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Attempt at a classical cancellation of the cosmological constant
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I examine some classical models for a relaxing cosmological constant. The relaxation occurs by
means of a classical field which "rolls" down a potential hill. I suggest a feedback mechanism in
which the action of this field depends upon the scalar curvature of space-time. It is shown that
A ff can fall off faster than the red-shifting radiation density. There are problematic side effects as-
sociated with baryonic matter. I discuss these and possible treatments.

I. INTRODUCTION

One of the most puzzling facts of cosmology is the
smallness of the present value of the cosmological con-
stant A. This fact appears especially mysterious if it is
assumed, as is probable, that the Universe underwent
several phase transitions that changed the cosmological
"constant" in its early history. ' The amount by which A
changed depends in a very complicated way on the fun-
damental parameters of the theory. Yet we find, at the
conclusion of these processes, that the present-day value
of A vanishes at least to 120 decimal places when ex-
pressed in natural Planck mass units.

One can envision at least two ways of explaining this
fact. One could imagine a symmetry which would re-
quire A=O. Or one could imagine a dynamical mecha-
nism which would "relax" A to zero over a period of
time.

The difhculty with the symmetry approach is that no
symmetry is known at present that can do the job. Su-
persymmetry, if it is a symmetry of nature, must be bro-
ken at a large scale, greater than M~. One would ex-
pect then that A) (Mii ) . This is still too big by over
50 orders of magnitude. Perhaps some other hidden
symmetry lurks beneath the surface of our apparently
"broken" world. If so, either it has always been unbro-
ken so that A=O at all times (which would be hard to
reconcile, say, with what happens at the weak phase
transition) or else this symmetry has been "restored"
only at a later period in the history of the Universe but
was broken when the temperature was higher. While su-
persymmetry very likely has something to do with the
solution of the cosmological-constant problem, precisely
how seems as mysterious now as the problem itself.

In this paper I describe a dynamical mechanism to
make A relax to zero. Before describing it we should
mention three other notable attempts to describe such a
mechanism.

First, it has been pointed out by Mottola that de Sit-
ter space is quantum-mechanically unstable. He has ar-
gued that quantum-gravitational effects will cause A to
relax to zero in a manner somewhat analogous to the
screening of an external electric field by the breakdown
of the vacuum. This approach has the great virtue that

it does not need to postulate any "new physics" and
seems to us consequently to be very appealing. Howev-
er, it is orthogonal to our approach and we have nothing
to say about it here.

The second and third attempts, which to some extent
have inspired our own, postulate the existence of a com-
pensating field which "rolls" down a potential hill and as
it does so causes the effective value of A to decrease.
The key question is why this rolling stops when A=O.
There are a few possibilities which suggest themselves.
One can imagine that the potential for the compensating
field (which henceforth we shall denote by P) "bottoms
out" precisely when A,&&10 ' . But this is obviously
just equivalent to fine-tuning A to be & 10 ' to begin
with. Indeed any theory in which the compensating field
sector explicitly depends upon the initial value of A, and
so "knows" when to stop rolling, involves a fine-tuning
as bad as that one is trying to avoid. Another possibility
has been suggested by Banks. He supposes a situation
in which many bubble universes are nucleated at various
stages of the rolling of the compensating field (which he
denotes rj and dubs the "isachon"). In his approach it is
not necessary to stop the rolling at all: we happen to in-
habit a bubble formed at a time for which A=10
This can be justified using an (unobjectionable) version of
the anothropic principle. However, Banks notes that
there is a very serious flaw in the particular model he
proposes. The fraction of hospitable bubbles that resem-
bles ours in key astrophysical respects is smaller than
exp( —10' ) and hence the probability of that particular
model being true is equally small. It is not clear that
this flaw can be remedied.

Finally there is the possibility that a feedback mecha-
nism of some sort could tell P when to stop rolling. A
model of this sort was proposed by Abbott. We will not
give a detailed explanation of his model, which is quite
interesting, except to note that it suffers from the prob-
lem (seemingly inherent in the idea) that as P rolls, the
Universe must be inflating exponentially, so that by the
time A has attained its present value the matter density
and temperature of the Universe are exponentially small
even compared to A.

It is this last idea that is closest in spirit to the one we
explore in this paper. We also posit a feedback mecha-
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nism to stop the compensating field when A=O. The
way this happens is that the action for the compensating
field explicitly depends on the scalar curvature R. As
A~O so does R, as can be seen by looking at the trace
of Einstein's equations:

for these problems if they do arise and suggest as well
another version of the basic idea we are investigating in
this paper. Finally in Sec. VI we give our conclusions,
which are quite hopeful.

Our conventions here and throughout are as follows.
We set 16~G~ ——l. Our metric is —+ + + . The sca-
lar curvature of a sphere is negative. The cosmological
constant A is normalized so that the gravitational action
is

J d'x ( —R —AD) .
16~Gq.

