PHYSICAL REVIEW D

VOLUME 36, NUMBER 6

15 SEPTEMBER 1987

Global properties of Kaluza-Klein cosmologies

David L. Wiltshire
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England
(Received 27 April 1987)

The qualitative theory of dynamical systems is used to present an analysis of the phase space of
Kaluza-Klein cosmological solutions with even-dimensional internal space, an arbitrary cosmologi-
cal constant, and Freund-Rubin compactification. If either the physical or internal manifold has a
single spatial dimension the cosmological solutions may correspond to black-hole interiors and
pathological behavior can be expected. It is shown that such behavior does not occur in general,
however. Some solutions with dilatons are also discussed.

I. INTRODUCTION

It is generally believed that higher dimensions must
play an important dynamical role in the very early evo-
lution of the Universe. Ideally some sort of dynamical
mechanism should exist to explain (i) why the “physical”
dimensions have expanded relative to the extra dimen-
sions so that as yet the radii of curvature of the physical
and internal spaces differ by a factor of the order of 10°!,
and (ii) why the physical space should have three spatial
dimensions. Mechanisms are known which incorporate
a natural splitting of the physical and internal dimen-
sions. These include the Freund-Rubin mechanism,! the
Casimir effect associated with matter fields or zero-point
gravitational energies,” and the effect of higher-
derivative terms in the gravitational action.” Although
such mechanisms may provide some insights with regard
to the first of these questions, the second question is still
wide open.

A typical approach to Kaluza-Klein cosmology is to
set aside the question of the nature of the initial singu-
larity and instead to focus attention on the behavior of
the Universe at times when the physical and internal
spaces can be treated on a different footing.* The d-
dimensional metric may then be decomposed as

ds’=dt*—a*(t)g;dx'dx’/—b2(t)g,dy'dy’ ,  (l.1a)
where, for example, g;;(x) and g, (y) are metrics on Ein-
stein spaces of dimension m and n =d —m —1, respec-
tively, so that they are described by Ricci tensors with
components

"Ry=(m —1)k,8 (1.1b)

ij
and

"Ruz(n—l)kbﬁu (110)

in an orthonormal frame. The radii of curvature of the
two spaces have been scaled so that k,,k,=—1,0,+1.
(Although there is no observational reason to assume
that the internal dimensions expand isotropically, this is
a common simplifying assumption.) A large number of
models based on the ansatz (1.1) together with various
matter degrees of freedom have been studied over the
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past few years.’

To be of physical relevance cosmological solutions
must exist for which the internal space is static at late
times. A number of such solutions have been found and
their stability analyzed. However, little is known in gen-
eral about the global properties of the spacetimes (1.1).
Indeed, in cases where the global properties of the space-
times are known, in five-dimensional vacuum cosmolo-
gies,®~® for example, some bizarre behavior takes place.
One obtains the result that the physical universe is the
interior of a five-dimensional black hole. This can be a
very dangerous place to exist. If matter is included in
the form of five-dimensional dust, for example, singulari-
ties can form even when the scale factor a and the Hub-
ble parameter ¢ /a are finite.®’

Naturally one would like to know whether such
pathologies are merely a result of the high degree of
symmetry of the models, whether they are a dimension-
dependent phenomenon, or whether perhaps they are a
generic feature of many higher-dimensional models. To
answer this question for models more complex than the
five-dimensional ones is difficult since exact solutions are
not known in general. However, as Belinsky et al? have
shown, for inflationary models in four dimensions, if the
dimension of the phase space of classical solutions is
sufficiently small then an analysis of its qualitative prop-
erties can yield information about all the relevant global
features of the solutions. We shall present such an
analysis here for some general models. Our conclusion
is that apart from a very small set of solutions in the
open (k,=—1) models the behavior discussed above
only occurs when the internal space has a single spatial
dimension.

We will take the action in d dimensions to have the
general form

[ve |[=R (L Dp,

KZ 2n! # Hn

+1g"9,00,0 —V(o) |, (l.2a)

where
FM#Z..A#” :nalulAyz...#n] (1.2b)
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is the field strength associated with an Abelian gauge
field A, ..., , k’=47G, g=|detg,, |, and f and V
are as yet unspecified functions of the real scalar field o.
Since we are interested in homogeneous solutions we
shall assume that o =o0(t) throughout. In all cases we
will take F, ..., to be given by the Freund-Rubin an-

satz,'! so that

HBn

F:fn-dy‘/\dyz/\ o Ady™ (1.3)
This automatically satisfies the Maxwell-type equation
derived from the variation of (1.2). The remaining field
equations to be solved are

i b
m— +n b=

4’V 2% n —1)fq?

5252
72 @ —20b2" 2k“0 *, (1.4a)

P 1
Lin® fim—1)La2+k,)
a a

4V 2kMn —1)fq?
= — ,  (1.4b)
d-—2 (d —2)b?"
D om® )Lk, = Y 20mfy
b ab b? T d 2" (d—2p
(1.4¢)
.. .| a b . f'q*
a_ b \__p_ 1.4d
o+0 ma+nb V Sy’ ( )

where an overdot denotes d /dt and a prime d /do.

