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It is well known that when plane-symmetric gravitational waves collide, they produce singularities.
Presently known exact solutions representing such collisions fall into two classes: those in which the
singularities are spacelike, and those in which timelike singularities appear preceded by a Killing-
Cauchy horizon. This paper shows that Killing-Cauchy horizons in plane-symmetric spacetimes are
unstable against plane-symmetric perturbations and thence argues that generic spacetimes represent-
ing colliding plane waves are likely to have spacelike singularities without Killing-Cauchy horizons.
More specifically, this paper gives an explicit definition of Killing-Cauchy horizons in plane-
symmetric spacetimes and classifies these horizons into two types: those which are smooth surfaces,
called “‘type I, and those which are singular, called “type II.”” It is then shown that type-I horizons
are unstable with respect to any generic, plane-symmetric perturbation data posed on a suitable initial
null boundary and evolved with arbitrarily nonlinear field equations satisfying some very general re-
quirements; linearized gravitational perturbations constitute a special case of this instability. Hor-
izons of type II are shown to be unstable with respect to generic, plane-symmetric perturbations satis-
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fying linear evolution equations; a special case again is linearized gravitational perturbations.

I. INTRODUCTION AND SUMMARY

It has been known since the early 1970s' that when two
plane gravitational waves propagating in an otherwise flat
background collide, they focus each other so strongly as
to produce a spacetime singularity. Until recently all the
known solutions to the Einstein field equations describing
such collisions"? entailed all-encompassing, spacelike
singularities that could not be avoided by any observer on
any timelike world line. However, recently Chandrasekhar
and Xanthopoulos® have constructed exact solutions in
which the collision produces a Killing-Cauchy horizon,
which in turn (if one continues the metric through the
horizon analytically) is followed by a timelike singularity
that is readily avoided by almost all observers traveling on
timelike world lines. On the other hand, there are
theorems®> which suggest that spacetime singularities are
the general outcome of arbitrary plane-wave collisions.
However, these theorems establish the presence of singu-
larities only in nonflat, plane-symmetric spacetimes which
do not possess Killing-Cauchy horizons;®> a stronger
singularity theorem applicable to colliding plane-wave
solutions which contain such horizons is not yet available.

Hence, the question naturally arises as to which of the
above outcomes of plane-wave collisions is generic (if,
indeed, any of them really is). The present paper makes
no attempt to formulate this question precisely (which in
itself is a nontrivial task to accomplish). However, this
paper shows that the Killing-Cauchy horizons present in
the recent Chandrasekhar-Xanthopoulos solutions cannot
be generic, because such horizons in any plane-symmetric
spacetime are unstable against linear vacuum perturba-
tions (as well as nonvacuum perturbations) that preserve
the plane symmetry. It is natural to expect that the
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growth of these instabilities, in a generic plane-symmetric
situation, will convert the horizon into an all-
encompassing spacelike singularity, and that such singu-
larities are therefore the generic outcome of plane-wave
collisions. However, this paper does not make any attempt
at proving this speculation rigorously. [Independently of,
and simultaneous with our proof of this instability, Chan-
drasekhar and Xanthopoulos discovered that the presence
of a perfect fluid with (energy density) = pressure, or a
null dust, in their solution destroys the horizon in the full
nonlinear theory.]

Before turning to a detailed formulation and proof of
the instability results, we illustrate them by two simple ex-
amples of plane-symmetric spacetimes with Killing-
Cauchy horizons. In Sec. II of this paper we shall classify
such horizons into two classes which we call type I and
type II. A simple example of a spacetime with a Killing-
Cauchy horizon of type I is the plane-polarized, plane
sandwich wave® with the metric

g=—du dv+FXudx*+G*u)dy?, (1.1)

where F, G are constant (hence g is flat) for u <0 and
Flu)=(fi—u),
Gu)=(f,—u),

for u>1, where f,>f,;>1. In the region O<u <1, F
and G are determined by the spacetime curvature associat-
ed with the gravitational wave. The wave is sandwiched
inside the region O <u <1 since this spacetime is flat not
only for u <0 but also for u > 1, as becomes evident after
transforming to the global coordinate system (U,V,X,Y)
given by (for u > 1)

(1.2)
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X
= C={X=0,U=f,}c3
x H-U0" { )
p= Y
f=U"
(1.3)
u=U,
X? Y?
v=V+ + ,
fi=U  f,=U
in which the metric is _ {U = const}
g=—dUdV+dX*+dY?, Ux>1l. (1.4)

As is clear from the form of the metric in Eq.(1.1), the
plane-wave spacetime admits the two spacelike Killing
vectors £,=0/0x and £,=0/0y as plane-symmetry gen-
erators. In the global Minkowskian chart (U,V,X,Y) that
covers the whole spacetime including the surface
{u=U=f} in a nonsingular fashion, these Killing vec-
tors are given by the expressions

d d d
1=~V Uy 25y
3 3 3 (1.5)
§2=a_y=(f2—U)W—2Y5-I}' .

The Killing vector &; or both &, and &, become null on

the Killing-Cauchy horizon £={U=f,} according to

whether f,>f; or f,=f,. (See Fig. 1 for the case
f1=S2.) In either case they are both spacelike before the
horizon (U < f) and become tangent to the horizon as U
approaches f, one (or both) of them pointing along the
null generators of the Killing-Cauchy horizon when
U=f,. In the case f;=f,, both &, and &, vanish on the
null line C={U=f,X =Y =0} in &, whereas on any
neighborhood of €@ in & at least one of & (i=1,2) is
nonzero. In the case f,>f, & vanishes on the null
two-plane P={U =f,X =0} in §, whereas it is nonzero
on any neighborhood of 7 in §. On the other hand, &,
remains spacelike and nonzero on & in this case.” Figure 1
depicts the Killing vector field §; =03/09x, surfaces of con-
stant # and v, and the Killing-Cauchy horizon
8={u =U =f,]} for this example, in the case f|=f, and
in Minkowskian coordinates with the Y direction
suppressed. As one sees from this figure or from Egs. (1.3)
and (1.4), the horizon U =f, is a smooth hypersurface in
spacetime generated by endless null geodesics. This turns
out to be the feature that distinguishes type-I horizons
from type II.