We should note here to avoid confusion a very
significant difference between the models discussed in
this paper and those of Banks and Abbott. In those
models, the Universe is undergoing an exponential
inflation while P rolls down its hill. In our models, P
rolls rapidly enough that A,z always is significantly
smaller than p,«,„.Thus there is never an exponential
"de Sitter" expansion. (One could easily imagine such
an inflation occurring before the whole "roll-down"
mechanism commences; however, we do not consider
such possibilities here. )

The models we study in this paper are put forward in
an exploratory spirit. The whole enterprise is too specu-
lative for us to take any particular model very seriously
as a theory of the cosmological constant. Rather our
hope is to illustrate the problems and possibilities of this
approach. Nevertheless, we are encouraged by the re-
sults of this reconnaisance. We find models that seem to
have a good change of being made consistent with phe-
nomenology.

In Sec. II we look at a couple of very simple models to
orient ourselves. We find that there is a tendency for the
effective cosmological constant in the class of models we
study to relax to zero more slowly than the radiation
density (which would give us a universe too cold and
empty). In Appendix A we show that this is a feature of
a whole class of models. In fact we suspect that this
may be an instance of some thermodynamic constraint
(which, however, we have not been able to formulate).
This notwithstanding, we display in Sec. III a model
which does not suffer from this defect. If one looks at
the above equation one sees that the presence of matter
whose stress-energy tensor is traceful can interfere with
the feedback mechanism. One might worry that the
presence of such matter (such as baryons, but not pho-
tons) could cause problems. Specifically, since our
mechanism is one that essentially makes R relax to zero
(rather than A as such), one might expect it to erase not
only the effects of A but of the trace of matter stress en-

ergy as well. In Sec. IV we show that this particular
difficulty does not usually arise. However, other things
can go wrong inside baryonic matter and these we dis-
cuss also in Sec. IV. These difficulties are model depen-
dent and hence might not arise in some version of this
scheme. But in Sec. V we discuss a (desperate' ?) remedy

II. SOME UNSUCCESSFUL EXAMPLES

We consider Lagrangian densities of the form„„„—AD —R +Xq(P(x), R ),
where R is the scalar curvature of space-time and P(x) is
our compensating field. There are many interesting
choices for L&. We will briefly examine three simple
models for illustration, none of which will be satisfacto-
ry, but whose shortcomings will suggest appropriate
modifications. These three are

(A) Xg ————,'(Biit ) +a~t,

(B) Xp ———
—,'(Big)'+ait( —R)", r?) 0,

(C) X~———
—,'(Big)'( —R) "+a/, i?) 0 .

In case A the potential for iIl is just V($)= —a$. The
effective cosmological constant, henceforth denoted k, is
given by A, —:AD —aP. The classical field P(x) will just
"roll" to ever more positive values and A, will plunge
past zero and become increasingly negative. This is
what happens without feedback. Clearly this is no good.

In case B we try an obvious feedback mechanism.
The potential for P is now —a$( —R )" andk:—AD —aP( —R)". We will not solve the equations of
motion here, but will just describe the result. As P rolls
to greater positive values k decreases toward zero. The
trace of Einstein's equation tells us that consequently

R also decreases toward zero. As a result the force
tending to cause P to roll diminishes. (We should note
that the expansion of the Universe gives rise to a friction
term for it. ) There are solutions when k approaches zero
asymptotically. However, a rather obvious disaster
occurs. When the action is varied with respect to the
metric to obtain Einstein's equations a term is found of
the form gaP( —R)" 'R i'. As A, ~O, a$( R)"~A~, —
and this term goes to [gAii/( —R)]R ~. This essentially
amounts to a contribution to (16irG~) ' of order Aii/R
which blows up as R ~0. Hence, the feedback mecha-
nism of case B fails miserably. The essential lesson is
that if L& depends on R so as to provide the necessary
feedback, then (G~),ir depends on P(x). One must en-
sure that (G&),ir is not affected to an unacceptable de-
gree.

Model C is a vast improvement over 8 in this respect,
but still (barely) fails this test. The form of the kinetic
energy term for P is motivated by the following notion.
As A. , and hence —R, approach zero the "inertial mass"
and "friction" of P will increase without bound, and its
terminal velocity will also approach zero. Again, we
shall find solutions in which X approaches zero asymp-
totically.

The equations of motion for P(x) and gi (x) are
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—8 [&g ( —R) "8 P]=a,v'g

G P= —,'T —P+—,'(A —aP)g P —
—,'( —R) "[8 POPE —,'g—P(B P) ]

—
—,'i)( —R) " '(8 P)'R P++(g P —V VP)[( —R) ~ '(8 P)'] . (2)

Let us break up Einstein's equation [Eq. (2)] into its traceless and trace parts:

(R p —,'Rg p—)[1+—,'r)( —R) " '(8 p) ]=——,'(T„p—,'T„gp—)——,'( —R) "[8 /Opal ——,'g p(B p) ]

++( lgkP ViVP)[( R) —g —l(g y)2] (3)

—R = ——,'(T„,)', +2(A, —aP)+" ( —R) "(&.P)'+ " [(—R) " '(~.P)'].q+1 „,3q

At first glance it would seem that this model must suffer
the same disaster as before. (Mp~ ),~ would seem to
blow up as R ~0. However, recall that as R ~0 it will
also be true that (8 P) ~0.