To study Egs. (1.4) using the qualitative theory of
dynamical systems it is convenient to rewrite them as
the system of first-order differential equations

a=Ha , (1.5a)
b=Ib, (1.5b)
V2o =K , (1.5¢)
. 2 k, _ 2 2
A=Y _nHnHI —(m —1)=% - Hn=Dfkq
d—2 a? (d —2)b"
(1.5d)
j—ﬂ—mHI——nIZ—(n—l)k—b-kM
d—2 b2 " (d—2)b* "’
(1.5¢)
. _ ’ 2
K=—(mH +n)K —V'2« V'+§LHZ7 , (1.5
subject to the constraint
2 2 k,
2G4V K —m(m —1) [H2+—;
b" a
2 ky
—2mnHI —n(n —1) (I +? =0, (1.5g
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Equations (1.5a)—(1.5¢c) are definitions for the physical
and internal-space Hubble parameters H and I, and the
quantity K. In general, Egs. (1.5) are of course a very
complex system. However, in most of this paper we
shall consider the particular case in which the dilation
o(t) is set identically to zero, f =1, and 2k?V =A is a
d-dimensional cosmological constant. In Sec. II we will
discuss those solutions which correspond to black-hole
interiors. In Secs. III and IV we will consider the gen-
eral solutions with n even. In Sec. V some solutions
with nontrivial dilatons are discussed. Some concluding
remarks are given in Sec. VI.

II. THE REDUCTION TO TWO DIMENSIONS

The behavior of the solutions discussed by Matzner
and Mezzacappa®’ and Gibbons and Townsend® seems
to be a generic feature at least of models in which one of
the two spaces has only one spatial dimension. To see
this we will consider the case m =1, although
equivalently, we could take the perhaps more physically

relevant case n =1 and replace the ‘“magnetic
compactification” ansatz (1.3) with the ‘electric
compactification” ansatz
a
F=1;7dt/\dy, (2.1)

where y is now the single internal dimension and F is a
two-form.

Equations (1.4) with m =1, f =1, 2k>V =A, and 0 =0
are easily integrated'® and the solutions are a?=5b 2=A,
where

A_26M 2k%q?
bd—3 (d_z)(d_3)b2(d~3)
2Ab2
————k, . .
ta—nd—2 @2

We may use b as a time coordinate to write the metric in
the form

2_ db? 2 32 1.7
ds =—A———Adx —bgydy’dy” .

(2.3)
Reality of a =b requires A >0. However, the A=0 sur-
face is only a coordinate singularity and the global struc-
ture of the solution is obtained by extending to values
A <0. If k, =1, for example, and the internal space is
taken to be S¢ 2 then the global structure of the space-
time is that of the Reissner-Nordstrom—de Sitter solu-
tion“in arbitrary dimensions, as obtained by Tangher-
lini.

The spacetimes may be classified according to the
structure of their horizons and singularities. We will re-
strict our attention to the case in which d is even and
g5~0. There are then essentially nine distinct cases of
spacetimes with regions corresponding to cosmological
solutions. Degenerate cases occur when A=dA /db =0,
i.e., when b =b ., where
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1

br@-3 = (d —1)d —3)GM

I 4K2q2{ ) )

te[(d —1)Xd —3)°G>M?
—8(d —3)k,k?q*1'?}
(2.4)

= +1, M>0,

T l—-1, M<o0.

To aid in our classification let us define q,2, g,2, A;, and
Az by

2 842

- % (2.5a)
T =d —)xd —3) 2

2 2q°

— 2.
=g nd =3’ @50

(a)

(q)

FIG. 1.

(d —2)(d —3)k, a2

M= 2b+2 - b+2‘(‘]i—2) ’ (2.6a)
(d —2)(d —3)k, K2q?

T 2b_? Tp 2d-D) (2.6b)

In the definitions (2.6a) and (2.6b), b, and b _ are given
by (2.4) for each M and ¢ for which (2.4) has real solu-
tions. If d is even, solutions of A=0 with M <0 may be
obtained by setting b — —b in the solutions with M > 0.
Thus, we may assume M >0 without loss of generality.
The global properties of the metric for the nine cases are
best summarized by drawing Carter-Penrose diagrams,
as in Fig. 1, where each point represents an internal
space. Horizons are represented by straight lines and
the surface at b = o and b = — « by double lines. In
Figs. 1(d) and 1(i)) some of the horizons are to be
identified as shown. Some b =const surface are indicat-

Carter-Penrose diagrams for the m =1 solutions. (a) k,=1, G2M?>«’q,% and A, <A<0; or k,=0, M0, and

A<A<O; or ky=—1, M40, and A, <A <A, (b) ky=1, G2M?>«k?q,%, and A=A;; or k, =0, M0, and A=A,; or k,=—1 and
A=A (©) ky=—1and A;<A<0. (d) ky=—1 and A=A,. (e) k, =0, M0, and A=0. () k, =1, G2M?*<«k’q,?, and A>0; or
ky=1, K*q12<G*M? <k’q,% and O<A <Ay; or ky=1, G?M?*>«k%q,%, and A>Xy; or k,=0 and A>0; or k,=—1 and A>0.
(8 k=1, K3q12<G*M? <K*q;%, and A <A <Ay or G*M?>k%q,? and O<A <A, (h) ky=1, k’q,><G?M?* <k’q,?, and A=A,

() ky=1, GIM?*>k*q,? and A=A,.
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ed by the dotted lines. The shaded regions are those
which correspond to cosmological solutions. In the de-
generate cases shown in Figs. 1(b), 1(d), and 1(h) the
cosmological region coincides with the horizon indicated
by a bold line. In these cases b is static while a oscil-
lates. The metric for the cosmological solutions in these
cases may be obtained from (2.3) by a limiting pro-
cedure.!? Carter-Penrose diagrams for the ¢ =0, A=0
solutions have been given in Refs. 6-8.