In Sec. II1 we study the propagation of a wide class of
classical fields on a plane-symmetric spacetime having a
Killing-Cauchy horizon of type I as in the above example.
The class of fields we work with is constrained only by
the type of wave equation they satisfy and these con-
straints are very weak; for example, they admit linear sca-
lar waves satisfying (0¢=0, linearized gravitational per-
turbations, and fields satisfying arbitrarily nonlinear evo-
lution equations that respect the causal structure of the
unperturbed background spacetime (e.g., the Ag* field
theory); but not (in general) the fully nonlinear gravita-
tional perturbations. Section III shows that when generic,

FIG. 1. The type-I Killing-Cauchy horizon & in the Min-
kowskian region of the plane-sandwich-wave spacetime de-
scribed by Egs. (1.1)- (1.5) with f,=f,. The Minkowski region
is given by U >1 and the horizon & is located at U =f,=f,.
The Y dimension is suppressed. The Minkowskian null cone
centered on the line €={X =0, U=f,} in § is (the closure
of) a {v=const} surface and has one generator in common
with & along the line @. The remaining generators of this cone
are lines of constant v, x, and y on which ¥ =U ranges from 1
to f;. The Killing vector field £,=3/0x is tangent to the inter-
sections of {u =U =const} surfaces with the {v =const} cones
which are obtained by rigidly translating the illustrated null
cone along the line @. On the Killing-Cauchy horizon &, §,;
degenerates to a null vector tangent to the null generators of §
and vanishes on €.

plane-symmetric initial data for such fields are propagated
with the corresponding field equations on a plane-
symmetric spacetime with a Killing-Cauchy horizon of
type I, the fields become singular as they approach the
horizon.

This instability of Killing-Cauchy horizons of type I is
well illustrated by the example of a linear scalar field
satisfying the wave equation O¢=0 in the above plane-
sandwich-wave spacetime given by Egs. (1.1) and (1.2).
The scalar wave equation

1
vV—lg| ox“

=0

- VT Ta g8 08
O¢ & 18%2

in this case takes the form [Eq. (1.1)]

U G,u
+

—4 —
¢,uu 2 F G

1 1
¢,u + F‘i’,xx + E_z—¢,yy =0.

(1.6)
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For a plane-symmetric field ¢(u,v) and for u >1, this
equation becomes [cf. Eq. (1.2)]

1 1
baot | Tt T | (1.7

and has the general solution
6= a(v) +b(u), (1.8)

[(f1 "'u)(fz—u)]]/2

where a and b are functions that are uniquely determined
by initial data for ¢ on the null boundary consisting of the
null surfaces u =1 and v =0. Clearly, for generic initial
data, @ and b will be nonzero and ¢ will diverge as
u =U—f,. If initial data on the surface {v =0} and for
v>v;>0 on the surface {u =1} are zero, then this
initial-value problem describes the collision of a scalar
plane sandwich wave with the background gravitational
plane wave. In that case the solution simply is

172
(fi—D(f,—1)
d=a(v) ~f1—_f2__
(fri—)fr—u0)
X2 Y? fi—Df,—1 |'?
=Vt Tt v | o, —o) |
(1.9)

where a (v) is equal to ¢ on the initial surface {u =1} and
vanishes for v > v, and for v <O0.

Geometrically, the reason for this singular behavior is
simple: The symmetry of the spacetime, as embodied in
the Killing vector fields §,=0/0x and &§,=0/9dy, forces
the plane-symmetric field to focus onto the line € (Fig. 1);
a line to which all curves of constant v,x,y converge as
u—f; and this focusing of the waves produces a diver-
gence in their amplitude. The proof of instability in Sec.
II1 shows that this behavior is quite general for plane-
symmetric spacetimes with type-I Killing-Cauchy hor-
izons.

Turn now to the second example, a spacetime with
metric

g=—dt’+dz*+1¥dx*+dy?, t<0, (1.10a)
or, by putting u =t —z,v =t +z,
g=—dudv+i(u +0)%dx2+dy?, u+v<0, (1.10b)

in which the plane-symmetry generating Killing vectors
are again £,=0/0x and £,=03/9dy. In this case &, is
everywhere spacelike, while &, becomes null on the
Killing-Cauchy horizon ¢t =0 but is spacelike prior to the
horizon (¢ <0). This spacetime is actually flat as one sees
from the coordinate transformation

T=tcoshx , X=tsinhx , (1.11)

Y=y, z=z, 1.12)
(1.
g=—dT*+dX*+dY*+dZ? .

Figure 2 depicts the Killing vector fields &,=09/0x,
,=0/0y, surfaces of constant ¢, and the horizon {t =0}

{t=const} / N

FIG. 2. The type-II Killing-Cauchy horizon & in Minkowski
space described by Egs. (1.10)—(1.12). The Z dimension is
suppressed. The horizon & is located at {r=0}, ie., at
{T=—|X |} in Minkowskian coordinates. A {t=const <0}
surface lying under § is shown along with the orbits of the
plane-symmetry generating Killing vectors &, and &, on it. Even
though it is spacelike below the horizon = {¢ =0}, the Killing
vector &; becomes null on the horizon & and points along its null
generators, whereas the other plane-symmetry generator & is
everywhere spacelike. &; vanishes on the line (two-plane) ¢ in §
given by {T =X =0}. The horizon & has a “‘crease’ singularity
on this line @, at which the null generators of § have their future
end points and onto which all lines of constant x, y, and z con-
verge as t —0.

(={T=—|X|}) in the Minkowskian coordinates with
the Z (z) dimension suppressed. As one sees from this
figure, the horizon ¢ =0 is not everywhere smooth; it has
a crease on the curve denoted by € in the figure; i.e., at
T =X =0. This kind of nonsmooth behavior characterizes
type-11I horizons; it shows up, for example, in the Killing-
Cauchy horizons of the exact, colliding plane-wave solu-
tions studied by Chandrasekhar and Xanthopoulos in Ref.
3 [their Eq. (124)].

