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Traceless pole particles with intrinsic spin in spaces with torsion
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It is shown by the method of Papapetrou that a traceless pole particle with intrinsic spin in

spaces with torsion satisfy u'u, =0 and Du'/Dq =0, where u' is the velocity of the center point,
and D/Dq is the covariant derivative with Cartan torsion.

u u, =o,
du '/dq+ I'j~ u ju =0,

(2a)

(2b)

where I & is the affine connection containing torsion.
We shall call motion that satisfies Eq. (2b) Cartan trans-
port.

In Sec. II, we introduce the basic notation and derive
the basic equations, using the formalism of Ref. 6. Al-
though Yasskin and Stoeger derive more general equa-
tions than ours, which are limited to pole particles and
intrinsic spin, the derivation using the notation of Ref. 6
seems worthwhile to include here because of its simplici-
ty in this case. In Sec. III, the traceless side condition is
analyzed for spaces with torsion. For pole particles we
get back the side conditions of Ref. 1. Since the spin
equation found in Sec. II is also the same as in Ref. 1,
the solution for the trajectory will also be the same, ex-

I. INTRODUCTION

In some previous papers' the method of moments
that Papapetrou introduced in general relativity was ap-
plied to particles with spin whose energy-momentum
tensor had zero trace. The paths such traceless particles
took were shown to be null geodesics. If u' represents
the velocity of the center of such a particle [=dx'/dq,
where q is a path parameter and x '(q) is the position of
the center], then, with {I'k I being the Christoffel sym-
bol,

u'u; =0, du'/dq+ {,'k {u'u =0 .

Heyl, von der Heyde, Kerlick, and Nestor and Yass-
kin and Stoeger ' studied particles in spaces with a
Cartan torsion. In particular, Yasskin and Stoeger ap-
plied Papapetrou's method to the problem. The purpose
of this paper is to calculate the trajectories of traceless
particles with just intrinsic spin but for spaces with tor-
sion. We simplify the calculation to refer to pole parti-
cles only, i.e. , those for which integrals of the type f 6x'

[ ] d V=0, where 6x' is the distance of the volume in-
tegration point from the center X' on a surface of con-
stant time. The result obtained is that X' satisfies the
equations

cept that I '
k must be used instead of {' k {. A traceless

pole particle with intrinsic spin performs null Cartan
transport in spaces with torsion.

II. BASIC EQUATIONS

We follow the notation of Heyl, Heyde, Kerlick, and
Nestor, by and large, so that X'~ represents the nonsym-
metric canonical energy-momentum tensor, S'

~ the Car-
tan torsion that appears in the connection I 'j~, and ~'~

the intrinsic spin density of the particle. However, to
match up with Ref. 1, we use Dk or D/Dx (instead of
V'k ) for the covariant derivative using the I '~k, and T'"
(instead of o' ) for the symmetrized energy-momentum
tensor. Relations between I, { I, and between X and T
are

pic Tij (D 2S m
)( ij k ski hji)

I i, —{;,}+S„—S, ; —S;, ,

(3)

(4)

(e~'~)+(I ' —2S'i„)eX

a (er"')+r' er k~+rk er'"'=ex "'
J jm jm

(6)

where 3 ' = —,'(3' —3 ').
The integration of Eqs. (6) and (7) is made over a sur-

face at constant laboratory time t, it being assumed that
X and r are localized. They eventually are confined to a

point. Space divergences integrate to zero, so that we

get

as shown in Eqs. (3.8) and (2.11) of Ref. 6. I '~k is not
symmetric in j and k, but the Christo(fel symbols
are, while ~'~ and S'~ are antisymmetric in i and j.

The equations we need are derived from those for X'~

and r' ~ given by Eqs. (3.12) and (3.13) of Ref. 6. How-
ever, we need to convert these to densities. This is done
by utilizing

e =( —detg;k )', d, e = { k, Ie,
rl.

{
k

{ 2S I.

Equations (3.12) and (3.13) of Ref. 6 can then be written
as
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(d/dc t) f 2' des+ f (I ' —2S' )2 &des

R 7jk(d cL)

(d/dc t) f r'' de+ f (r',.r-"&+rk,.r™)do&

d ct) (9)

form with the notation in Ref. 1. With these definitions,
and noting that

u =dX /dq =(dX /dc t)dc t/dq =u dX /dc t, (21)

where q is the path parameter, we find from Eqs. (17)
and (18) that

where dcu=e d V, where d V is the volume differential in
laboratory coordinates on the surface of constant t.

Following the method of Papapetrou, we need to ob-
tain from Eqs. (6) and (7) equations for xX and xr where
x' is a position in space-time. We have

u p =u X dc' (22)

u S =2u 0 &ikmd (23)

Multiplying Eqs. (15) and (16) by u, and using Eqs. (22)
and (23) we get

B,(x eX")=eX' +x B~(eX"),

B,(x er'"&) =er'" +x B,(er' ') .

(10) dp'/dq+(I'& —2S'& )u&p =R '&"uiS k /2,
dS' /dq+I'- u~S +I u~S™=p'u —u'p

(24)

(25)

(13)

We now make the expansion

x =X (t)+Ax (m =1,2, 3),
x =X =ct (m =0),

on the surface of constant t, about the center point
X (t). Also expanded this way are I '&k, S'&, and R'&".
Then making the pole approximation that integrands
containing the first or higher powers of 6x' integrate to
zero, we find that Eqs. (8) and (9) reduce to

(d/dc t) f 2' de+(r', —2S', ) f r-&do&

=R '~
~qk(d co, 15

(d/dc t) f r"d~+r', f r-"&d~+r", f r'-&d~

r.~"~d~,

where the I,S, and R components are evaluated at the
center point X . We find that Eqs. (12) and (13) reduce
to

(dX /dc t) f 2' des= f &' der,

(dX /dc t}f r'"'dto= f r'" der .

