 4

we can perform the Legendre transform to get

r [p, G] = W [J,K]—p 'J; —((f$~+ G J )K, (4.3)

6r -, 6r 6r
6(b ' 6G" 6G'

(4.4)

Solving (4.4) with J; and K;, set to zero then gives the
true ground state and propagator for the field.

The generating functional is then given by

K;~ is coupled to P 'P ~+ G '~ so that G '~ agrees with
( @'4 ) —( N') ( &Y) when the currents are turned off.
From (4.2) I [P, G] satisfies

e "(~ 1= f [d4]p[@]exp —S[4]+(N' —P ') P' . .—+ (&b'O' P$' G—")—
6$ ' 6G'J 6G"

(4.5)

which is to be solved iteratively. A change of variable to the background and fluctuation fields is appropriate at this
point. Thus, defining &O'=P '+P' and changing the variable of integration to the fluctuation field P yields

e "~' = f [dP]p[&f+P]exp —S[P+P]+P' +P'P . . —G' (4.6)

The expression for this efFective action can be written in the following form which makes its structure more apparent:

nr ,
- sr, sr

exp Tr G —I = f [dP]@[/+A]exp S[P+P)+—P'
5G 6&/

' 6G"
(4.7)

From the right-hand side of (4.7) it is apparent that G does for the two-point function what P does for the one-point
function. The background propagator is then to be taken in all internal lines as the propagator G, in analogy with the
background field always being kept P in the ordinary effective action. A little work allows one to write down the result-
ing expression for I in the loop expansion to be

I [P,G]=S[P]+—,'Tr in[6 ]+—,
' 3, (&f)G'J ,'Tr(1")+I [P—,G], (4.8)

where I [P,G] is the sum of all two-particle-irreducible diagrams occurring in the ordinary effective action but evaluated
with the propagator G. We will now apply the above scheme to the A.P field.

In the large-N limit the dominant contribution to the one-loop eA'ective action comes from fluctuations of the modes
transverse to the direction of P, i.e., from the Gz internal lines [see Eq. (2.7)]. The two-loop contribution can be written
as

I [P]=—,f d x&g I [trG(x, x)] +2tr[G(x, x) ]j

A.
2

f d x&g f d y&g P'(x)I G' (x y)tr[G(x y) ]+2G "(x,y)G'"(y, x)G" (x,y) I P (y) . (4.9)

Using the projection operators defined earlier this expression takes the simplified form

r"'[y]= —,f d x&g [3G, (x,x)+2(N —1)G, (x,x)G (x,x) +(N —1)G (x,x) ]

A.
2

f d x&g f d yegg(x)[3Gi(x, y) +(N —1)Gz(x,y)3] . (4.10)

Again it is evident that the dominant contribution in the large-N limit comes from the G2 internal lines and the four-
point vertex.

It is possible to obtain an expression for the sum of all diagrams of this double bubble character (usually called daisy
or cactus diagrams) in the large Nlimit. Taking into-account the dominant two-loop graph in the large-N limit the
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effective action (4.8) to this order becomes

I [P,G]=S[P]+—TrlnG '+ —f d x&g AzG(x, x) ——Tr(1)+—J dDx&g G~(x,x) .
2 2 2 4!

(4.11)

Varying with respect to 6 we obtain

G (x,y) = A~(x, y)+ G(x, x)5(x,y) .kX
6

Since

(4.12)

A~(x, y) =(6+Mp )6(x,y),
if we write

G '(x,y)=(b, +Y)5(x,y)

then we have the consistency equation for P:

X(x)=M2 + G(x, x) .
A.N
6

(4.13)

(4.14)

(4.15)

1 [P,G] =S[P]+—Tr lnG
2

A,X jd x&g G (x,x). (4.16)