Section IV of this paper studies the propagation of
fields satisfying linear wave equations (e.g., scalar fields or
linearized gravitational perturbations) in a plane-
symmetric spacetime with a type-II Killing-Cauchy hor-
izon. When these fields are constrained to be plane sym-
metric and are evolved from generic initial data, they
diverge as they approach the horizon. As an example,
consider a scalar field satisfying O¢=0 in the spacetime
with metric (1.10). The general plane-symmetric (i.e., x,y
independent) solution to

¥ 1034 0% 1 3% 3
Op=——5 —— == +-5=0 (113
¢ a? ot d + dz? + t2 ax? 3y’

is

6=["" [A@o@)+B@)Y )] do,  (1.14)

where J,,Y, are the Bessel functions of the first and



36 INSTABILITY OF KILLING-CAUCHY HORIZONS IN PLANE- . ..

second kind and the functions 4 (w),B(w) are uniquely
determined by initial data for ¢ on some initial #=const
surface prior to the horizon ¢t =0. As we approach the
horizon t =0, Jy(wt) remains well behaved but Y,(wt)
diverges logarithmically
Yo(cot)~—2—1n | wt | +const ; (1.15)
T
and correspondingly, unless B(w) vanishes for all o (a
nongeneric case),

¢~E()n|t | =1E(Z)n|T?—X?| (1.16)

for some (generically nonzero) function E (z).

As in the type-I case, the reason for this instability is
geometrical: The &, symmetry of the field and of the
spacetime forces the waves to focus onto the line @
(T'=X =0), to which all curves of constant x,y,z converge
as t—0 (Fig. 2); and this focusing of the field produces a
divergence in its amplitude. The proof of instability in
Sec. IV shows that this behavior is quite general for linear
fields in plane-symmetric spacetimes with type-II hor-
izons.

In the concluding section (Sec. V) we briefly recapitu-
late the implications of these results for the general struc-
ture of singularities in plane-symmetric spacetimes.

Throughout this paper our notation and conventions
are the same as those in Ref. 8, in particular the metric
has signature (—, +,+, +) and the Newman-Penrose
equations are used in the “‘rationalized” form appropriate
to that signature.>*

I1. CLASSIFICATION

By a plane-symmetric spacetime we shall mean a maxi-
mal spacetime (M,g) with a C? metric g on which there
exist (i) a pair of commuting Killing vectors &; =&,,€, and
(ii) a dense open subset at each point of which the &; gen-
erate a spacelike two-dimensional plane in the tangent
space. If the dense open subset is equal to M, we call
(M,g) strictly plane symmetric as no breakdowns of plane
symmetry occur on JA.

By a Killing-Cauchy horizon in a plane-symmetric
spacetime (/,g) we shall mean a null, achronal, edgeless®
three-dimensional connected (C!™) surface & in JU on
which at least one of the Killing vectors &; degenerates to
a null Killing vector (which is not identically zero on &§);
and whose null geodesic generators have no past end
points in /M and are past complete. It follows from the
definition of plane symmetry that both £; must be tangent
to &, and hence the Killing vector(s) which degenerates to
a null vector on & is tangent to the null generators of &
on §. As the spacetime is maximal and the generators of
& are tangent to Killing directions, we assume (without
loss of generality) that the null geodesics generating § are
also future complete in /M [or at least in a neighborhood
of 8 in M (Ref. 8)].

If (M,g) is a spacetime with a Killing-Cauchy horizon
& for which the above definitions are satisfied only on
I=(HUS, we will still regard (M,g) as plane symmetric
for it will become clear later that this is all we need to
prove our results. (See the remarks following Theorems 1
and 2.)
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On any plane-symmetric spacetime there are local coor-
dinate systems (u,v,x,y) [covering at least I (&)] such
that £ =3/9x’ (x'=x,x*=y). By plane symmetry, in any
such coordinate system a Killing-Cauchy horizon & in /1
will be given by an expression of the form
{f (u,v)=const} since £; are tangent to &. Then there are
two possible cases.

If there exists a local coordinate system (u,v,x,y) in
which £,=3/3x' and & is given by &= {f(u,v)=const}
where Vf is a smooth, everywhere nonvanishing vector
field on &, then we will say that & is a Killing-Cauchy
horizon of type 1.

If in every local coordinate system of the above kind
and for every f(u,v) such that £={f(u,v)=const}, Vf
either vanishes or blows up at some points on &, then we
call & a Killing-Cauchy horizon of type II.

Clearly, the first example of a Killing-Cauchy horizon
which we described in the last section [Sec. I, Egs.
(1.1)-(1.5)] is of type I since it was given by
S={u=U=f;}] and Vu=-20/0v=-23/9V is a
smooth everywhere nonzero vector field on §. On the
other hand, our second example [Eqs. (1.10)-(1.12)] was
of type II as it was given by = {t =1(u +v)=0} where

8__ T a8 X @
at_ (TZ_X2)1/2 aT (TZ_X2)1/2 aX
which blows up on &. An alternative choice for f,
f(u,v):tzz%(u +v)? leads to Vf=2tVr, which vanishes
on the crease line @={T =X =0} C§. It is not possible

to describe § globally by any f(u,v)=0 where Vf is
smooth and everywhere nonzero on §.

Vi=

III. INSTABILITY OF HORIZONS OF TYPE 1

Before stating our instability theorem for horizons of
type I, we formulate some of our assumptions.

Assumption (A1). (M,g) is a plane-symmetric vacuum
spacetime.

Assumption (A2). There is an open subset in J# on
which g is flat.

Assumption (A2) is not true of all plane-symmetric
spacetimes, but it is true of spacetimes containing nothing
but plane-symmetric gravitational waves (possibly coupled
with matter or electromagnetic radiation), since such
spacetimes are flat before any of the waves arrive.

By (A1) we can define a canonical null tetrad on
(M,g): I,n are the null geodesic congruences everywhere
orthogonal to the &; and Lie parallel along &;; m,m* are
linearly independent linear combinations of the &;, nor-
malized such that —g(/,n)=g(m,m*)=1, g(m,m)=0.
Then as is shown by Szekeres,'? it follows from the pres-
ence of only two nontrivial dimensions that we can find
a local chart (u,v,x,y) with &, =3/3x' such that

l=i-4—P"(u,v)i ,

ou ax’
n=R(u,v)i+Qi(u,v)—£)—. , 3.1)
ov ox'
I S T U )
F(u,v) 3x G(u,v) oy ’
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where P,Q,R are real and F,G are complex, with
F*G —G*Fs0 throughout the region on which strict
plane symmetry holds and the tetrad (3.1) and the coordi-
nate chart (u,v,x,y) are well behaved. The commutation
relations* for the tetrad (3.1) yield