Now we will solve the above equations under certain
simplifying assumptions. %'e assume a metric of the
Friedman-Robertson-Walker (FRW) form. We also as-
sume that initially the radiation density, p„d,is consider-
ably larger than the effective cosmological constant,
k—:Ao —aP. In that case, according to Eq. (3), if
(Mp~ ),s) 0 the scale factor, r, in the FRW metric will
expand approximately as t' . If, on the other hand,
(Mp~ ),s.&0, r will expand approximately exponentially.
Since we do not wish this to happen, we must require
that (Mp~ ),s & 0 and r —t ' . We take P to depend only
on t, that is we ignore spatial fluctuations. And finally
we define y by —R:—2@k.

First, consider Eq. (1), which with these assumptions
becomes

t
—3/2 [t 3/2$( R )

—
Q]

a
at

Asymptotically, for large t, the solution is

P= —', at ( —R)",

(6)

. .A, = ——', a t ( R)"=——', a t (2yA, )", —
1/( 1 —yl )

(2y)"a t
5

(7)

. . —R =2yA, =
1/( 1 —g)

2@a t
—1

5

Observe that the effective cosmological constant A. falls
asymptotically to zero as t

Here T„dstands for the stress energy of the matter in
We take this matter to be radiation so that the

trace of T„pd appearing in Eq. (4) vanishes. One can see
that the effective value of Mp~ = (16~G& )

' in the
traceless part of Einstein's equation [Eq. (3)], that is the
coefficient of (R p ——,'Rg p), is just

(M, ), =1++(—R) " '(8 P)

Now we turn to Eq. (4), the trace of Einstein's equa-
tions. It is easily seen using Eq. (7) that the term in

Eq. (4) vanishes, so that it reduces to

—R =2k, — P ( —R)

v+1 . 22. .2yA, =2k, — ( ,', a t )(2yk)+—",

11=——
r

2t2(2 g)1/ —1+1 4

e t
1 q+1 4

y 2 25
5 1 1

g —1 2y ~2t2

1 1 q+1
1 ——

y 5 g —1

~ =2 2n —3
~ .'v

Finally, we can evaluate (Mp~ ),z. Equation (5) gives

(M ) =1—+(j ( —R)Pl eff

4=1—+ at ( —R)"
2 25

4 2 2 5 1 1

2 25 g —12@
a t

2 2

1

5y g —1

=3 9—2

2 . 2g —3.
Notice that for (Mp& ),s to be positive, as required, il
must be larger than 2. In that case A. , which falls as
t '" ", decreases more slowly than p„d,which fall as
t . Eventually A. will come to dominate over p„dand r
will commence to grow more rapidly than t ', at which
point our approximations become invalid. In any event,
this will not give a realistic cosmology; for we know that
X today cannot be much larger than the matter density.



1694 S. M. BARR 36

If g &2, so that (Mp, ),&&0, the scale factor grows (and
hence p„,d falls) approximately exponentially with time,
while k only falls as a power. Again, therefore, A falls
more slowly than p,ad. We shall see in the next section
and in Appendix A that even for some more complicated
actions this remains the case. Why this should be so is
not clear to us. Perhaps a thermodynamic argument ex-
ists.

Let us make several comments on the foregoing. (1) It
appears possible to have a feedback mechanism that
works, at least at the classical level. (2) By introducing
R into the action for P, we run the risk of changing
(Mp] ) g too much. (3) This effect on gravity is huge and
unacceptable if R appears in the potential of P, but is
more manageable if R appears in the kinetic energy of P.
(4) Nevertheless, to achieve a "realistic" model we will
have to worry about making this effect sufficiently small.
(5) We must also worry about what happens inside a
matter distribution for which (T,, «,„)q&0. The whole
question of what happens inside such a matter distribu-
tion will be taken up in Sec. IV where we will see that
there are problems, but not necessarily any fatal prob-
lems. And (6) it seems very artificial to have negative
powers of R appearing in the action. In the next section
we will consider models where this is the result of in-

tegrating out another field. Even so, it seems peculiar to
have a physical effect grow stronger as spacetime be-
comes Hatter. But this, in one way or another, is re-
quired by the present approach.

not have chosen a linear potential for P. As long as
V(P) falls monotonically for a distance of at least Ao it
is satisfactory for our purposes.