Using (4.14) and (4.15) with X a constant this becomes

We can now use (4. 12) to eliminate Az from (4.11) to ob-
tain

of trying to understand the universality of critical ex-
ponents of thermodynamic functions in specimens of
finite extent as distinct from infinite or bulk systems,
where the Wilson-Fisher theory of critical phenomena
originated. Numerical studies like Monte Carlo simula-
tions which assume finite samples also show deviations
from the theory of infinite systems. As the finite system
becomes infinite, while approaching the infinite-system
critical point, the finite-size corrections become simpler
and obey a scaling law first introduced by Fisher.
Later Nightingale and others devised the so-called phe-
nomenological renormalization (real-space renormaliza-
tion) approach for finite systems. As expected this sub-
ject is of primary importance for surface physics, where
the systems under study are usually of lower dimensions
and constrained. The use of field-theoretical methods
was developed by Brezin and others. Two canonical
examples often studied are the so-called (i) slab and (ii)
cylinder geometries as finite-size corrections to the bulk
system. The boundary conditions used for the fields in-
clude the (i) periodic, (ii) antiperiodic, and (iii) open con-
ditions. In the following we are interested in a fixed
finite size rather than the approach to the bulk system
(the scaling regime). We will focus on the occurrence of
infrared divergences and a universality associated with
dimensional reduction in the IR regime.

2X f d x&g(X —M2 ) (4.17)
A. Finite-size eÃect in curved spacetime

Finally, the iterative equation becomes

(4. 18)

This can in principle be solved for X=X(P) and substitut-
ed back into (4.17) to recover the one-particle-irreducible
effective action with the sum of all daisy-type diagrams in-
cluded.

When P and X are constants, (4.17) defines a two-
particle-irreducible effective potential

V,s(Q, X)= V(P) — (X—M, ')'+ Tr ln[(b, +X)p '].
2X 20

(4.19)

We will use this in the next section to obtain the
minimum effective mass allowed for different EIRD's.

V. FINITE-SIZE EFFECT IN FIELD THEORY
AND COSMOLOGY

The modification of the infrared properties of systems
with finite dimensions or constraints (from geometry or
from the boundedness of the fluctuation operator) and
the corresponding change in the symmetry behavior is
generally known in condensed-matter physics as the
finite-size effect. It was first introduced in the context

As mentioned in the Introduction earlier work has
dealt with the effect of curvature and topology on sym-
metry breaking in curved spacetime. These global prop-
erties are expected to inhuence the critical behavior.
The effect we wish to discuss is neither of these exactly
but rather the generalization of the finite-size concept to
curved spacetimes. Viewing the problem in this way
may enhance our intuitive understanding of phase transi-
tions in curved spacetime (e.g. , it allows us to analyze
the admissibility of second-order phase transitions).
Since it is the finite effective range of space or spacetime
which gives rise to dimensional reduction and other in-
teresting phenomena, this effect should more appropri-
ately be identified as the finite-size effect. The finite-size
effect is not a topological effect. Topological effects on
phase transition are relevant for multiply connected
manifolds and for twisted fields. [In surface physics
problems case (i) mentioned above corresponds to
untwisted, case (ii) corresponds to twisted boundary con-
ditions, and case (iii) to finite systems. ] Finite-size effects
nevertheless exist for spaces of trivial topology. In gen-
eral it is neither purely topological nor geometrical. The
generic form of the effective action for a finite-size sys-
tem depends on both the geometry and the boundary
conditions. However, the form of the finite-size correc-
tions simplifies when the small fIuctuation operator has a
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near-zero eigenvalue. For the corresponding infinite sys-
tem, this would be the region in the neighborhood of a
second-order critical point. In this region many of the
details of the physical problem become irrelevant and
the physics is governed by the bulk behavior of the sys-
tem in its EIRD.