The main point of this analysis is that in many of the
cases the cosmological region described by (2.3) is an in-
terior region of a d-dimensional black hole. In the
A=0, k, =1 case, for example, b(¢) oscillates between
the horizons b =b, b,, where

(b1, 3=GM+(G*M?*—«’q,)'? . 2.7)
Since one would expect the Cauchy horizons to be unsta-
ble and turn into real curvature singularities if the
metric were perturbed, as occurs in four dimen-
sions, 3~ 13 life could not easily exist in such a universe.
Indeed, the pathological nature of these universes can be
seen directly if following Matzner and Mezzacappa®’
one introduces a d-dimensional dust field into the model.
The dust has an energy-momentum tensor whose only
nonvanishing component is

Too=p(t) . (2.8)
Energy-momentum conservation gives

— M (2.9)

- ’
2k2ab? 2

where C is an arbitrary constant. The remaining equa-
tions may be readily integrated. We once again have
b *=A, and setting a =z (¢)b and solving for z (1) we find
that

db

W R (2.10)

a=A"?|z,—C f

where z, is an arbitrary constant. Since a (¢) can shrink
to zero at some time ¢, whereas b (1) is always finite, p(¢)
will diverge as t —1t, and thus give rise to a real curva-
ture singularity. This singularity can occur before or
after b reaches its maximum value, and it will occur
without warning since b and b /b will be finite.

Matzner and Mezzacappa’ make a comment noting
that the results of Isihara'® indicate that for a dust-filled
universe with topology RxS*x S’ (g =0), the singulari-
ty structure is the same as in the five-dimensional
(RXxS3xS!) case. While this comment is true it never-
theless obscures an important difference between the two
cases—namely, that in the case of Ishihara’s solutions
p(t) diverges when the physical scale factor of the
Universe also diverges (and the internal-space scale fac-
tor shrinks to zero). That is, the singularity is also a real
curvature singularity for the vacuum solutions unlike the
five-dimensional case. In fact, Ishihara’s results would
seem to indicate that in the case of arbitrary dimensions
the solutions do not correspond to black-hole interiors.

III. THE k, =0 PHASE SPACE

We will now turn to the study of cosmological models
with the same fields as the model of Sec. II but in an ar-
bitrary number of dimensions, i.e., we will consider the
system (1.5) with 2«*V =A, f =1, and o =0. If, in addi-
tion, k, =0, the problem is greatly simplified since equa-
tions (1.5) may then be reduced to a two-dimensional au-
tonomous system whose properties can be studied by
standard techniques. This is possible since (1.5g) may be
regarded as a polynomial of degree n in 1/b%

2q?
b2n

ky )
—n(n ——1)—b—2‘+[2A—m(m —1)H

—2mnHI —n(n —1)I?]=0 .
(3.1)

One may solve for 1/b? and substitute back into (1.5d)
and (1.5e) to obtain a pair of differential equations in-
volving H and I only. If d =6 and n =2, for example,
the system is

] 1
2
H:—%H —5HI._%12__ 4K2q2 YA
k
+ 21’ 2[kb2+4K2q2(3H2+6HI+12—A)]1/2 ’
4k°q
(3.2a)
j 1
2 2
=%H —+—6H1—~%1 + 4K2q2 .
k
i4 Zb 2[kb2+4K2(12(3H2+6HI+12_A)]1/2 )
K°q

(3.2b)

It is not possible to write down a general analytic
solution to (3.1). Nevertheless, all the essential proper-
ties of the manifold defined by (3.1) can be derived. If n
is even (odd) then (3.1) will have at most two (three) real
solutions. For convenience we will assume that n is even
for the remainder of this paper. For n even (3.1) has real
solutions provided

2.2

1/(n—1)
1+ —25——9—~] [m(m —1)H?*42mnHI

(n_l)?_n—l

+n(n —1)I>—-2A]>0.
(3.3)

The surface defined by (3.1) is then a hyperboloid embed-
ded in R®. Since for each value of H and I there will in
general be two values of 1/b? it is convenient to
represent the phase surface by two copies of the plane R?
glued together along the boundary of a forbidden region.
The forbidden region comprises those values of H and I
for which the left-hand side of (3.3) is negative. This is
seen in Fig. 2 which shows the phase portrait for the
m =1, A=0 system studied in Sec. II.

Figure 2 illustrates many features which will be com-
mon to all the phase diagrams which will examine in this
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I (b)

FIG. 2. The m =1, A=0 phase space: (a) lower branch; (b) upper branch.

section. It is divided into two regions: those corre-
sponding to the k,=+1 and k,=—1 solutions. We
have not shown the general k, =0 solutions here; they

fill the same region of the phase diagram as the k, = —1
solutions. The separatrices which divide the k,=+1
and k, = —1 regions are the solutions for which k, =0

and ¢ =0. [They are indicated by the bold lines in Fig.
2(a).] In the A=0 case these separatrices are Kasner
solutions.!” In the m =1 case one of these solutions lies
on the H axis, i.e., the internal space is static. The glo-
bal nature of the spacetimes for the five-dimensional
Kasner solutions was discussed in Ref. 8 and it is the
same in the general m =1 case.

