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The Gibbons-Hawking-Stewart canonical measure is applied to classical Friedmann-Robertson-
Walker cosmologies with an R + eR Lagrangian. Both the inflationary solutions and the
noninflationary solutions have infinite measure, and the ratio is ambiguous. All but a finite rnea-
sure of the k = —1 solutions have an arbitrarily long period of near spatial flatness, but for
k =+1 there is also an infinite measure for solutions which have a small maximum radius, unlike
the case with Einstein gravity coupled to a massive scalar field. For k = —1 there is a finite posi-
tive measure for complete nonsingular solutions with a nonzero minimum radius; all other k = —1

solutions expand from zero to infinite radius. For k =+1 all solutions but a set of measure zero
expand from zero radius and eventually recollapse to zero radius. However, there is also an ap-
parently fractal set of discrete (zero measure) k =+1 solutions which have no singularities but
rather expand and recontract perpetually, with an arbitrary number of oscillations of the scalar
curvature between each successive bounce.

I. INTRODUCTION
ijkl k (gikgj I gilgj k ) (2.2)

One particularly attractive form of the inflationary
universe scenario' is Linde's chaotic inflation, ' which
does not require thermal equilibrium or a finely tuned
effective potential in the early Universe. Instead, it relies
on having some scalar field take values far from the
minimum of its potential, say by a quantum fluctuation.
This mechanism is effective for quite a wide class of pos-
sible potentials, but one might like to get inflation to
work without assuming any scalar field at all. Indeed,
this can be accomplished in higher-derivative gravita-
tional theories, in which the scalar curvature acts rather
like a massive scalar field. ' An analysis of one of these
theories, with an R +eR Lagrangian, has shown that
generic initial conditions within the Friedmann-
Robertson-Walker (FRW) class can lead to in(lation.

In this paper the classical solutions of this model are
examined in more detail, and the Gibbons-Hawking-
Stewart (GHS) canonical measure is applied to them. It
is found that there are various classes of solutions, some
countably discrete, some uncountably discrete but still of
zero measure, and others of nonzero finite measure, and
finally yet other solutions making up classes of infinite
measure. Both inflationary and noninflationary solutions
have infinite measure, so the ratio, which might be said
to give the probability of inflation, is ambiguous, analo-
gous to the case with a massive scalar field.

II. FRW MODELS WITH AN R +eR
LAGRANGIAN

+JR„.R "'+yR ') . (2.3)

One combination of the quadratic terms is the Euler
density, a pure divergence, and another combination is
the square of the Weyl tensor, which is zero in FRW
metrics, so for classical solutions with the metric (2.1),
the Lagrangian density is effectively R +eR . For mi-
croscopic stability, take e) 0 (Ref. 9).

The second derivatives of the metric in the R term
cannot be canceled against a surface term by an integra-
tion by parts as they can for R, so extremizing the ac-
tion leads to fourth-order equations of motion for the
metric. In order to write the theory in canonical form
with only first derivatives in the action (and hence lead-
ing to second-order equations of motion), it is convenient
to regard a (t) and

Q(t) =—a(1+2eR ) (2.4)

as independent dynamical degrees of freedom, '' so that
the action takes the form

normalized so that k = —1, 0, or + 1. The dynamics
will be assumed to be given purely by gravity, but with
the Einstein-Hilbert action augmented by quadratic cur-
vature terms so that the total action is, up to surface
terms,

1

16~G
d x&—g(R+aR „R"i'

P vpcT

A homogeneous, isotropic (FRW) metric for the
universe may be written as

g d'x —dt
a da
N dt

a dQ
N dt

ds4 = N(t)dt +a (t)g; dx'dxj—, (2.1) +kaQ — a (Q —a)1 2

24'
where g;z is a time-independent 3-metric with constant
curvature (2.5)
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a da
N dt

+kaQ — a (Q —a) =0 .
N dt 24m

(2.6)

Variation with respect to the lapse function N(t) gives
the Hamiltonian constraint equation

fourth-order equations (except when d =0, so a = —6Ek
is a spurious solution). Equation (2.10) for Q is not in-

dependent but may be obtained from (2.9) and the time
derivative of the constraint. One particularly simple
combination of (2.9) or (2.10) and the constraint is