For the potential V(X,R) we will choose the form

V(X,R) =c (XR +1) +—(a +b lnX)
X

=c(e R +1) +e (a +bo). . (12)

The reason for the c(XR +1) term is clear; namely, it
has a minimum at X = —1/R. In fact any function
V(XR) would do just as well as long as V(z) had a
minimum at z —1. We chose the perfect-square form for
simplicity of discussion. It is less obvious why we added
the second term in Eq. (12). Without it, as shown in Ap-
pendix A, (Mp~ ),ft(0. (This added term is of order
1/X so as not to disturb too greatly the minimum at
X= —1/R, and also so as not to contribute too much to
the right-hand side of Einstein's equation. ) In fact with
a&0 but b =0 we still find (Mp& ),~&0. Thus the loga-
rithmic term plays the critical role of allowing
(Mp~ ) ft) 0. Doubtless other forms of V would work
but have not done an exhaustive survey.

We will not present all the details of the solution to
the equations of motion, which parallel closely those of
the model in the previous section. We again seek solu-
tions where P and X are functions of t only, again as-
sume r -t', and again define y by —R =2@A., where
A. —Ap aP is the effective cosmological constant. The
equations of motion are given in Appendix B. The
analogue of Eq. (4) [and (8)] is

—R —&0+&ma«er (10)

III. A MORE SUCCESSFUL EXAMPLE

Let us consider now a Lagrangian density of the form

Z = ——,'(a, (t )'X'+ ~y —V(X,R ) ——,
' fi(a,X)'/X'

—R = —
—,
'

( T„,d ) 'q + 2A. + —,
'

(() X

+2c (XR +1)—2(a +b InX)/X

+6 [2cX(XR+1)]—!fiX'/X'. (13)

Here, the potential V(X,R) is to be such that the equa-
tion of motion determines X to be of order ( —R)
Then the kinetic energy term for P is essentially
equivalent to the q=2 case of model C considered in the
previous section. We recall that g=2 was a borderline
case where (Mp~ ),fr=0. What we seek here is some
form of V(X,R) that will allow (Mp~ ),ft to be positive,
so as to give r -t' and p„,d-t . In this we shall
succeed. The form of the kinetic energy for X is deter-
mined by the following consideration. As —R ~0 the
minimum of V(X,R) will be at X;„——1/R ~ m. If X
is to be near X;„(otherwise the feedback mechanism
will not work) it must be that the kinetic energy of X
will be well behaved as X~ oo. The coefficient 6 ap-
pearing in that term is a constant parameter. The form
we have chosen for the kinetic energy of X suggests a
more natural variable to use would be e —=X. Then L
could be rewritten as

X = ——,'(Bg(t ) e +a/ —V(e, R) —,'5(t)ger )—
+0++matter

A final point to be noted about Eq. (10) is that we need

As before we are assuming that the matter is radiation,
so ( T„d) q ——0. The analogue of Eqs. (6) and (7) is

(14)

Asymptotically for large t,

,'atx, A—,= —5ct tX— (15)

Now, define b =XR +1 so that X = —1/R (1 —6). It
will turn out that 6 is small compared to 1. From Eq.
(15) and the definition of ), it then follows that

2Se 2

5
(16)

A, (1+2P—2Plnx) '= t
5

4~2' 2
(17)

Up to logarithmic corrections, then, A-t, as expected

It will prove convenient to assume that b «1 and ex-
pand in powers of b. Hence we shall want to expand y
as y =go(1+P lnX). Shortly it will appear that
P=O(b). Solving Eq. (16) gives the result
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t (1+4P—2P lnX),
2a3r 2

2f ocxX= t (1 —2P+PlnX) .
5

(18)

The equation of motion for X [see Eq. (B6) in Appendix
B] gives (in the limit 5 «1)

1 1+4P —2P lnX
2/yo ~

( 1+2P —P lnX)
5Xo

2

X (b —a b lnX)— (19)

Finally, the trace of Einstein's equation [Eq. (13)] gives
[the term vanishes to order b /( lnX) and can be
neglected when X is large]

yo(1+2P P lnX)(1—+b +a +b lnX)

=—', (1 —P —2PlnX) .

This implies (equating equal powers of b)

2 1

1+
2b1+ 1+a P= b-

1+a (21)

At last (Mpi ) it can be evaluated. From the traceless
part of Einstein's equation [Eq. (B4)]

( M pi ),it ——I +2c~ . (22)

After some algebra, using Eqs. (18), (19), and (21) we find

(Mpi ),it= —b
lnL+1
lnX+ 3

( lnX —2 ) —( lnX —1 )

=3b +O(b/lnX) . (23)

So, for b &0, (Mpi ),ir&0. In order to find the crucial
ratio of the effective cosmological constant A, to the radi-
ation density p„,d we must solve the traceless part of
Einstein's equation. If p„,d ——A /t we find [see Eq. (B3)
in Appendix B]

2
3 T

3b (24)
2 T 7

I 3 3 1+t2 4 2y 2]2

9 3 9 75
. .A= —b- =—b-

4a y 2 16'

Since, from Eqs. (17) and
= 125/16m t, it follows that

(21), k= —,'(1/a yo t )

Prad

5

( ,",a b —3)— (25)

and desired. From Eq. (17) it follows that R, P, and X
are given by

R =—,t —'(1+2P—P lnX),5

2(x fo

For sufficiently large a we can have A. small compared
to p„d,consistent with our assumptions.