At a first glance one might be tempted to think that
the boundary of the forbidden region is an allowed tra-
jectory since the curve defined by (3.3) (in the case of
equality) is a solution of the pair of equations for H and
I. However, there is a mathematical subtlety involved
here. The Lipshitz condition, which guarantees the ex-
istence of a unique trajectory through each point of the
phase space, is not satisfied on the boundary of the for-
bidden region. In (3.2), for example, this can be seen to
be essentially because of the presence of the square-root
factor. The boundary of the forbidden region is a solu-
tion in the same sense that the singular solution of
Clairaut’s equation is.!® [For m =1 the singular “solu-
tion” corresponds to an infinite value of the integration
constant M defined in (2.2).] In our case, however, we
are really dealing with a three-dimensional phase space
plus a constraint. At points on the boundary of the for-

bidden region solutions will have a nonzero velocity in
the b dimension, which we have suppressed. The trajec-
tories must therefore cross from one branch to the other
and the singular solution is not allowed. Thus the
k, =+1 solutions in Fig. 2(a) which start close to the
positive H axis [corresponding to the outer horizon in
Fig. 1(a)] cross over to the other branch and head off in
the direction of the negative H axis in Fig. 2(b) [which
corresponds to the inner horizon in Fig. 1(a)]. [The pos-
itive H axis in Fig. 2(b) points in the opposite direction
to that in Fig. 2(a).] We will henceforth call the branch
containing the k, =0 and ¢ =0 separatrices the lower
branch and the other branch (which contains k, =+1
solutions only) the upper branch.

In Fig. 2 the only critical point is at the origin. (This
is true also for arbitrary m if A=0.) This point is an at-
tractor for k, =0, —1 solutions with nonzero g [which
occupy the upper right-hand side of Fig. 2(a)]. For the
k, =0 solutions (not shown here) a shrinks to zero at
late times while b ~£2/ =1 In other words, these solu-
tions become asymptotic to the Kasner solution with
nonstatic b. The k, = —1 solutions, on the other hand,
approach the origin the origin along the I axis, i.e.,
a—const and b~t at late times. This is the Milne
universe, which is just Minkowski space in unusual coor-
dinates. The solutions which occupy the lower left-hand
side of Fig. 2(a) are the time-reversed versions of the
above solutions.

Figure 2 does have some features which do not gen-
eralize to the arbitrary m case. In particular, there is a
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solution with b static on the upper branch as well as on
the lower branch. This is the Robinson-Bertotti-type
solution which corresponds to the neighborhood of the
horizon in Fig. 1(b). Such a solution is present in all of
the m =1 phase spaces if

(d 375 1/(d —3)

i 3.4)

A<AIE

K2q2

[cf. Figs. 1(b), 1(d), and 1(h)].

The lower-branch phase diagrams for m =1 solutions
with nonzero A are shown in Fig. 3. (The behavior of
solutions on the upper branch is very similar to the
A=0 case.) If A <O there are no critical points—all
solutions oscillate between the black-hole horizons (cf.
Figs. 1(a)-1(d)]. If A >0 there are critical points D, , at
H=I=[2A/(d —1)(d —2)]'/%. These are just the de
Sitter solutions

IA 172
@=Caexp |\ T d—2) ’]’
1/2 (3.5)
b=Cpexp |t ﬁd———?_) t,

where C, and C, are arbitrary constants. The solution
with the upper (lower) sign is an attractor (repellor) for
all k,=—1 and k, =0 solutions with nonzero ¢q. If
A > A, this is also true for the k,=+1 solutions with
nonzero ¢ [see Fig. 3(c)]. If 0<A < A, the k, = +1 solu-
tions may either tend to the de Sitter attractor or else os-
cillate as in the A <O case [see Fig. 3(b).] Trajectories
displaying these two types of behavior are divided by a
separatrix which passes through saddle points C,, on
the H axis [cf. Figs. 1(g)-1(i)]. In the critical case
A=A, there is a single saddle point at the origin. In
this case there is only one solution lying on the H axis
(that is, with b static). It coincides with part of the
boundary of the forbidden region and is the only trajec-
tory in this case which does not tend to the de Sitter
solution at late times. For this solution a grows as a ~¢,
which corresponds to the Milne universe.

We will now examine the phase space of the solutions
with n even and m arbitrary. The separatrices which
divide the regions corresponding to k,=+1 and
ky,=—1 (or k, =0, g=£0) are once again the k, =0, ¢ =0
solutions, which have been derived explicitly by Sato.'
The solutions are

a=C,t", b=C,t", A=0, (3.6)
a=C, |sintyt % |cosiyt | MAd=D=pa A 0,
2/(d—1) 3.7
b=C, |siniyr |? [cosiye |77 A<O,
a=C, [sinhiyt |” |coshiyt |77V 7P Aso,
(3.8)
b =C, |sinhiyt|” |coshiyt | MA=D=p As0),

where C, and C, are arbitrary constants.

d—1
2
=2 Al , 3.
4 d—2 [A| (3.9)
and p, and p, satisfy the relations

mpy+npy=1, mp,*+np,>=1. (3.10)

The solutions (3.6) are the generalized Kasner solutions
written down by Chodos and Detweiler.!” The A <0
solutions (3.7) reduce to the Kasner solutions at times
|vt| <<1 or |7m—yt | <<1—they expand and recol-
lapse in a finite time. The A > 0O solutions reduce to the
Kasner solutions at early times |yt | << 1 and approach
the de Sitter solution (3.5) at late times | y¢ | >>1.

It is extremely useful to have an explicit solution for
the k, =0, g =0 separatrices since it turns out that the
only critical points at the phase-space infinity lie on
these separatrices. To see this it is convenient to use the
standard technique of mapping the HI plane onto the
lower half of a sphere of unit radius (the Poincaré
sphere) which lies on the HI plane with the south pole
touching the plane at the origin. The mapping is per-
formed by means of a central projection. In our case a
complete sphere is needed of course: one half-sphere for
the lower branch and one half-sphere for the upper
branch. The points at infinity are mapped onto the
equator of the sphere by this procedure.