4a  4a* R,

1 1 1
RP',—Q e o,
R (3.2)
4a 4a u
2 2 J 2
RP R Q u G + G* - R Q ’

where a denotes the Newman-Penrose spin coefficient.
We can eliminate the P'0; and Q’9; terms from (3.1) by a
coordinate transformation of the form

’ ’

w'=u, v'=v, x"'=x"+&uv), (3.3)

if P'+¢',=Q'+R¢',=0. But the integrability condi-
tions for P'+¢' , =Q'+ RS’ , =0 are

PN
R <2
which by (3.2) are equivalent to a=0. However, it follows
by standard arguments'® using the Ricci identities'®* in
the vacuum case that assumption (A2) guarantees =0 on
M when (3.1) is suitably set in the flat region. Hence we
can, by a coordinate change (3.3), put our tetrad into the
form

RPi,U _Qi,u =

3.4
1 d 1 d 6.4

F(u,v) gc--}- G (u,v) 5}7 '
The Newman-Penrose commutation relations for the

tetrad (3.4) give zero values for the following combina-
tions of spin coefficients

k=v=a=B=1=7=y+7* :p_p* =u—u*=0;

and the field equations then imply that two of the com-
ponents of the Weyl tensor vanish:

\I/1=\I/3=0 .

The other spin coefficients can also be calculated using the
commutation relations. Of them we will only need the
complex expansion

__’E._’___._G*'u
F G*

F* , + G,
F* G

1
T 2(F*G—G*F)

*

p

—G*F (3.5)

Assumption (A3). There is a Killing-Cauchy horizon §
of type I in (M,g).

Assumption (A4). The metric g is analytic in a neigh-
borhood of & in M; i.e., there are admissible coordinate
systems in a neighborhood of & in which the metric
coefficients are analytic functions.

Assumption (A4) guarantees [as g(&;,£;) are analytic
functions near §] that strict plane symmetry holds on a
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neighborhood W of & in M, with the exception of break-
ing down on & itself.

Also note that the tetrad component R (u,v) [Eq. (3.4)]
is bounded and nonzero on & since the vanishing or diver-
gence of R at & will cause curvature singularities (in
¥, and ¥,) to appear on §. (See, e.g., Refs. 10 and 11.)
On the other hand, by (A3) & is of the form
{f(u,v)=const} where Vf is smooth and everywhere
nonzero on &. Therefore by the implicit function
theorem,'?> &={f(u,v)=const} is a smooth (at least C!)
null surface and hence is generated by null geodesics
without end points. Then, since the generators of § are
future and past complete in M by assumption, by exactly
the same argument as we will give in the proof of
Theorem 2 below, it follows that we can find a function f
which is smooth, vanishes on &, and has a smooth, null
nonzero gradient everywhere in a neighborhood of §. As
7 has these properties globally on all of &, it can be
chosen to be a function of only u and v. (Since &, =3/3x’
are Killing and hence have zero convergence and since
they become tangent to the horizon §£={f=0]}, they
cannot be threading through every family of surfaces
{ 7 =consts£0} each of which consists of parallel null sur-
faces generated by complete null geodesics without end
points.) Redefine f=/ since f=0 on §. Then &= {f =0}
and 0=g(Vf,Vf)=—Rf ,f, [by (3.4)] in a neighbor-
hood of & As R0 on &, this implies either f, =0 or
f., =0 (but not both since Vf=£0) in a neighborhood of &,
which clearly tells us that & is a surface of the form
{u =const] or {v=const}. We shall assume, without
loss of generality, that $={u =f] where f is a constant.

Theorem 1. Let (M,g) be a spacetime satisfying as-
sumptions (A1)-(A4). Let {@?} denote an arbitrary
multi-index field (e.g., scalar, tensorial, or spinorial)
defined on the spacetime, which satisfies field equations
obeying the following conditions.

(a) @Q“=0 is a solution of the field equations.

(b) The characteristic surfaces for the field equations are
null surfaces of (M,g) and the evolution of {@“} is global-
ly causal: if initial data for {Q?} are zero outside a closed
set /7 in an initial surface =, then there exists an open
neighborhood U(X) of DT (Z) in M such that whenever
there exists a smooth extension of the solution on D *(X)
to U(Z) it can be chosen so that Q=0 on
UZ)— (T HHIUT ~(H)).

(c) There is a consistent characteristic initial-value for-
malism for the field equations for {@°}: if N=N,UWN, is
an initial null boundary consisting of three-dimensional
null surfaces W), N, intersecting in a two-dimensional
spacelike surface Z, then one can freely pose initial data
on N (satisfying some constraint equations on ). More-
over, uniqueness and local existence of solutions in
D*(WN) hold for both the general characteristic initial-
value problem and for the plane-symmetric initial-value
problem for {@Q“}; the latter being obtained from the field
equations by assuming (L, Q)*=0.

If these conditions are satisfied, then there is a null
boundary N in I ~ (&) such that the evolution of any gen-
eric member of a class of plane-symmetric initial data for
{@°} on W that we will describe develops singularities on
the Killing-Cauchy horizon &.
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Remarks

(i) First note that conditions (a), (b), (c) are universal
properties of all physical fields that do not, by their stress
energy, act back on the geometry of the background
spacetime; hence in particular of linearized gravitational
perturbations. Although we are primarily interested in
fields satisfying linear evolution equations, it is clear that
inclusion of higher-order terms in the equations will not
affect the validity of the theorem so long as these terms
respect the causal structure of the background spacetime.
(Note that fully nonlinear gravitational perturbations will
not, in general, have this property.’®) Linearity is not
necessary for any of the conditions (a), (b), (c).

(i) As will be clear from the proof, the theorem will
still hold if our assumptions (A1), (A2), and (A3) are valid
only in an open subset of the region I ~ (&) whose closure
in M contains .

(iii) Our only use of the vacuum assumption is in the
Ricci identities involving ®,, and ®,;, which are in-
gredients in the proof'®* that (A2) permits setting the
Newman-Penrose spin coefficient @ to zero and thence
permits specializing the tetrad from (3.1) to (3.4). Conse-
quently, the theorem is also valid for a spacetime (M,g)
satisfying assumptions (A1)-(A4) with the exception that
the stress-energy tensor 7, instead of being zero, is as-
sumed to only satisfy T(1,£;)=T(n,£;)=0 on J, which
will guarantee ®,,=®,;=0.

(iv) We will formulate the genericity condition on the
data for {@°} on W in the course of the proof.