The finite-size effect is usually used in a restricted
sense referring to the modification of the correlation
functions of a finite system. However, in the general
sense as we have used above it refers to the effect of con-
straints on quantum fluctuations. It is in this sense that
the Casimir effect should be viewed as a manifestation of
the finite-size effect. The properties of the Casimir effect
in general depend on the details of the system since in
the calculation of the vacuum energy leading to the
Casimir effect, the full spectrum is taken into account.
Whereas in our study of the infrared behavior of quan-
tum systems (in spaces with some compact dimensions),
only the contribution of the low-lying modes are shown
to be important. The dominant contribution to the
Casimir force comes from the P-independent part of the
effective potential, whereas the contribution to the corre-
lation functions comes purely from the P-dependent
part, which is dominated by the low-lying modes in the
near-critical region. This explains why the "finite-size
effect" for the three-sphere S and the three-torus T are
similar. The detailed nature of the spectral contribution
accounts for the difference in the manifestation of their
Casimir force (for S is repulsive while that for T is at-
tractive). Useful information about the Casimir eff'ect

can be extracted from an analysis of the infrared diver-
gences by the methods we have presented, especially
with respect to the massless minimal case in curved
spacetime. But we will not pursue these questions here.

In the last section we have derived two forrnal equa-
tions for the effective mass M,a ——7 (4.18) and the
efFective potential V,tr (4.19) using the two-particle-
irreducible effective action formalism of Cornwall,
Jackiw, and Tomboulis for composite operators. We
will now discuss the solutions for different geometries.
This will be followed by some remarks on the nature of
finite-size effect in curved space and its relation with its
counterpart in condensed-matter physics.

+=M2 + kN
6Q(B)X

for d =0, (5.3)

X=M2 + X ' ford=1,120(8) (5.4)

A.N+=M2- ln
24m.Q(8) +yE for d =2, (5.5)

(5.6)

From these formulas we see that the solution +=0 for
M2 ——0 is not permissible for d (2. This can be inter-
preted to mean that there cannot be a second-order
phase transition for an O(N) model in two or less dimen-
sions, or, as Coleman put it: "there are no Goldstone
bosons in two or less dimensions. " This is what we have
referred to above as the Mermin-Wagner-Coleman
theorem. 4'4'

Let us consider each case individually.
(a) For d =0 we are dealing with spaces with finite

volume (e.g. , Euclideanized de Sitter S ). The eff'ective
mass or inverse correlation length is given by solving
(5.3) when Mz ——0:

M„=X'"=(XN/6n)'" (5.7)

(5.8)

where

for ¹ omponent scalar fields to leading order in large
N. It depends on the size of the system and vanishes as
Q~ oo. (For S, Q, =ger a /3. ) A critical point which
should exist in the infinite-volume system will disappear
in a finite-volume theory —the finite-size effect thus pre-
cludes a second-order phase transition from occurring in
finite systems. This can be seen also from the form of
the effective potential. For massless, minimally coupled
scalar fields in S near P =0 (Refs. 16 and 17), the
effective potential obtained by inserting the solution of
(5.3) for X with Mz ——(A, /6)P into (4.19) is given by

g 2

V((f)= a(A, ), + —,'(RAN/60)' P + qY +. . .

B. Symmetry behavior of product spaces

For spacetimes with topology R XB (where 8 is a
b-dimensional compact space) X is simply

XN dk I

«(8) (2~)" „k'+~„+X (5.1)

kN
60+ 4~

I (1 —d/2) . (5.2)

We express this explicitly for each individual dimensions:

where fl(B) is the volume of the subspace 8 and ~„are
the eigenvalues of 6 restricted to 8. Considering only the
dominant lowest mode contribution (i~o=0), we obtain
from integrating this lowest band the general expression
for the effective mass:

d/2

aia(A, ) = —3filV [1+in(6Qa /iriAN)]/32ir

Note that the ln
~

&j~ dependence on P near /=0 from
one-loop calculation is now modified to a power law. As
the volume becomes large in comparison with the volume
sustained by the correlation length, the effect of the finite
size of the system decreases and the higher mode contri-
butions to the effective potential can no longer be neglect-
ed. To extract this large volume behavior a different ap-
proximation which treats the system as a small deviation
from the infinite-volume limit is necessary. In general the
approach to the infinite-volume limit depends on the
higher modes. For example, in the case of S, in the
large-a limit, the deviations due to the finite size of S
drop off as inverse powers of a; by contrast, for T the
finite-size effect drops off exponentially. The effective po-
tential for T in the large volume limit is given by
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—(xL ) —(XL )'"
V,tt(P)= V s(P) — »~ [(XL, ') ' e ' + +(XL ') ' 'e " ]+2(2' )'