1 2I= f dt —adQ+kQ — a(Q —a)
24@

dg —a' '+ka — a —a1 2

24m
(2.7)

where the overdot represents d/dt with respect to the
cosmological proper time t (since N =1 now) and the
prime represents d/dg with respect to the conformal
time i) = f dt/a. The constraint (2.6) and the equations

of motion for a and Q then become

a 2dg —=a'Q'= a (Q —a) —kag =f (a, Q),
24m

(2.8)

12'
—'(a )"—=aa +a = a (Q —a) —k, (2.9)

Once this is imposed, one may reparametrize the time
coordinate t to make N(t) =1, which will be done hence-
forth. Then, for our purely classical analysis, we may
also rescale the action to make the constant coefficient in
front of the time integral in (2.5) equal to unity. These
steps simplify the action to

R+3HR+ R =0,
6e

(2.15)

which shows that R evolves according to the same equa-
tion as a scalar field of mass (6e) ' in the same metric,
but the metric itself does not evolve quite as it would
with a massive scalar field present instead of the R term
in the action.

Unlike the vacuum Einstein equations, which are scale
free, the classical R +eR equations contain a single di-
mensional coupling constant e, of dimension length
squared, which sets the scale. It is convenient to mea-
sure all lengths in units of L —= (24m)'~, in which case
the equations all become dimensionless, with e dropping
out and no arbitrary dimensionless parameter appearing.
(This would not be the case in the quantum theory,
which would contain the dimensionless parameter
e/A'G. ) That is, one may define the dimensionless vari-
ables r„—= t/L, a„—:a/L, R, =RL, Q~ =Q/L,
I =I/L2, rj—:—g, f„==f/L, and H~ =HL. Then the
equations for the quantities with an asterisk are the same
as for the corresponding quantities without an asterisk
but with 24m set equal to unity. For example, Eq. (2.7)
becomes

Q = (Q —a)(g —3a) .
24@a

(2.10)

The definition (2.4) makes (2.9) become the standard
FRW formula for the scalar curvature:

dg —a', ' +ka —a —a

—= f rInl: a'Q'* —f.—(a. , Q. )], (2.16)

a a kR=6
a a2 a2

=6 H+2H +, (2.11)
a

giving the Hamiltonian constraint and equation of
motion as

where

aH—:—
a

a'
2a

(2.12)

a', Q'„=f, (a„,g, )—=a„(Q„—a )2 —ka„Q„

a,"=af, /ag„,
Q '„' =Bf„/Ba „,

(2.17)

(2.18)

(2.19)

is the Hubble expansion rate. The constraint may then
be rewritten as

0=2eHR ——eR + H + (1+2eR)1, , k

6 a

1 k
&H +3H

where F' =dF /d g—:a dF /dt =dF /d g, =—a, dF /dt, for
any time-dependent quantity F.

One method of analyzing these equations is to convert
them into coupled first-order equations. Since Eq. (2.15)
shows that R~ behaves as a scalar field of mass 2 in
units of L, one may by analogy with the massive scalar
field case" define

+H
a

(2.13)
, =—2eR

dR~
y =— —= (24m )'~ R

24 dt~

(2.20)

(2.21)

2a aa —a a +2aa a —3a —2ka +k

a (d +k)=0 .
6e

(2.14)

This equation and its time derivative give the full

which yields the single third-order equation for the scale
factor a: z = „'H„—= (6e.)'i ———a

a

Then one gets the coupled system

1 dx
2 dt,

(2.22)

(2.23)
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= —x —3yz
1 dy
2 cEt

(2.24) Bf, dg„
Ba, da,

"r)f„dg„
Bg, da„

(2.32)

1 dz 2x +x +4yz z

2 dr„4(1+ x)
(2.25)

which has, as a first integral, the constraint

k 6@k x —4yz

4a a 4(1+x) (2.26)

ds = f, (a, g„)da„—dQ„

The solutions have three parameters (e.g., x, y, and z at
t„=O), but one combination of these three merely sets
the origin of the time coordinate, so there is. actually
only a two-parameter set of physically distinct solutions,
represented by the two-parameter congruence of trajec-
tories in the (x,y, z) space which solve Eqs. (2.23)—(2.25).

As a consequence of Eq. (2.15), Eqs. (2.23) and (2.24)
have precisely the same form as in the massive scalar-
field case, but in the latter the right-hand sides of the
analogues of Eqs. (2.25) and (2.26) are x —2y —z and
x +y —z, respectively, which are considerably
simpler. For example, in the scalar-field case, the k =0
solutions lie on a cone, whereas here they lie on a more
complicated surface.