(v) The reader may find it helpful, when going through
the details of the proof that follows, to carry along and
look at the prototype example of a Killing-Cauchy hor-
izon of type I discussed in the Introduction [Egs. (1.1)-
(1.9), and Figs. 1 and 3 ].

Proof of Theorem 1. By (A3) at least one of the &,
which we can without loss of generality assume to be
£,=0/0x, degenerates to a null Killing vector on § and
becomes orthogonal to &, since the (unique) null direction
tangent to §={u =/} is at the same time orthogonal to
all vectors tangent to &. This implies, putting

8ij :g(gi’gj ),
li =1i =0. 3.6
ume 811 ul_rflfglz (3.6)

On the other hand, throughout the open set W—& on

which  strict plane symmetry holds we have

g(m,m)=0, g(m,m*)=1 which reads

i +Lg o0, (3.7a)

Fzg” Fngz ngzz -/a
. -8+t + + = L n=1 (3.7b)

F T | Fer TR 57T Ger T '

Then, at least one of lim,_, ; F or lim, ., G has to vanish
since otherwise by Eq. (3.7a) lim,_,,g,,=0 and it is im-
possible to satisfy Eq. (3.7b) in a neighborhood of & since
lim,_, ,g,;=lim, ,,g;,=0 by Eq. (3.6). Since by (A4)
g(&;,&;) are analytic functions in a neighborhood of &), it
is clear that F and G are regular in a neighborhood of
8S={u=f}, and hence by (A4) and (A3) (namely, that
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the Killing-Cauchy horizon & is of type I), we can express
them as convergent power series in (# —f) in a neighbor-
hood of &

zan (u_f)"’

Gluw)=3 W)t —f)"

n=I

where k>0,/>0 and k+I/>1; a,(v), B,(v) are (not

FIG. 3. The initial-value problem of Theorem 1 illustrated by
the example of a plane-sandwich-wave spacetime with a type-I
Killing-Cauchy horizon & [Egs. (1.1)-(1.5) and Fig. 1]. As in
Fig. 1, the case f;=f, is depicted with the Y direction
suppressed. The initial null boundary N consists of N;: the part
of the null surface {u =u(py)=1} lying above {v=v(py)}; and
of N;: the piece of the null cone {v =v(py)=const} lying above
the surface {# =1} with the exception of the single generator of
this cone which lies in &. W, and W, intersect on the spacelike
two-surface Zy,- The initial data for the plane-symmetric scalar

field ¢ are zero on W except on the dotted strip in N, lying be-
tween Z, and the line (two-surface) v =v(p,). If these data are

generic, ¢ will be nonzero at some point g on the line
€@ ={X =0} lying in the Killing-Cauchy horizon &= {u =f,}. If
¢ is smooth near &, there will be an open neighborhood A in §
around g where ¢£0. Since the Killing vector &, is null and
nonzero on & outside the line @, it will transport this neighbor-
hood A onto an infinite strip in & around €@ on which ¢=£0.
Sufficiently far in the past, this strip will be neighboring the sin-
gle null generator of the null cone {v =v(py)} along € that does
not belong to W,. In that region (labeled B in the figure), any
neighborhood of this strip in spacetime will contain points that
do not belong to either J*(AN;) or J~(N;) and a smooth ¢ will
therefore be incompatible with causal evolution.
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necessarily analytic) complex functions with
a, (v)5£0, B,(v)=£0. Inserting Egs. (3.8) into Eq. (3.5) we
obtain that the asymptotic behavior of p to leading order
as u — f is given by
k+1
u—f
where kK +1> 1.
Now consider a point po €1 ~ (&) lying in the region of
strict plane symmetry W —& with u (py) < f, and consider
the two-surface Z,,O obtained by sweeping the point pg,

(u—f), (3.9)

p~

with the Killing symmetry generators &;; i.e., let Z,, be

the Killing orbit of p, . (See Fig. 3.) Clearly, the null geo-

desic generators of J+(Zpo) which have their past end

points on Z,  will consist of those in the I direction on
which v =v(py), and those in the n direction on which
u =u(py). Since R+#0 on &= {u = f}, the tangent vectors
to the null geodesic generators of J+(Zpo) in the I direc-

tion which lie in the surface {v =v(py)} and which are
given by R/ have convergence p=Rp which by Eq. (3.9)
diverges to — o as u—f. This guarantees® that every
null geodesic generator of J+(Zpo) having its past end

point on Z, has a conjugate point to Z,, along itself on

the surface & We now claim that this actually corre-
sponds to the null generators of the null surface
{v=v(pg)} converging and intersecting each other in
caustics on the Cauchy horizon &. To see this, note that
outside & the Killing vectors &; generate translations on
the set of null generators of the surface {v =v(p, )} by
generating symmetries on their past end points in Z,,
On the other hand, if the null surface {v =v(py)} inter-
sects the null surface § transversally (i.e., not tangential-
ly), then the intersection has to be a spacelike two-surface.
But this is impossible since on & there does not exist a
pair of spacelike linearly independent Killing vectors to
generate translations on the set of null generators of
fv=v(pg)} in this spacelike two-surface. Hence
{v=v(py)} intersects & nontransversally and as the con-
vergence p of its generators diverges on &, the intersection
takes place either on a spacelike curve tangent to the Kil-

J

p
®9,)]1=¢|Q 3 8, ®

where we have made use of the fact that &, are Killing
vectors hence ”Lé’f g=0. But the first term is zero as

Lg 9,=[6:,0,]=0, thus

§:(e(@Q, 9, ® --® 3, )]=g(Lg Q, 38, ® -®3,).

P

This equation tells us that each component of a multicom-
ponent tensor field {@“} in the basis frame field
(9,,9,,0x,0,) behaves exactly like a scalar field under Lie
transport by &; since (as §;=9/0x' are Killing vectors)
£:[g(3,, 3,)]=0. For spinor fields, by the same argument,
the components of an arbitrary spinor field in the spin
basis corresponding to the null tetrad (3.1) or (3.4) will
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ling vector &, which is still spacelike on &, in the case that
only one of £; (namely, &, ) becomes null; or on a single
point, in the case that both &, and &, become null on &
(Fig. 3). Note that in the first case, when &, is still space-
like on &, it generates translations on the set of generators
of {v=v(py)} along the curve in & on which these null
generators converge and intersect each other, while the
vector £, which is null on & has to vanish on this curve.
In the second case (the case depicted in Figs. 1 and 3)
both &, and £, have to vanish at the point in & on which
the generators of {v =v(py)} intersect each other, since
they must not generate any translations on the set of these
generators at that point.