If one performs such an analysis one finds that in our
case there are four critical points at infinity: two nodes
N,N; at

Db+
Pa +

and two saddle points S,S, at

H=*w, I=

H, (3.11)

Py —
Pa—

H=%*w, I=

H, (3.12)

where p,+ and p, 4 are the solutions of (3.10):

1 (d —2) V2
n J—
= 1= |—— R
Pa+ m +n m
(3.13)
1 (d —2) 2
_ m —
= 1+ | ————
Po+ mtn n

These points lie on the k, =0, g =0 separatrices at
infinity and are shown in Fig. 4 which is the vertical
projection onto the HI plane from the half-sphere corre-
sponding to the lower branch. Since these points are
Kasner-type singularities for all values of A, if m+1 and
n=~1 then the resulting behavior of a and b will lead to
real curvature singularities of the metric. At the nodes,
for example, a -0, @ — w0, b— o, and b—-> — . For
the k, =0 solutions at least, therefore, the spacetimes
(1.1) do not in general correspond to black-hole interiors.

To determine the overall structure of the phase space
one must also locate the critical points at finite values of
H and I. The number and nature of the critical points
varies as A varies. The bifurcation values are
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FIG. 3. The lower branch of the m =1 phase space: (a) A<0; (b) 0<A<Ay;(c) A>A,.
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Details

vary
with A

FIG. 4. The vertical projection of the Poincaré sphere for
the lower branch onto the H,I plane for the general k, =0 sys-
tem. The nodes N, and N, and saddle points S; and S, are
Kasner singularities.

(3.14)

(n _1)2n—l ]l/m—l)

2nK2q2

A=

(d—Z)n(n_l)Zn_l 1/(n—1)
(2n)an2q2 .

We will examine the distinct cases in turn.
A=0. The phase diagram for this case is shown in

—

(a)

—»

\2_1\

Ky ~

\
.

\

Fig. 5. All solutions with nonzero g (and H > O initially)
begin at the Kasner singularity N,. (This is true for all
values of A.) As in the m =1 case the only critical point
is at the origin and it is an attractor for all k,=—1 and
k, =0 solutions with nonzero ¢ (and H >0 initially).
Thus the k, = — 1 solutions approach the Milne universe
at late times. For the k,=0 solutions a ~t"~ and
b ~t""~ at late times. Thus for these solutions a shrinks
while b blows up. The k, = +1 trajectories leave the ini-
tial singularity on the lower branch, cross to the upper
branch, cross back to the lower branch and reach the
Kasner singularity N, in a finite time. This corresponds
to a expanding from zero to a maximum and recollaps-
ing in a big crunch. At the same time b contracts from
an infinite value to a minimum value and finally blows
up again.

This property of one of the scale factors collapsing in
a finite time while the other scale factor grows infinite
simultaneously appears to remain a feature of models
which contain higher-dimensional matter in the form of
a perfect fluid, dust or a scalar field.'*2°~2% Such models
lack a solution with a flat Minkowski physical space and
static internal space. In Refs. 20-25 the authors took
the view that the collapsing scale factor corresponds to
the internal space and the expanding scale factor to the
physical space (a reversal of their roles with respect to
our models®®). To obtain a realistic universe the internal
space should then be stabilized by quantum effects before
the singularity is reached while the physical universe
should go over to the standard Friedman-Robertson-

FIG. 5. The phase space for the general k, =0 system with A=0: (a) lower branch; (b) upper branch.
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Walker behavior. However, as can be seen from Fig. 5,
such a scenario is not admitted by the Freund-Rubin
mechanism unless A is fine-tuned to some particular
value.

A <0. The lower branch of the phase diagram is
shown in Fig. 6(a) [the upper branch being similar to
Fig. 5(b)]. All solutions with nonzero g undergo the
same behavior as the k,=+1 solutions in the A=0
case: the physical space expands from the initial Kasner
singularity and recollapses to the final Kasner singularity
in a finite time.

A >0. For all values of A >0 there are critical points
D, ; at the de Sitter values

A 1/2
H :I = |
(d—-1)d —-2)
The de Sitter solution (3.6) is an attractor for all k, = —1

and k, =0 solutions with nonzero g. If A> A, it is also
an attractor for all k, = +1 solutions with nonzero ¢
[see Fig. 6(e)]. If O< A <A, there can be as many as
four additional critical points—these all lie on the H
axis and are given by solutions of the equation

2k%q22A—m*H )" +(n — 1)~ m(d —2)H,*—2A]
=0. (3.15

If 0<A<Aj, then (3.15) has two saddle-point solu-
tions C;,: one on the positive H axis and one on the
negative H axis [see Fig. 6(b)]. Separatrices which pass

—

—
Q

~

through these saddle points divide trajectories which ap-
proach the de Sitter solution at late times from those
that reach the final Kasner singularity N, in a finite
time.

If A <A <A, then (3.15) has four solutions: in addi-
tion to the two saddle points of the previous case there is
an asymptotically stable attractor 4, on the positive H
axis and a repellor 4, on the negative H axis [see Fig.
6(d)]. For A> A, the phase hyperboloid splits into two
sheets. Thus, trajectories which leave the initial Kasner
singularity N cannot reach the final singularity NV,. For
A< A <A,, the separatrices which pass through the
saddle points divide trajectories which approach the de
Sitter solution at late times from those that approach the
attractor on the H axis at late times. (The trajectories
on the other sheet of the hyperboloid are just the time
reversed solutions.) If A; <A < Aj;/,, where
1/(n—1)
(d—2)"(n —1)*~"'(m +8)

2"m[(d —2)+8n]"x’q?