We have found a model which has the following be-
havior classically. Given an initial positive Ao (which is
small enough initially compared to p„dthat the Universe
expands approximately as t' ) then the eff'ective cosmo-
logical constant A. declines in tandem with the red-
shifting radiation density, always remaining smaller by
an approximately constant fraction. This is very much
what one would have hoped for. It even allows for vari-
ous phase transitions to occur which change the cosmo-
logical constant. As long as the change Ak from one of
these transitions is less than A, (which in turn is less than

p„,d- T ), so that A. remains positive, the mechanism
will operate as desired.

This model alone cannot give a satisfactory cosmolo-
gy, however. There are two reasons for this. The first
has to do with the fact that (Mpi ),it——1+2c~=3b. If
we look at the full Einstein's equation [Eq. (B2)] instead
of G t' we find

G P —(2c~)R =(1—2c~)G P (c~)R—g P .

In order to reproduce classical general relativity it must
be that c~ &&1. Instead, c~=(3b —1)/2= ——,'. We
wi11 discuss ways to obviate this difficulty later. The
second problem has to do with the solution of Einstein's
equation inside baryonic matter. This is the subject of
the next section. Again, this problem or set of problems
does not appear to be fatal.

IV. INSIDE MATTER

There are two sets of potential difficulties that we
might anticipate for models of this type that arise when
we consider the interior of matter. In empty space or in,
say, a nonzero electromagnetic field the stress-energy
tensor has zero trace. However, inside matter whose
stress-energy tensor has nonzero trace (such as nuclear
matter) there are contributions to —R which can be
huge compared to those produced by A. [see Eq. (B3)].

The first potential difficulty is that the compensating
field P might be expected to continue rolling down its
potential hill until 2A, (x) is sufficientl negative to cancel
off ——,'(T,«„)i in the trace of Einstein's equation [Eq.
(B3)]; that is, until —R =0 inside the matter. In other
words, our feedback mechanism tells i' to keep rolling
until —R =0. So it would seem that P would always act
to make —R =0 inside any matter, and thus efT'ectively
to cause all matter to gravitate like radiation, which has
a traceless stress-energy tensor. Fortunately, this does
not (generally) occur, as we shall see.

The second potential problem is that the rapid spatial
variation of —R, and hence of the field called X, inside
matter can itself give rise to unacceptably large contribu-
tions to the stress energy. We will illustrate and discuss
these two issues in turn.

We want to consider a sphere of nuclear-matter densi-
ty surrounded by "empty space. " What we mean by
empty space is just space filled by the cosmic blackbody
radiation. We are thinking in particular of a time late
enough in the history of the Universe that the blackbody
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—V [(VP)X ]=a,
or, since X=A —o.4,

(26)

V [(Vk)X ]=a
In spherical coordinates r, 0,$, we have

1 2 2 t)A(r)
r X =cx

r~ 3r 0r

radiation density is negligible compared to nuclear-
matter densities. Since the compensating field mecha-
nism is operating, it is also then true that A, in the "emp-
ty space" around the sphere is negligible compared to
the density of the sphere. So we will, in fact, set A, and
R equal to zero outside the sphere. Let the sphere have
radius l, density po, and pressure po «po. We would
like to solve for A, and —R inside the sphere. We are
hoping that the "sag" of k inside the sphere is much less
than po. Let us examine the model of the previous sec-
tion. The equation of motion for P inside the sphere
reduces in the case of a spherically symmetric ansatz to

inside the proton. In a matter-dominated universe, the
compensating field will not act to cancel off the trace
part of the matter stress energy. In this context it is
wrong to use spatial averages of p and R in studying the
behavior of P; overwise one would come to very different
conclusions. For example, for a star it would be wrong
to use the above calculation with l set equal to the radius
of the star and po set equal to its average density. Rath-
er, in the space between the nuclei, —R =0 (though the
Riemann curvature is of order (p)„,„),so that there the
field is "pinned" as before. P can only sag inside the in-
dividual nuclei. (One must also take into account the
electrons, but the qualitative conclusion is unaffected. )

However, for a neutron star the situation is quite
different. There the relevant quantity in Eq. (32) would
be rsch„/l for the whole star, which can be significant.