Therefore there is a null two-surface 7 (a null curve
@) in & which is the union of all spacelike curves (points)
in & on which generators of the surfaces {v =v,} con-
verge as v, ranges from — o to + oo, in the case &, is
spacelike on & (in the case both £,,&, are null on &).
Moreover, this two-surface 7 (curve @) is generated by
the past endless null generators of J'+(Zp0 ). (This can

be seen by noting that the local chart (u,v,x,y) is regular
on I~ (&), thus all points in I~ (§) with v <v(p,) are
outside J *(Z,, ) and therefore, as J*(Zpo) is edgeless,®!*

? (@) must be generated—in J ~[{v =v (py)} ]—by null
geodesic generators of J+(Zp0) along & which are past

endless and which intersect the generators of
{v=v(py)} at their focal points on &.) The Killing vec-
tor &, (both &, and &, ) vanishes on this surface 7 (curve
@) and since by (A3) and (A4) &, (§,,&,) is a null vector
not identically vanishing on & whose components in
some coordinate frame are analytic functions, it has to
be nonzero outside 7 (€¢) on any open neighborhood in §
of 7 (€), generating symmetries along the null genera-
tors of &§.

We now show that it is sufficient to prove the theorem
only for the case where {@“} is a single scalar field ¢.
Let 9,,u=1,2,3,4, denote, respectively, the local coordi-
nate basis fields d/0u, d/0v, 3/9x, 8/3dy. Then for an
arbitrary multicomponent (contravariant) tensor field
{@°}, the Lie derivative along &; of the inner product of
@ with the (p,0) tensor basis elements is given by

®® 9, | +8(Ly @Q 0, ® --®9,),

Hp

behave like scalar fields under Lie transport by the §&;.
Clearly, this is also true for the components of the arbi-
trary tensor or spinor field in any local basis field that is
Lie parallel along the &;, or in the spin basis that corre-
sponds to any null tetrad that is Lie parallel along the &;.
Therefore, despite the obvious fact that these basis fields
themselves will in general develop singularities on the
Killing-Cauchy horizon &, precisely the following argu-
ments by which we prove the singularity result of the
theorem for a scalar field ¢ will prove the same result for
an arbitrary field { @?} (after constructing a suitable basis
field Lie parallel along the &; for each such field {@Q%})
when the initial data satisfy the conditions of the theorem.
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Now consider a characteristic initial-value problem for
the scalar field ¢ (Fig. 3) in which the initial null bound-
ary is given by WN=W|UWN,, N,={u=ul(py)<f},
Ni={v=v(py)}, N; ﬂ./V2=Zp0, and the initial data have
the form ¢=0 on W), and ¢=¢(v), generic, nonzero,
plane-symmetric (“sandwich’) data on W, vanishing for
v>v(p;)>v(pg) and for v <v(p,), and satisfying the con-
straint equations (when there are any). The well posedness
of this problem is clear from conditions (a), (b), (c) of the
theorem. By condition (c), the evolution in D T(N) will
have the full Killing symmetries: L; ¢=§;(¢)=0
throughout spacetime. We formulate the following notion
of genericity for the data on .

Initial data for ¢ on N of the above class are generic if
the solution is nonzero somewhere on the surface 7 (curve
@) in &. For a multicomponent field we similarly demand
that the solutions evolving from generic initial data take
nonzero tensor (or spinor) values at some points of the
surface 7 (curve @) on &. Note that, by “the solution on
P (@) in & we mean the limit of the solution on I ~ (&) as
the field point approaches the plane 7 (the curve @) lying
in &. Hence, more precisely, initial data for ¢ are generic
if either this limit does not exist or it exists and is nonzero
somewhere in 7 (@) on &. If the limit does not exist, then
the field ¢ is singular near the horizon § and the theorem
is proved.

Now let us assume that this limit does exist and the
field ¢ obtained by evolving the above data on N is
smooth in a neighborhood of &= {u =f}. (This assump-
tion will produce a contradiction thereby implying that
¢ cannot be smooth—the conclusion of our theorem.)
Then, since ¢ is smooth and not identically zero on 7
(@), it will be nonzero on some open subset in & inter-
secting P (€) in the region on which ¢=£0. But as the
Killing vector &, (£,,£,) generates symmetries along the
null generators of & everywhere near 7 (€) except on 7
(@) itself, and since &(¢)=0 [£;(#)=0] on & as this
holds prior to & and ¢ and &, (§;) are smooth, &, (§;) will
carry this region on which ¢ is nonzero arbitrarily down
into the past along the generators of &. But when we
move a sufficiently large affine distance into the past
along these generators we clearly enter the region
J 7 [{v=v(pg)}] in which the generators along P (@) are

past endless generators of J +(ZPO) and hence of J T (WN,).

Therefore any neighborhood in /il of 7 (@) in this region
intersects a piece of /1 not contained in J*(N;) (Fig. 3).
But again by the smoothness of ¢ and as &,(¢)=0
[£:(#)=0], ¢ will be nonzero at all points of 7 (@) in this
region and thereby be nonzero in a neighborhood in /i
of any point of 7 (@) there, contradicting condition (b)
of the theorem. Thus the assumption that ¢ is smooth
near ={u =f} is contradictory and must be false,
and the field ¢ must develop singularities on & proving
the theorem. [J

The singularity of ¢ on & will in most cases be of the
form ¢5=0 on P (@) for v (py) <v <v(p,) (bounded or un-
bounded) whereas ¢=0 on & outside 7 (€), with possibly
an added smooth background field on & which satisfies
#B(p)=0 ¥p € P (C). Thus even though the field itself
might be bounded near &, some of its derivatives will
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diverge on the two-surface P (curve @) in &. However, if
the field equations are linear, exactly the same argument
we will use in proving Theorem 2 will imply (as &; or
&1,&, vanish on the surface ? or the curve € in &) that ¢
actually diverges on the set 72 (or on @) in §.