(5.9)

XN
120

2/3
1 2 128
9

2/3

18
(5.10)

We see an exponential fa11-off of the finite-size effect in
this case. It is worth emphasizing that the exponential
fall-off seems to be characteristic of periodic boundary
conditions (i.e. , of the torus) and not a generic property of
the approach to the bulk system; it depends on the bound-
ary conditions in the finite-volume setting (cf. Ref. 59).
This rapid fall-off makes periodic boundary conditions
very attractive for Monte Carlo simulations where finite
systems are used to mimic the behavior of infinite-volume
systems.

(b) d = 1, one open dimension. The next class of
geometries to consider are those with one open dimension.
In this case we are dealing with R &B". We have seen
examples from spacetimes such as the Einstein universe
with compact B =S . The present discussion is also appl-
icable to noncompact B but with fluctuation operators on
B possessing discrete eigenvalues. In this case the in-
frared contribution to the effective potential corresponds
to that of a scalar field in one dimension. When the
lowest eigenvalue is zero in the bulk system, by solving
Eq. (5.4) with Mq ——(A, /6)P for small P, we obtain

since it is the transition dimension for an allowed to a
forbidden second-order transition in an O(N) model.
The cutoff correlation length is in fact not determinable
from considering solely the two-dimensional infrared
problem. Rather, in the case of the two-sphere or for
periodic boundary conditions, the higher bands deter-
mine the scale. When the contribution of these bands is
taken into account one finds that (5.5) becomes the form

A,NP+=M2 + In(Xa ),24~0,
(5.13)

where a is a characteristic length scale and P is a number
that depends on the details of the problem.

In the case when the infrared dimension is two, as in a
binary fluid problem, there are two different directions to
consider since variation in the z direction breaks the local
symmetry of the problem. When we consider the hor-
izontal subspace with 0 now a quasivolume with effective
size given by the transverse correlation length the problem
is that of a two-dimensional scalar field. Again there are
large infrared fluctuations that randomize any ordering
tendencies. Solving (5.13) with Mz ——0, one finds a
minimum mass for the system given by

The effective mass around /=0 is therefore given by

2/3

A,N
p

ANa

48~0, 6~0 (5.14)

kN
1211(B)

(5.11)

Note that this is similar to the d =0 case except for the
difference in the exponent. Again there is no second-
order phase transition in this system. Substituting this
back into (4.19) yields the effective potential near f =0
(higher-loop corrected, large N)

4/3 ' 2/3
9 kN 1 A,N
2 120 2 120

2 k ~4+ ——p+
3 41

(5.12)

We see that again the one-loop V" I —
~ P ~

behavior is
modified to a power law. The nonzero curvature of the
effective potential near the symmetric state leads to
cosmological consequences similar to that of the d =0
case.

(c) d =2, two open dimensions. This includes exam-
ples ranging from a column of binary ffuid (open with
transverse x,y dimension) under the infiuence of Earth' s

gravity (variation in the z direction) to cylindrically
symmetric gravitational wave or axisymmetric stationary
solutions (with t,z as open dimension) in general re-
lativity. The two-dimensional case is rather unusual

(d) d =3, with one compact dimension. A familiar ex-
ample is the imaginary-time finite-temperature theory.
This case also has infrared divergences. The 2PI
effective potential is given by

(5.15)

From Eq. (5.6) we see that X=O is a permitted solution;
therefore, there is an allowed second-order phase transi-
tion. The higher-order modes give a contribution begin-
ning at order 0 which to leading order can be neglect-
ed. Solving (5.6) for X near d =0 we obtain

4~0 q 1 NA.