Another method of analyzing the dynamical equations
that is easier to grasp pictorially for a relativist such as
the author, who finds it hard to visualize in more dimen-
sions than has the surface of his retina, is to use the fact
that Eqs. (2.17)—(2.19) give trajectories in the (a, , Q„)
space which are timelike geodesics in the auxiliary
(1 + 1)-dimensional metric

The metric (2.27), the mass squared (2.31), and Eq. (2.32)
all become degenerate on the curves f, =0, but the tra-
jectories generically pass through these curves in a non-
singular manner, with dg, /da „crossing either 0
(dX/dT = —1) or ao (dX/dT =+1) and with no singu-
larity in the physical metric (2.1), except at a „=0,
which is a physical singularity. A set of measure zero of
trajectories have a„=g„=O at f, =0 and so simply
turn around and reverse their motion at that moment of
time symmetry.

Whitt has given yet another way of analyzing the dy-
namics of R +eR gravity, namely, by examining the
conformally transformed metric

ds4 ——( 1+2ER )ds4 (2.33)

(2.34)

Then if one writes the dimensionless scale factor of the
conformal metric (2.33) as

a, =e =e a, ,P (2.35)

so

In this metric one gets the equations of Einstein gravity
minimally coupled to the scalar curvature interpreted as
a scalar field with a somewhat unusual stress-energy ten-
sor. One may put the kinetic-energy term of this tensor
into canonical form by choosing the scalar field to be'

Q=——,'ln
~

1+2eR
~

= —,'ln
~

1+x
~

= —,'ln
~
Q„/a,

~

—= [ka „g,—a, (Q„—a„) ]da, dg, . (2.27) eP 4g —+eP+4 (2.36)
If ~ is the proper time along the geodesic in this metric,
the constraint Eq. (2.17) becomes

the action (2.16) becomes

dr) 1 dt
dr a dr (2.28)

dP + dP

which gives the variation in the conformal time g or in
the cosmological time t along the trajectory.

The trajectories may also be interpreted as those of a
particle of variable mass squared f, (a, ,g, ) moving in
the flat metric

+ke ~—2V(P) (2.37)

V(P) =+—,'(1+e ~) (2.38)

where dt„=e~dt, and the upper (lower) sign is for Q,
positive (negative). Thus, the constraint and dynamical
equations become

dP

ds = —da„dg„= dT +dX— (2.29)

where the new timelike and spacelike coordinates are

(2.30)

respectively (the same as —,'y and —,'x of Ref. 5), with
T &X. In terms of these coordinates, the mass squared
is

f„=4X ( T —X) —k ( T X!. —(2.31)

In either the curved metric (2.27) with a constant mass
or in the flat metric (2.29) with a variable mass, eliminat-
ing the proper time parameter along the trajectory leaves
one with the single second-order equation for Q„(a, ):

dP —ke ~+2 V, (2.39)

d P dP dP dV
(2.40)

ds =(2e ~V —ke ~)( —dP +dP ) . (2.41)

Alternatively, in the two separate regions +g„&0, the

plus an equation for d p/dt, that may be obtained
from Eqs. (2.39) and (2.40) by differentiation and algebra.
The solutions are geodesics of the auxiliary metric (2.27),
which may be rewritten as
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solutions are trajectories in the Hat metric

ds = d—a„dQ, =+e ~( —dP +dP )

of a particle of variable mass squared

f„=+e ~(2V —ke ~)=e ~(1+e ~) +ke ~

or trajectories in the conformally related Aat metric

(2.42)

(2.43)

in the metric (2.33) arising from P and P going to —oo

with a finite difference between them merely correspond
to 1+2eR passing through zero and, hence, no singulari-
ties in the physical metric (2.1).

III. THE CANONICAL MEASURE
FOR THE FRW R +eR MODELS

—d(lna )d(ln
~ Q» ~

)= —dP +dP (2.44)

of a particle of mass squared

a„g„f,=e ~(2V —ke ~)

=+e ~(1+e &) (2.45)

This approach gives the closest analogy with the mas-
sive scalar field equations, except that here the potential
V(P) has an unusual form corresponding to a cosmologi-
cal constant when P ~~1 and to an exponential potential
when P « —1. One must bear in mind that singularities