IV. INSTABILITY OF HORIZONS OF TYPE II

Theorem 2. Let (M,g) be a plane-symmetric spacetime
with a Killing-Cauchy horizon & of type II where strict
plane symmetry holds on the intersection W of a neigh-
borhood of § with I ~(&). Let { @°} denote a field satisfy-
ing an arbitrary set of evolution equations such that (a)
the equations are linear, (b) there is a consistent (non-
characteristic) initial-value formalism for the field {(@Q%}
and the evolution equations it satisfies, with local ex-
istence and uniqueness holding for both the general and
the plane-symmetric initial-value problems.

If these conditions are satisfied, then there exists a
spacelike partial Cauchy surface = in I ~ (&) such that the
evolution of any generic, plane-symmetric initial data for
{@“°} on X results in singularities on the Killing-Cauchy
horizon &.

Remarks

(i) As will be clear from the proof, the assumptions of
the theorem need only hold on I ~(£)U S in J.

(i) The condition of genericity for the initial data on =
will be formulated in the proof.

(iii) When studying the proof the reader may find it
helpful to carry along and look at the prototype example
of a type-II horizon discussed in the Introduction [Egs.
(1.10) - (1.16)].

Proof of Theorem 2. We can set up the canonical local
tetrad (3.1) on (M,g) in which the metric will be of the
form

du dv+ A (u,v)du’+ B (u,v)dv?

1
£=- R (u,v)

+M*(u,v)dx*+NHu,v)dy*+K (u,v)dx dy

+L(u,v)du dx'+J,(u,v)dv dx" | (4.1)
where R (u,v) is positive, bounded, and nonzero on &. Put
g=_—dudv+RAdu’>+RBdv® Find local functions
t(u,v), z(u,v) such that t =0 on & and

g =P (dz?—drt?) , (4.2)

where P(>0) is the conformal factor. [This can be done,
for example, by solving the initial-value problem {z =0 on
&, P0r=0 } which in general has nonunique solutions,
and then finding a ‘“conjugate” z(u,v) such that (4.2) is
satisfied.'*] Then the metric (4.1) becomes

1
&= R(t,2)

+K (t,z)dx dy + L, (t,z)dt dx'+J,(t,z)dz dx ',

(dt*—dz?)+ F(t,z)dx*+ G*(1,z)dy?

(4.3)

where R (¢,z) is again positive and bounded on &. In both
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coordinate systems (4.1) and (4.3) the Killing vectors are
£;,=3/3x". Our definition of 7 guarantees that & is given
by {t=0}; and by choosing &, to be the Killing vector
that becomes null and tangent to & on &, we find that
F(t=0,2)=0. Note that V= —Rd/dt is a timelike vec-
tor field which blows up on & while at the same time
becoming tangent to &. It will not be necessary in what
follows to fix the coordinate (gauge) freedom further than
that of Eq.(4.3).

Now we claim that since & is a Killing-Cauchy horizon
of type 11, some null generators of & must have future end
points on &. Null generators of & by definition have no
past end points; if they do not have any future end points
either, then one can globally express & in the form
{f (u,v)=const} where Vf is perfectly smooth and every-
where nonzero on &, contradicting our assumption that §
is of type II. To see this, assume null generators of &
have no end points. Take a spacelike two-dimensional sec-
tion Z of &, and take a smooth field of (spacelike) basis
fields k;, k, on Z in &. (This can be done since by plane
symmetry the spacelike sections of & will not have spheri-
cal topology.) Propagate k; along null generators I of &
by parallel transport to all of &. Since generators of § are
both past and future complete in J by definition, k; will
be smooth on & and will have smooth extensions to a
neighborhood of & in Jil. Construct a null vector field n
on & satisfying g(n,k;)=0, g(n,/)=—1. n will be a
smooth vector field on & and will have a smooth exten-
sion (as a null vector) to a neighborhood of & in J1. Then
take f to be the affine parameter along geodesics in the n
direction, so that ={f =0} and Vf on & is equal to —/
and hence is smooth, null, and everywhere nonzero on §.
By choosing I, hence n and the (now not necessarily
affine) parameter f such that f is constant on a family of
parallel null surfaces near &, Vf will retain these proper-
ties over a neighborhood of & in /M. Finally, by the same
argument as we gave just before the statement of Theorem
1, f can be chosen to be a function of only u and v.

Therefore, there is a nonempty subset @ of & which
consists of the end points of null generators of &. (As &
is achronal and edgeless it is a closed set and must con-
tain these end points.) Now our Killing field &, becomes
null and tangent to & on &, pointing along its null gen-
erators. But since & is a Killing horizon, the conver-
gence and shear of its null geodesic generators must
identically vanish on &, and since & has no edge®!* the
only way these generators can have end points on & is by
intersecting other non-neighboring geodesic generators.
Therefore at any point in @, there are at least two dis-
tinct null directions pointing to the past along two dis-
tinct generators of &. Then, as £, is smooth and parallel
to these generators on &, it has to vanish at all points in
@ C & (This is also expected because the set €
represents an isolated set of points with a special
geometric property that would be left invariant under
the action of &, if it were nonzero on €.) Thus, we have
a nonempty subset @ of & on which the Killing field £,
vanishes (that is, @ is the bifurcation set for the Killing
horizon &).

We now note that, as before we only need to prove the
theorem in the case {@°} is a scalar field ¢. As each
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component of a multi-index field { @} in the basis frame
field (9,,9,,0,,0,) or in the spin basis corresponding to
the tetrad (3.1) (and similarly in any local basis field Lie
parallel along the &; or in the spin basis corresponding
to any null tetrad Lie parallel along the &; so that the ar-
gument we gave in the proof of Theorem 1 applies
without modification) behaves like a scalar field under
Lie transport by §&;, exactly the same arguments which
prove the singularity of ¢ on & will prove the singularity
of an arbitrary field {@°} (by constructing a suitable
basis field Lie parallel along the &; for each such field
{@°}) when the initial data satisfy the conditions of the
theorem.

Now consider the spacelike partial Cauchy surface
S={t=—c} in I~ (&) where ¢ >0 is sufficiently small
so that X lies within the region of strict plane symmetry
W (Fig. 4). Since & has past endless null generators and
S=H*(2), = has no edge; i.e., it is infinite in the Kil-
ling &; directions.® Consider generic, plane-symmetric in-
itial data for our scalar field ¢ on =. We will adopt the
following notion of genericity.