N 8 48~0,

' —3 2

(5.16)

In this case the effect of the lowest band when taken to all
orders becomes negligible. One would need to include all

Substituting this back into the effective potential (5.15)
yields

2 2

(5.17)



36 SYMMETRY BEHAVIOR IN CURVED SPACETIME: FINITE-. . . 1713

higher modes. For larger values of P, solving (5.6) and
substituting into (5.15) for X yields

1/2
kN k 3 A, 4

141 + —0 + . (5.18)
72~0 6 41

For finite-temperature theory the volume 0, is given by
the inverse temperature P. For Kaluza-Klein theory it is
the size L of the fifth dimension.

In the large-temperature or small-radius limit in these
two cases the effective potential becomes

V,tr(P, X)=—P
r 4 3

4! 2k 6

2

y 1/2 e-~ '[i+ —"(P'X)-'"+ ",'(0'&) '+ ] .
(p 3p5)1/2 8 128 (5.19)

The potential rapidly approaches the zero temperature
form as the temperature is lowered.

C. Deviations from renormalization-group behavior

The renormalization-group (RG) technique is often
used in the description of critical behavior. Such at-
tempts on finite or constrained systems can lead to errone-
ous results. For instance, using RG arguments one would
infer incorrectly the existence of second-order transitions
in some of the above examples. This is because continu-
ing the renormalization-group transformations means tak-
ing an ever larger cutoff'. For a constrained system, after
a finite number of iterations, the finite size of some of the
directions renders further iteration meaningless. This is
more apparent in a lattice system where the
renormalization-group transformations are implemented
by decimation. ' Repeating the decimation process one
eventually runs out of lattice in the finite directions.
When the lattice is not infinite in all directions what hap-
pens is that the smallest direction drops out first, followed
successively by the remaining directions that are con-
strained. The final result is that the renormalization-
group transformations can proceed ad infinitum only in
the unconstrained directions and the resultant transforma-
tion is that appropriate to the lower-dimensional system.
If this lower-dimensional transformation has a fixed point
then a second-order transition occurs, otherwise it does
not.

In condensed-matter physics much attention in this
subject has been focused on finite-size scaling. The
rounding effect seen in two or less dimensions corre-
sponds to the appearance of a lower limit on the correla-
tion length, and the shift in the critical point to a pseudo-
critical point (the point of maximum correlation length in
the absence of phase transition) arises from a nonzero in-
duced mass in the effective potential. From the way we
see it, the existence of a relationship among the rounding
exponent 0, the correlation exponent v, and the shift ex-
ponent k(0=v '=A, ) is derivable from the existence of a

minimum induced effective mass or, more generally, a
shift in the effective mass. We can also understand why
the phenomenon occurs in systems with less than or equal
to two dimensions.

VI. CONCLUSION

In this work we began with an inquiry into the symme-
try behavior of curved space and found that the geometry
and topology of spacetime could strongly influence the in-
frared behavior of the system. In particular for space-
times with some compact dimensions, the symmetry be-
havior of the system could effectively be that of a lower-
dimensional one, that of the noncompact dimensions.
(More precisely, it is determined by the ratio of the
effective mass, which runs with energy or curvature, to
the scale of the space in question. ) This phenomenon of
dimensional reduction can be understood by seeing that
the system has a discrete spectrum and that the lowest
band influences most strongly the infrared behavior. We
used the two-particle-irreducible representation of the
effective action to derive an expression for the effective
mass (or inverse correlation length) for systems in direct
product spaces. We then discuss how the geometric
effects in curved space under study are the manifestation
of a much more general phenomenon known as the finite-
size effect in condensed-matter physics. How the finite-
size effect can affect phase transitions in the early
Universe has been discussed in our earlier work (Refs. 17
and 18). Our later work will deal with dynamical effects
in symmetry breaking in curved space and how the finite-
size effect can manifest in certain classes of dynamical
spacetimes.
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