In the foregoing calculation we assumed we could
neglect the contributions to the stress energy inside a nu-
cleon except from k and po. This is wrong for the model
of Sec. III which we used. An inspection of the trace of
Einstein's equation [Eq. (83)] reveals several dangerous
terms:

And, if dA, /Br =0 at r =0,
aX(r) = —'n rX

Br (28)

—R = 2A. + —,'(8 P)'X'+2c(XR +1)

—2(a +b lnX)/X+ —(8 X)'/X'
The boundary condition at r =l is A, =O. Now, suppose
we can ignore all contributions to the stress energy ex-
cept those of A. and po inside the sphere. (This means we
are ignoring the second of the potential difficulties re-
ferred to at the beginning of this section. In fact, in this
model, this will turn out to be an unjustified assumption.
However, in any realistic model this must turn out to be
justified. And for such a realistic model our present ar-
guments would, mutatis mutandis, apply. ) Then inside
the sphere

+6 [2c (XR + 1)X] . (33)

2r)ER = —(VP) X + (b —a b lnX)+—0 (5) .
X

(34)

The terms that cause concern are (6/2)(B X) /X, and
6 [2c (XR +1)X]. Returning to our analysis of a spher-
ical distribution of matter we have, using the equation of
motion for X [see Eq. (86)],

and

X = —R =2k+ —,'po (29) We are looking for nearly static solutions, and setting
6=0 for simplicity. Also [see Eq. (28)]

= —,'a2r ( —,'po+2k, )
Br

If
~

A,
~

&&po, as desired,

(30)

So

,'a rX, .'.
~

Vd
~

=—,'arX-
Br

(35)

2c~= —( VP ) X /(XR ) —( b —a b 1nX ) /( XR—)

A, = —,', a po (r —l ),
=

I
~&. =o) I

= —'a po l

(31)

and

( —,'a r X ' b+a+b lnX)—1

1 —6 (36)

Since the mass of the sphere is just —', m.l po= m,

po 24 4m

+ cx rschw

4 l
(32)

where rs, h is the Schwarzschild radius of a sphere of
mass m with 16~G& ——1. Now, for a proton, say,
rs, z /1 —10 . So that the amount by which P and A.

"sag" inside a proton is totally negligible. What hap-
pens is that P is "pinned" outside the proton to its
"empty space" value, and hence cannot fall very much

6 (2c~)=6 [(1—5) '( ,'a r X ' ——b+a+b lnX)] .

(37)

The term proportional to a is of order o. R. Since we
have a & 1/b & lnX » 1, this contribution is much
greater than the left-hand side of Eq. (33). Far worse,
however, is the contribution from (b lnX) which is of
order b/l . Since 1/l p for a nucleon is roughly 10
this term completely overwhelms the ordinary stress en-
ergy of the nuclear matter itself. We have set 6=0, but
if 5&0 then the term —,'5(B X) /X also contributes of
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order 6/l~.
Thus we have identified some potentially serious

difficulties with our approach. The gravitational equa-
tions inside a nucleon can receive anomalous and huge
contributions. To some extent this may be a peculiar
feature of the particular model we have studied. For ex-
ample, the really severe troublesome contribution from
the term as we saw came from the b lnX/X term in
the potential V(X,R). The rest of the terms in that po-
tential led only to contributions that were of order unity
times po rather than order 10 times po. This suggests
that other potentials for X might be found that do not
have this problem, though we have not found any.
Furthermore, if instead of (5/2)(B X) /X the kinetic
energy of X had been of the form (6/2)(B X)/X", with
n )—,', this term would have given no trouble. It would
seem then that, while these effects are a danger, there is
no reason to conclude that they will be fatal to the
whole approach.

We can summarize this section in three statements.
(1) The second difficulty that we anticipated might arise
inside baryonic matter does arise in the model of Sec.
III. That is, the rapid spatial variation of R gives rise to
huge and unacceptable contributions to the stress ener-
gy. (2) These objectionable terms are very dependent on
the details of the model, and there is reason to suspect
that models can be found where this trouble does not
arise. And (3) the first difficulty we anticipated does not
arise —at least in models where the second difficulty is
absent —because of the pinning of A, to its empty space
value outside of the nucleon.

V. A REMEDY FOR SIDE EFFECTS AND
ANOTHER (LESS PROMISING) APPROACH

So far we have shown that it is possible to have the
effective cosmological constant relax toward zero as fast
as the red-shifting blackbody radiation density. We can
imagine the Universe starting (when T-Mp~) with a
cosmological constant Ao near (Mp&), and ending up at
the present epoch with an effective cosmological con-
stant of less than (3K) . And, as noted above, this can
still hold even if the Universe has undergone in the
meantime various phase transitions [such as the grand-
unified-theory (GUT), weak, and chiral and confinement
phase transitions]. Were there no baryonic matter
around but only radiation we would have in hand a fair-
ly successful phenomenology. The two main negative
side effects for phenomenology are, first, that there is an
extra term of the form (c~)Rg ~ in Einstein's equation,
where c~—1 (see Sec. III), and, second, that the stress
energy inside nucleons or nuclei can be badly distorted
by anomalous contributions (see Sec. IV). These prob-
lems will not be too serious until later in the evolution of
the Universe when baryonic matter comes to be impor-
tant. Therefore one can imagine that a mechanism simi-
lar to that embodied in the model of Sec. III operates in
the very early Universe, but that at some critical temper-
ature (or curvature ) a phase transition occurs which has
the effect of changing the character of the effective ac-
tion in such a way that the diseases mentioned above are

cured. In the particular model of Sec. III what would
have to happen in such a phase transition is that what
we called 6 would have to become exceedingly small. If
6 were zero then the extra term in Einstein's equation,
(c~)Rg ~, would simply vanish, and the troublesome
term 6 (2cbX) would do so as well. Now, 5 is given by
Eq. (B6). It could therefore be suppressed if (Big) X,
(a +b lnX)/X, and —,'5(BX/X) were all suppressed. One
could imagine, for example, that each of these terms de-
pended upon another "dilaton" field, Y—=e', analogous
to X =e . If, say, the kinetic energy term for P were
—