A3z =9 (3.16)

then the attractor is a spiral point. If A;,, <A <A, then
it is a node. Although this attractor has a static internal
space the solutions which reach it are not physically
relevant since a grows exponentially at late times. In the
critical case A=A, the saddle points and attractor (re-
pellor) coalesce to give one critical point on the positive
H axis and one on the negative H axis. One may verify
numerically that the resulting critical point on the posi-

—
—
lon

—

FIG. 6. The lower branch of the general k, =0 phase space: (a) A<0; (b) 0<A<Ay; (c) A=A, (d) Aj<A<Ay; (é) A>A,.
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I (c) I (d)

A1<A</\3/2 A3/2<A<A2

A (e)

FIG. 6. (Continued).
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tive H axis is still an asymptotically stable attractor.

In the other critical case A=A, there is a single criti-
cal point at the origin in addition to the two saddle
points [see Fig. 6(c)]. This is an asymptotically stable
spiral point for some k, = + 1 solutions starting out from
the initial singularity N ;. (It is a repellor for the time-
reversed solutions.) Since both a and b are static at late
times this corresponds to a universe with a M*Xx B" vac-
uum (where B" is any Einstein space of positive curva-
ture). It is therefore of more physical interest than the
other cases even though one must fine-tune A to obtain
the desired behavior. This case has been studied previ-
ously by Okada.?”2®

At a first glance there appears to be an additional pair
of critical points if A>0. However, these lie on the
boundary of the forbidden region, and just as the bound-
ary is not a true trajectory these points are not true criti-
cal points.

IV. THE PHASE SPACE FOR OPEN
AND CLOSED MODELS

To discuss the solutions with k,=£0 it is convenient to
work with a new variable J defined by J=2«%q?/b*"
rather than with b. The critical points corresponding to
the late-time behavior of the solutions are then located
at finite values in the H,I,J phase space. The constraint
(1.5g) may be used to eliminate @’ from the other
differential equations (1.5). The system is therefore de-
scribed by the equations

. n(n —1)k
H=—H*4nHI+(n — DI 4 ————J/"
m 2mk-q
_ mn+4n—1., 2(n —1)A , (4.1a)
m(d —2) m(d —2)
. (n—l)kb m 2A
_ — 2 2/n JZ
I mHI —nl 2K2q2 +d—2 +d—2 ,
(4.1b)

J=—nlJ . (4.1¢)

Trajectories cannot cross the J =0 plane. The J =0 sys-
tem corresponds physically to a universe with k, =0 and
g =0. Since we are only interested in solutions with
b >0 (J >0) (the solutions with b <0 being qualitatively
the same), it is convenient to represent the J >0 regions
of the k=41 and k,=—1 solutions in a single dia-
gram by using a coordinate J'=k,J. The k, =0 phase
diagrams drawn in the last section correspond to the
surface of a hyperboloid embedded in this combined
phase space. The k,=—1 and k, = +1 solutions corre-
spond to the interior and exterior of the hyperboloid, re-
spectively. (We could replace the k, = — 1 half of the di-
agram by the J >0 portion of the k, =0 phase space if
we so wished. The qualitative features such as the num-
ber and nature of the critical points would be the same,
although the k;, =0 solutions would approach the critical
points from a different direction.)

The J =0 phase planes are sketched in Fig. 7. Since
g =0 for these solutions there is no compactification
mechanism and the scale factors a and b have a more
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equal footing. This can be seen from the fact that the
critical points at infinity S; and S, which were saddle
points with respect to solutions lying on the k, =0 hy-
perboloid are nodes with respect to solutions lying in the
J =0 surface. Thus in the A <O case, for example there
are two-dimensional sets of solutions for which a shrinks
to zero and b blows up in a finite time and also for
which b shrinks to zero while a blows up. For A=0 the

k, = —1 solutions approach the Milne universe at late
times. (This case was discussed in Ref. 8.) If A >0 the
k,= —1 trajectories approach the de Sitter solution at

late times. Some k, = + 1 trajectories also approach the
de Sitter solution. They are divided from the trajectories
which travel from N; to N, in a finite time by separa-
trices which pass through the saddle points B, ,. These
separatrices also divide off trajectories which travel from
N, to S, and from §, to N,; i.e., one scale factor starts
from zero and goes infinite in a finite time while the oth-
er scale factor starts infinite and simultaneously shrinks
to zero. The saddle points B; and B, are the only criti-
cal points at finite values of H,I,J besides those lying on
the k, =0 hyperboloid. They are located at

172

2A , A>0.

H=J=0, I=% |————
n(d—=2)

(4.2)

In the case of the critical points lying on the k,=0
hyperboloid the dimension of the set of solutions enter-
ing (leaving) points with H >0 (H <O0) is increased by
one in the three-dimensional phase space. Thus both 4,
and D, are still attractors in the three-dimensional phase
space, while C, attracts a two-dimensional bunch of tra-
jectories. The saddle point B, similarly attracts a two-
dimensional bunch of trajectories.