Plane-symmetric initial data for ¢ on X are generic, if
we can find an arbitrarily large number L and coordinate
values x =a, x =b with b —a =L such that if we cutoff
the data for ¢ on = except on the portion of = between
x =a and x =b (thereby breaking the plane symmetry),
then the solution ¢'“ to the initial-value problem with
data [¢”‘)=O, (15(1‘)=0 on X, except on the strip between
x =a and x =b where they are equal to the data of ¢}
will be nonzero at least on some points of the subset @
on &. [Note that, even though the data for ¢'*) on = are

Z={t=-c} o~

FIG. 4. The initial-value problem of Theorem 2 depicted in
the r-x plane with the y and z directions suppressed. The
Killing-Cauchy horizon & on which &, becomes null is given by
{t =0} and has a bifurcation singularity at ¢ on which &, van-
ishes. The spacelike initial surface £={r = —c} is a Killing orbit
of & and sits in the open region W of strict plane symmetry
which lies between & and the dashed line below 3 which also is
a Killing orbit for &,. Plane-symmetric initial data for the linear
scalar field ¢ are posed on the initial surface . When these data
are generic, there will be a strip in £ of arbitrarily large but finite
extent in the x direction which in the figure is the shaded line
segment lying between the points x =a and x =b. This strip has
the property that if the initial data on = everywhere outside it
are replaced with zero, then the solution corresponding to these
truncated initial data (which, even though cut off in the x direc-
tion, still extend infinitely far in the other Killing y direction)
will take nonzero values somewhere on the subset ¢ of the hor-
izon &.
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cut off in the x direction, they still extend infinitely far
in the other Killing (y) direction.] In the case of a mul-
ticomponent field { @}, plane-symmetric initial data on
2 are called generic if there is an arbitrarily large
L =b —a so that the solution developing from the trun-
cation of these initial data in the manner described
above takes nonzero tensor (or spinor) values at some
points on the subset @ in §. As before, the values of the
solution ¢'L) at the points on the subset @ in & are
defined as the limiting values of the solution on I ~ (&) as
the field points approach the set @ in &. Again to be
more precise, we will call the initial data for ¢ on = gen-
eric if either this limit does not exist for qﬁ”", or it does
exist and is nonzero somewhere on the subset ¢ in §. In
the case this limit does not exist, the solution ¢ is clearly
singular (and divergent) on the horizon & and the
theorem is proved. Therefore, in the following we will
assume that this limit does exist for ¢'L) and takes
nonzero values somewhere in the subset € of §.

But now consider the action of the symmetry group
generated by &, given by &;: (x,y,2,t) — (x +L,y,z,1).
By assumption (b) of the theorem, if we Lie transport the
initial data truncated in the manner of the preceding para-
graph with the Killing vector field £,, then the solution
will be Lie transported by &;. But &, vanishes on ¢ and
Lg $=8,(¢); therefore the action of &, leaves the value
of ¢'*) on @ invariant. However, by the linearity of the
field equations, the solution for the original plane-
symmetric initial data will be

b= 3 G @)

hence on @, since 9; (¢'%)) (C)=¢'L) (@),

¢‘“(@)=¢“>(@>[ S 1

n=-—ow

ye)= 3

n=—o

and thus ¢ diverges on @ as ¢'L) (@)£0 by genericity;
and the theorem is proved. OJ

V. CONCLUSIONS

We have shown the instability of Killing-Cauchy hor-
izons in plane-symmetric spacetimes to arbitrary plane-
symmetric perturbations satisfying reasonable genericity
conditions. Although it remains to be shown that our gen-
ericity criteria follow, under suitable restrictions, from the
more general and standard notions of genericity employed
by mathematicians,'® it seems intuitively clear to us that
they agree quite naturally with a physicist’s notion of gen-
ericity. Accepting this, then it is clear that if initial data
whose evolution is a plane-symmetric spacetime contain-
ing a Killing-Cauchy horizon are slightly perturbed in
some ‘‘generic”’ plane-symmetric direction, the horizon
will be destroyed. Therefore, we conclude that the type-II
Killing-Cauchy  horizons present in the new

Chandrasekhar-Xanthopoulos  solutions® of colliding
plane-wave spacetimes are probably isolated features and
will not be present in a generic colliding plane wave solu-
tion. This conclusion, as was mentioned in the Introduc-
tion, is in accord with the simultaneous and independent
work by Chandrasekhar and Xanthopoulos showing that
null dust or a fluid with pressure = (energy density),
when inserted into their spacetime, destroys the horizon.

It is intriguing to note that, despite this nongeneric
horizon behavior, the Chandrasekhar-Xanthopoulos
solutions are more general than the previously known
exact solutions for colliding plane waves with parallel
polarizations—more general in the same sense as the
Kerr solution is more general than the Schwarzschild
solution. Nevertheless, the previously known exact solu-
tions for colliding plane waves possess the generic
plane-symmetric causal structure (no Killing-Cauchy
horizons), while the Chandrasekhar-Xanthopoulos solu-
tions do not.

It is also interesting to note that, the occurrence of
timelike singularities in a plane-symmetric spacetime
would imply the existence of a Killing-Cauchy horizon if
in the vicinity of such a singularity at least one of the
Killing vectors which generate plane symmetry becomes
timelike. Even though this is the case for the presently
known solutions® with timelike singularities, a satisfacto-
ry argument to the effect that in any plane-symmetric
spacetime with sufficiently “‘strong” timelike curvature
singularities!” at least one of the plane-symmetry gen-
erating Killing vectors must be timelike near the singu-
larity is unavailable to the author. If such an argu-
ment could be provided (possibly with some weak as-
sumption of genericity, e.g., under the restriction that
the spacetime has no Killing symmetries other than
plane symmetry), then the results of the present paper
would indicate that the singularities in a ‘generic,”
plane-symmetric spacetime cannot be timelike (in the
sense of Penrose!®); and this would constitute an interest-
ing verification of the cosmic censorship hypothesis'®!’
in the restricted domain of plane-symmetric spacetimes.
A (possibly) stronger result which would be sufficient to
reach this last conclusion rigorously would be the formu-
lation and proof of a theorem to the effect that whenever
the evolution of “‘generic,” plane-symmetric Cauchy data
for the gravitational and matter fields on an initial sur-
face = results in the formation of a Cauchy horizon &
for 2, & is also a Killing horizon for at least one of the
plane-symmetry generating Killing vectors on D " (X).
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