—,'(il~(t) e e+ ' and the potential for X(=e ) were
e e '(a +b cr ); these terms would be exponentially
suppressed if a phase transition were to occur in which ~
suddenly sharply increased. This device adds another
layer of artificiality to the model of Sec. III. But at least
it shows that these difhculties are not unsuperable in
principle, and perhaps an effect such as we have de-
scribed could ultimately form a part of a simple and
more realistic theory,

This line of thought suggests a variant of the ideas we
have been exploring up to now. The models we have so
far examined all had feedback mechanisms which
operated continuously, as it were. That is, as —R
changed smoothly the action for the compensating field,
P, also changed smoothly in such a way as to slow down
the motion of P when A, approached zero. Alternatively,
one could envision a situation in which P rolls freely,
without any significant feedback from the metric, until a
critical value of the scalar curvature is reached, at which
point a sudden phase transition causes the motion of
the compensating field to be quickly damped. For exam-
ple, if the Lagrangian for P is as before ——,

'
( BiP ) e

+a/, then the equation of motion for P is —(I/&g )Bi
)&[&g (8 P)e ]=a. If a phase transition causes cr sud-
denly to increase then (8 P) will be squeezed to an ex-
ponentially small value. All of this sounds very simple
(and as we observed some such effect could cure the side
effects of the other mechanism). However, by itself, con-
sidered as a mechanism to solve the cosmological-
constant problem; it has severe difficulties. Without go-
ing into quantitative detail we will just list and describe
qualitatively the chief difficulties we have found. (1) If
the kinetic energy of the compensating field P were
——,'(Big) e then, as P rolls freely down its potential hill
with o. remaining nearly constant, the scalar curvature
—R will not approach zero as k does. This is simply be-
cause much of the potential energy of P is converted into
kinetic energy (of order Ao if P starts initially at /=0),
which contributes to —R through Einstein s equation.
A possible, if radical, remedy would be to have a kinetic
energy term for P which has a traceless stress energy,
such as ((Big) ) . Another possibility would be some
kind of extra damping for P. (2) The kinetic term for P
acts as a steep bottomless potential,

V= —,'(BgP) e = —
—,'[(5 —(V'P) ]e

for the field o. . Even if there were some potential barrier
in place to keep o roughly constant until the phase tran-
sition occurred, one must take into account the possibili-
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ty that o. would tunnel through this barrier prematurely.
(3) Finally, if P rolls freely down its potential hill fast
enough that A, stays small compared to the red-shifting
p„d,it will take a very small increment of time for k to
race past A, -10 ' (which is the value we would like it
to have today), cross zero, and become hugely negative.
There may not be sufficient time for the metric to
respond or for the phase transition to occur.

All of these considerations led us to prefer rather to
search for examples of the other "continuous feedback"
mechanism. Perhaps with more imagination a simple
way to implement successfully this other approach could
be found.

VI. CONCLUSION

As emphasized in the Introduction we have advanced
these ideas in an exploratory spirit, recognizing that our
models are somewhat artificial. However we are en-
couraged by the fact that in its main outlines the ap-
proach seems to work. There are some problems, but
they are not as severe as one might have expected, and
seem remediable. Indeed, on the hopeful side, it is good
that there is some area of phenomenological difficulty as
there is then some chance that a successful model will
have something interesting to say which can be checked
by experiment.

The whole approach we are exploring is in spirit akin
to the study of Higgs-boson potentials or to the search
for a satisfactory model of inflation. The positing of
some complicated Higgs-boson potential does not really
give a completely dynamical understanding of a pattern
of spontaneous symmetry breaking, but it shows that it
is possible, and can serve as a phenomenological descrip-
tion of the process which one can study and even use to
make predictions. Similarly, the invention of various

scenarios for inflation (old, new, supersymmetric,
Kaluza-Klein, and so forth) and of various forms of the
"inflaton" potential has, at least up to now, just shown
us what some of the problems and possibilities are,
without giving us anything approximating a "theory" of
inflation.

From the point of view of real physical understanding,
the approaches of supersymmetry or that of Mottola
seem somewhat more principled than ours. On the other
hand, the approach here may sooner give an easily stud-
ied and phenomenologically successful model.