To examine the critical points at infinity in the full
three-dimensional phase space it is convenient to use the
procedure of Belinsky et al.’ One first transforms to
spherical polar coordinates r,0,¢ defined by

H =rsinfcos¢, I =rsinfsing, J=rcosf, (4.3)

and then brings the sphere at infinity to a finite distance
from the origin by the transformation r =p(1—p)~!,
0<p< 1. The critical points at infinity (p=1) are then
determined from the resulting equations for dp/dr,
dO/dr, and d¢/dr, where 7 is a new time coordinate
defined by dr=rdt. One finds that apart from the criti-
cal points N, and §;, which lie on the k, =0 hyper-
boloid the only critical points at infinity are saddle
points in the k, = —1 models. These are the points S; 4
located at

0=m/2, ¢=0,m or H=*w, I=J=0, (4.4)
and the points S5 ¢+ located at
2 172 .
O=arctan* ;r(ﬁ s ¢=arctan;
or 4.5)
) d_2 1/2
H=*w, I=—H, J=% — H .
n n
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FIG. 7. The J =0 phase space: (a) A <0; (b) A=0; (c) A>0.
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(We assume that S; and S5y are given by the points
with H >0 and S; and S¢; by the points with H <0.)
These points are present in all k, = —1 models regard-
less of the value of k.

An analysis of small perturbations about the critical
points reveals that N, , are still nodes in the full three-
dimensional phase space. Thus N, ejects trajectories
into all models k,,k, =+1,0,—1. The saddle point S,
attracts a two-dimensional bunch of trajectories and S,
repells a two-dimensional bunch of trajectories: those ly-
ing on the J =0 plane (see Fig. 7). The saddle point S;
(S4) similarly repels (attracts) a two-dimensional bunch
of solutions which travel to finite values of H, I, and J.
A single trajectory leaves (enters) the points Ssi(S¢+)
traveling to (from) finite values of H, I, and J.

The asymptotic behavior (for |z | << 1) of solutions
near the critical points S;_4 of the k, = —1 models is as
follows: near S;4,a~t and b-—const; and near
Ssi 6+, a~tand b~t'". The points S; and S, are not
curvature singularities and will correspond to horizons.
There can therefore be cases in which spacetimes similar
to those of the m =1 solutions are encountered. Howev-
er, this is only true for at most a two-dimensional bunch
of trajectories. The behavior is not stable in the three-
dimensional space of all trajectories. Thus our remarks
made in Sec. III are quite general: Kaluza-Klein cosmo-
logical solutions do not, in general, correspond to black-
hole interiors.

In addition to the trajectories which travel from the
sphere at infinity to finite values of H, I, and J there are
trajectories which lie entirely on the p=1 surface. Al-
though these trajectories are unphysical it is helpful to
sketch them since by continuity arguments they will
determine the behavior of the physical integral curves
which lie within the sphere at infinity but near its sur-
face. Such a diagram is reproduced in Fig. 8, where we
have sketched the p=1 surface treating the polar angles
6 and ¢ as Cartesian coordinates. The curved trajec-
tories which join S, with N, and N; with S, represent
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the projection of the k£, =0 hyperboloid onto the sphere
at infinity.

To complete this section we will summarize the
overall behavior of all the trajectories. Apart from the
various one- and two-dimensional bunches of solutions
in the k, = —1 models and the J =0 plane, all solutions
(with H > 0 initially) start from the singularity N,. The
behavior of these (nonzero ¢g) solutions at late times de-
pends on A and is as follows.

A < 0. All trajectories (with nonzero g) travel to the
singularity N, in a finite time.

A=0. All trajectories with k, =41 or k, = +1 travel
to the singularity N, in a finite time. If k,=0 or —1
and k,=0 or —1 all trajectories approach the origin
H =] =J =0 at late times.

A>0. If k,=0 or —1 and k, =0 or —1 all trajec-
tories approach the de Sitter solution at late times. If
k,= 41 then for all positive values of A there will be
solutions which travel to the singularity N, in a finite
time (whether k,=+1,0 or —1). Let us denote this
three-dimensional set of solutions G,;. They will be
separated from trajectories with other behavior by two
two-dimensional separatrices of trajectories which travel
from N, to B, and from B, to N,. Let us denote the
second three-dimensional set of trajectories by G,. The
set G, will be divided into two further sets of trajectories
if0<A<A,.

If 0<A<A; a two-dimensional separatrix of trajec-
tories traveling from N, to C, divides G, into a three-
dimensional set of trajectories which travel to N, in a
finite time (like the G, solutions) and a three-
dimensional set of trajectories which approach the de
Sitter solution at late times. If A;<A <A, the two-

dimensional separatrix of trajectories traveling from N,
to C, will divide a three-dimensional set of trajectories
which approach the attractor 4, at late times from a set
which approach the de Sitter solution. If A > A, then all
trajectories belonging to the set G, will approach the de
Sitter solution at late times.

If k,=0 or —1 and

FIG. 8. The pattern of trajectories on the surface of the sphere at infinity for the general system.
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k, = +1 there will also exist a set of trajectories G, with
the same properties as the set G, in the k, = +1 case.
The solutions belonging to the set G, have been stud-
ied numerically by Forgacs and Horvath?® and Okada?’
for the k, =k, =+ 1 system in the fine-tuning case in six
dimensions. Okada has also studied more general fine-
tuning solutions (with k, =+1,0 or —1) which include
thermal and quantum effects as well as the Freund-
Rubin mechanism.?® His results show that the trajec-
tories still have much the same qualitative behavior.

V. MODELS WITH DILATONS

Let us consider the case in which a scalar field is add-
ed to the model of the last section without any coupling
to the Freund-Rubin field, i.e., 2>V =A and f =1. This
is the next simplest case to consider since Egs. (1.5) can
then be reduced to a four-dimensional system. This can
be achieved by using the constraint (1.5g) to eliminate a?
from the right-hand side of the other equations, as in
Sec. IV. Since trajectories cannot cross the K =0 sub-
space it seems likely that the behavior of solutions at
late times will be very much the same to that encoun-
tered in the last section. The exact properties of all tra-
jectories are difficult to determine because of the large
dimensionality of the phase space. Some comments can
be made nevertheless.