(17)

The final equations are obtained by defining the
momentum and spin tensors

The divergences in the last terms of Eqs. (10) and (11)
are to be taken from Eqs. (6) and (7), but we omit writ-
ing the whole expression out here.

Integrating Eqs. (10) and (11) over space at constant
time t gives

(d/dc t) f x 2' des= f 2' den+ f x-a, (er'&)dV,

(12)

(d/dc t) f x r' dao= f r' do&+ f x B&(er' &)dV .

With the notation D /Dq representing the absolute
derivative involving the connections I, these become

Dp'/Dq —2S' u p = —,'R ' u(S k,
DS' /Dq =p'u —u'p

(26)

(27)

Except for the term in S'~, these equations have the
Papapetrou form although the covariant derivative is
now constructed with the I, as can be seen by compar-
ison with Eqs. (2.9) and (2.10) of Ref. l. Our Eqs. (22),
(23), (26), and (27) are the pole-particle intrinsic-spin lim-
its of Eqs. (111)—(114) of Ref. 7. Since R'&, u', and
S'j all have tensor character, we may infer from Eqs.
(26) and (27) that p' and S'" also have tensor character,
something that is not assured at the outset from Eqs.
(19) and (20).

III. THE SIDE CONDITIONS

We shall define a traceless particle as one whose sym-
metrized energy-momentum tensor satisfies

T'; =0. (28)

=2c}k(er '; ), (29)

since w' is antisymmetric in the first two indices.
The integral of this equation over a constant-time sur-

face, using Eq. (23) yields

f 2';dt's=2(d/dt) f r ';die=(d/dt)(u'So, /uo) . (30)

There is no problem forming a trace under the integral
sign in the pole approximation, since g;k may be brought
in and out of the integral. Multiply by u and use Eq.
(22) to obtain

This is the condition in the nontorsion problem for a
photon and neutrino, and it seems reasonable to contin-
ue with this definition. With Eq. (3), converted to densi-
ties again, this leads to

eX'; =B„[e(r ' —r;k'+r ';)]

p = X dc'

Sik 2 f il od

(19)
u'p; = —da/dq,

where

The spin has a factor of 2 in the definition so as to con- a =(u'/u )S'o . (32)
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Since Eq. (31) is valid in any reference frame, a must be
a scalar. Equation (31) is the first side condition.

Now multiply Eq. (29) by 5x' and integrate over the
space at constant t:

f 5x X';dco=2 f 5x Bk(er ';)dV . (33)

In the pole approximation, the left-hand side is zero.
The right-hand side can be integrated by parts. The
integrated-out part vanishes since the particle is local-
ized, and the other term can be evaluated by using

m g m g o m~ Q (34)

since 5x =x —X (t) Equatio. n (33) gives then

0= f r"";des —(u'"/u ) f r ';dry . (35)

Using Eq. (23) and the definition of a in Eq. (32), we get
from this

IV. CONCLUSIONS

Since Eqs. (27), (31), and (36) are the same equations
as in Ref. 1, the solution is also the same. " From Ref.
2, it follows that

u uk 0~ uk u 0& uk u 0k (37)

u;S' =au

which is our second side condition.
Equations (31) and (36) are the side conditions for a

traceless pole particle with intrinsic spin in a space with
torsion. We see that they have the same form as the side
conditions (3.3) and (3.4) obtained in Ref. 1.

could. However, Heyl et al. ' have remarked that a
neutrino should obey ordinary parallel transport
(without a torsion effect). The derivation described
above indicates nevertheless that a neutrino would
proceed by Cartan transport, i.e., with the I 'Jk, not the

As for the spin equation (27), this is no diFerent from
the case without torsion except for the interpretation of
the operator D. Thus for massive particles, we use
u'u; =1 and p;u'=m so that multiplication of (27) by uk
yields

p'=mu'+ukS ' (38)

If now the side condition ukS' =0 is inserted in this
(i.e., if uqS'"+uq5' =0 is used), then substitution of Eq.
(38) into (27) yields the equation for Fermi-Walker trans-
port ~ This argument is applicable to Papapetrou's origi-
nal paper, and has been found by many other authors
(see for example Ref. 9).

However, in the traceless case, we do not have Eq.
(38), but at best

p'=(p /u )u'+(1/u )S ' (39)

and we cannot proceed in this way. In Ref. 2, however,
it was shown that the helicity vector

iJ kH = —,ek;qS ~u

satisfies H =0, provided that u =0. (ek;; is the alter-
nating tensor. ) That is, the helicity vector for a traceless
particle is parallel propagated. In spaces with torsion,
the same arguments hold, " but with the operator D con-
taining torsion. The spin gets Cartan parallel propagat-
ed.

These imply that u —u, which
means that a path parameter q can be found for which
u =0, where now the covariant derivative D involves
torsion. This is, of course, just Eq. (2). The conclusion
is that the particle whose trajectory follows null Cartan
transport is a traceless pole particle with intrinsic spin.

A photon does not qualify as such a particle because
of the problem with gauge invariance. ' A neutrino
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