We have neglected completely quantum effects. In
particular one should worry about radiative corrections
that might induce terms that would destroy the feedback
mechanism, tunneling, particle creation, and, generally,
about how we have made the problems of quantum grav-
ity worse. We do not see any reason, as yet, why quan-
tum effects would prove harmful to the present ap-
proach.

At least at the classical level, then, we believe we have
shown that it is possible to find models in which the
cosmological "constant" relaxes to zero rapidly enough
that one ends up with a matter-filled universe similar to
our own. There are some painful side effects associated
with the presence of baryonic matter; but there seem to
be ways to palliate and perhaps even cure these. We
hope that with more work better mechanisms and
simpler models may be found.
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APPENDIX A

To show how general the phenomenon remarked on in the text whereby the ratio A, /p„d tends to increase for a
wide class of models of this type, we look at the case

X = —
—,'(aq(t ) X"+czar —

—,'5(agX) /X —V(X,R ) —R —AD+X (Al)

where we take

V(X,R) = g a„(XR)"=f (XR) . (A2)

Einstein's equation is

G ~= —,' T ~„„„+—,'(A —a—p)g ~ —,
' [a'ya~y ,'g "~(a.—y)']x" —,' —v(xR)g"~ [—a"xa~x——,'g'—~(—a,x)']/x'

—(a v/aR )R ~ —2[(g ~ —7 v'~)( a v/aR ) ] . (A3)

The trace is

—R = ——,
' T „„,+2k+ —,'(a p) x"—2v(xR)+ —(a x) /x —(av/aR)R —6 (av/aR) . (A4)

The traceless part is
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(R P ——'Rg P) 1+ av
4 BR

~

(
Ttraceless ~ilp 1 [axyapy ]gap(a X)2]xq

——[a XaPX ——,'g P(a X) ]/X —2[(—,'g P —V' VP)(av/aR)] . (A5)

The equation of motion for X is

av—/ax ~(a,y)'x~ '= —-s(a,x)'/x' —5
' a.[&g (a x)x-'], (A6)

while that for P is

—a [&g (a (h)x"]=a .
g

We assume p, R, X, etc. , depend only on t and that (Mp& ),s ——1+aV/aR & 0 so that r —t '~ . Then

(t'"Px")=a P= 'atX "— . .k= 'a'tX——

(A7)

(A8)

We define P and y by X= —( 1/R )P and —R =2y A, , so that

A. = ——', a P "t(2y)"A,~ .

For large t

(A9)

g —1 2y

1/(g —1)
1

a t
(A 10)

The equation for X becomes, in the limit we can neglect 6,

—av/ax+~ j'x~-'=0, av/ax=
2 p 5(rI —1)

(Al 1)

Equation (A4) becomes, if we assume the matter is radiation,

+2@A,=2k, — A, —2v+ —x /x —(av/aR)R —6 (av/aR) .
5(rj —1) 2

(A12)

Now if X satisfies XR = —I3 (and if we neglect 6), then V is approximately a constant in [Eq. (A12)] which can be ab-
sorbed into Ao. Moreover one can check that the last term in [Eq. (A12)] vanishes. Thus

2~= —' (A13)
5 g —1 2yk dX

Using Eq. (Al 1)

1 5g —6r

Then

4g —6
5(g —1) 5(g —1)

(A14)

(M pi ),tr= 1+a V/aR = 1 — y
2 3(r) —2)

5(g —1) 2(2g —3)
(A15)

We see that (Mp~ ),tr is only positive if g&2. However, when A, -t '" '' falls more slowly than p which goes as t
(assuming that initially A, «p).

APPENDIX B

Here we present the equations of motion for the model of Sec. III. The Lagrangian is

J = ——'(aqua) X +a/ —c(XR +1) +—(a +b lnX) ——5(a~x) /X —R —A —X
2 X 2

Einstein's equation is
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G ~= —,' T ~—„„,+ —,'(A —aP)g "~—
—,'[8 PB~P ——,'g ~(B P) ]X ———c (XR + 1) +—(a + b 1nX) g ~

X

—2c (XR +1)XR ~ ——[8 XB~X —
—,'g ~(B X) ]/X +2I(g ~ —V V~)[2c (XR +1)X]I (B2)

The trace of this is

—R =2k+ —,'(r) P) X +2c(XR +1)—2(a +b lnX)/X+ —(8 X) IX +6 [2c(XR +1)X)——,'(T „„„)q . (B3)

The traceless part of Eq. (B2) obtained by subtracting —,'g ~ trace is (assuming the matter is radiation now)

(R ~ —,'Rg ~—)[1+2c(XR+1)X]=—,'[r) Pd—~P——,'g (c) P) ]X +2I( —,'g —V V~)[2c(XR +1)X]I

The equation of motion of P is

—B [&g (r) P)X ]=a .
g

The equation of motion of X is

—2c(XR +1)R + (b —a —b 1nX) —(BqP) X= —6(BqX) IX —6 8 [&g (8 X)X ] .

(B4)

(B5)

(B6)
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