In addition to the critical points lying in the K =0
subspace, the only critical points at a finite distance from
the origin of the four-dimensional phase space are saddle
points in the k,=+1 models, which are present if
A <A <A, There are four such points: two at positive
values of K and two at negative K. They are given by
the solutions of the equations

H=I=0,
m ., =Dk, , —— 2A

J =0, 5.1
- Y +—25 =0 (5.1)
1 2A  |n—1 |5
K =) d—2 I

Both critical points attract a two-dimensional bunch of
trajectories. Evidently these bunches form separatrices
though their role is not immediately clear. The dimen-
sion of the set of trajectories attracted to critical points
with H >0 or I >0 which lie in the K =0 subspace is
greater by one in the full four-dimensional phase space.
(The dimension of the set of trajectories repelled by criti-
cal points with H <0 or I <0 is likewise greater by one.)
Thus the points 4, and D, are still asymptotically
stable attractors.

It is once again possible to explicitly derive the k, =0,
k, =0, g =0 solutions. One finds that

poln|tantyt|, A<O,
V2ko={p,n|t |, A=0,
pPoln|tanhiyt|, A>0,

(5.2)

while a and b are still given by the relations (3.6)—(3.8).
The constants p,, py, and p, now satisfy the conditions
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mpa+npb:1’ mpaz+npb2+p02=1 . (53)

These solutions will form separatrices in the full four-
dimensional phase space. The scale factors a, b and
¢V all have a power-law behavior when |yt | <<1
(and |7m—yt | if A<O). If A>0 then a and b will ap-
proach the de Sitter solution (3.5) at late times.

An analysis of the critical points at infinity reveals
that the nodes N, and saddles S, are members of a
one-parameter set of critical points at infinity. These
points are just those which correspond to the k,=0,
k, =0, ¢ =0 solutions (3.6)-(3.8), (5.2), and (5.3) with
| vt | <<1. They will always correspond to curvature
singularities if p,50. These points are the only critical
points at infinity apart from those for the k, = — 1 mod-
els which lie in the K =0 subspace. The global proper-
ties of the solutions with dilatons must therefore have
much of the same global properties as the solutions
without dilatons for this model.

A physically more interesting model containing a dila-
ton is that of N =2 gauged supergravity in six dimen-
sions.’®3! In this model there is a nontrivial coupling
between the dilaton and Maxwell field, f =eY20 and an
exponential potential ¥ =(g,2/2k%)e —V 2o, where g, is a
coupling constant. The charge q is related to g, by

L P

+ , 4
22, (5.4)

q =
where p is restricted to be an integer by the requirement
that gauge transformations be single valued. There has
been considerable interest in the cosmological solutions
of this model.®323%

The model admits a M*x B? solution if p =1. The
phase space then has critical points at

Ve,

H=I=K=0, 1/b>=2x"%g,% , (5.5)

with o arbitrary. (The fact that the critical points may
have arbitrary o is due to the scale invariance of the
model.?) This “string” singularity appears to be an at-
tractor for k,=0 and k,= —1 solutions with compact
internal spaces.’»3* There are no other critical points
for finite values of the parameters.

The phase space for the system is five-dimensional
since o appears explicitly in the equations. Thus the
overall behavior of the trajectories will be far more com-
plex than in the models we have already encountered.
Moreover, trajectories can now cross the K =0 subspace
so the phase space will have rather different properties
than those of the previous models. One may understand
this difference physically as being a result of the scale in-
variance of the supersymmetric model. Halliwell has an-
alyzed the phase space of k, =41 solutions in certain
regions where various approximations hold.’>3¢ Any
more detailed analysis of the phase space would appear
to be quite difficult.

VI. CONCLUSION

An analysis of the phase space of Kaluza-Klein
cosmologies with Freund-Rubin compactification and an
arbitrary cosmological constant reveals that the bizarre
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behavior of the five-dimensional cosmologies®~% does not
generalize to many other cases. Solutions in which ei-
ther the physical or internal space has a single spatial di-
mension will correspond to black-hole interiors and will
display pathological behavior. However, this behavior is
not at all general: the only other case where it is possi-
ble is for a two-dimensional bunch of trajectories in the
k,=—1 models. If a dilaton is added to the model the
properties of the solutions are much the same. In the
case of the scale-invariant models, however, the phase
space exhibits quite different behavior.

The most physically relevant case among the solutions
we have discussed in detail is the fine-tuning case A=A,.
Trajectories in this model which pass very close to the
saddle point C; will experience a long period of ex-
ponential inflation. The Hartle-Hawking proposal for
the wave function of the Universe’’ may be applied to
obtain initial conditions for the classical trajectories.
Halliwell has calculated a minisuperspace wave function
for the fine-tuning model in six dimensions.>® The classi-

cal trajectories picked out by the Hartle-Hawking propo-
sal in this case are those which start near C; and under-
go a period of inflation. This set includes trajectories
which approach the de Sitter solution D at late times as
well as those that approach the attractor 4,. To obtain
enough inflation to solve the flatness problem it is neces-
sary to tune the initial conditions to an extremely high
accuracy, however, and the model cannot be regarded as
a true inflationary model.?”?® The other models with
0<A <A, will also possess similar narrow regions cor-
responding to inflationary behavior, although of course
there is no realistic late-time behavior in these cases.
Despite the fact that the models we have considered do
not describe physically realistic universes I hope that the
analysis presented here will be useful for an overall un-
derstanding of the compactification process.
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