P, , = —Q'„= —dg„ /de, = —a', :——da, /dg,
(3.1)

the measure is simply the first power of

For a 2n-dimensional phase space 1"„with one Hamil-
tonian constraint (e.g. , the models above with n =2), the
GHS canonical measure on an initial data surface I „
of dimension 2n —2 is (up to sign) the (n —1) power of
the symplectic 2-form co =dP; h dg ' pulled back to
I „ i. Here, using the action (2.16) in which the canoni-
cal momenta are

co=dP, Ada, +dP& hdg» =da„hdg'» +dg» Ada'»

=da» hd [2a, (1+x)z +2a, y]+d [(1+x)a„]hd(2a, z)

=2a„da, P [ —zdx +dy +2(1+x)dz]+2a„dx hdz . (3.2)

One must choose a two-dimensional initial data surface
on the three-dimensional constraint surface [e.g. , a two-
dimensional surface in the x,y, z space for k =+1, with
the constraint (2.26) determining a, ] and restrict co to it
to get the measure for the solutions crossing that sur-
face.

For example, on a surface of fixed a, =const & 0, the
measure (3.2) is simply proportional to dx h dz or
dR R, dH in terms of the initial data x and z or R and H,
with the constraint (2.26) determining y or R. Since the
constraint may be solved for y at all values of x and z
(except that z =0 gives y = oo unless a„x =k+kx),
their range is unrestricted and leads to an infinite total
measure. Alternatively, if the data at a, =const are ex-
pressed in terms of Q„and dg„/da, of the trajectory
there, using the constraint in the form (2.17) and insert-
ing it into (3.2) gives the measure

ai=
~ Q, ~

dg» hd [ —k(dg„ /da )
—']'~ (3.4)

at a„=O. For each finite range of Q„, the measure in-
tegrated over values of dg„ /da, bounded away from
zero is finite, but it diverges when integrated to
dg» /da„=O, which gives a limiting solution in which
Q» stays constant as a, increases from 0 to oo at infinite
speed with respect to t » (so that at each nonzero but
finite a», x =2eR =Q» a» ' —1 is finite, but y cc R and
z oc H =a /a are both infinite).

The FRW models with a massive scalar field almost
all (i.e., all but a finite measure) start at zero size and ex-
pand monotonically from there to an arbitrarily large
size. That is, the solutions with a =0 at finite a bound-
ed above have only a finite measure for those models.
However, in the present case, the measure at a =0 (i.e.,a'„=0 or z =0) is, from (3.2),

ai= f„'~ dg„hd [(dg„/da„) ' ], (3.3) co=2a, da, h, dy, (3.5)
where at each value of Q„, dQ„/da, is restricted to
have the same sign as f„(a„Q„).Again, the measure is
seen to diverge both as Q„ is taken to + oo and as
dg, /da„ is taken to 0.

For k =+1 and a» sufficiently small for nonzero Q, ,
the metric (2.27) becomes approximately ds
= —,'kd (a, )d (Q, ), so its geodesics become approxi-
mately linear in a» and Q„as a„goes to zero. Thus,
one may parametrize the solutions which to the singular-
ity at a, =0 with Q, &0 by their values of g„and
d (g„)/d (a„) there, and the measure (3.3) becomes

co=z '(a„x —4a» z —
—,'k)da, hdx, (3.6)

which also diverges when integrated to x = oo for each

which diverges when integrated over the infinite range of
y allowed even when a ~ is restricted to a finite range.

One can also ask for the measure within a finite range
of a, at a fixed nonzero value of the expansion rate z.
Solving Eq. (2.26) for y as a function of a, and x at fixed
z and inserting the result into the measure (3.2) gives
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finite range of a~. By contrast, the analogous integral
converges for the massive scalar-field case, implying that
almost all of those models are spatially flat (have k/a
smaller than any nonzero value) at any given value of
the Hubble expansion rate H. In the R +eR models,
there is an infinite measure of solutions which are within
any arbitrary range of spatial curvatures at any given
value of the expansion rate. Thus, a uniform probability
distribution relative to the GHS canonical measure
would not unambiguously solve the Aatness problem at a
fixed Hubble constant for the R +eR FRW models as
it does for those with Einstein gravity containing a
minimally coupled massive scalar field.

On the other hand, if one restricts oneself to
1+x=1+2' &0 and fixes the value of the "energy
density" in Whitt's conformal metric (2.33), say

2

dt, (1+x) (1+x)
(3.7)

then if p, & 1, the measure integrated over a finite range
of a, is finite, and so almost all solutions at fixed p, & 1

have a, arbitrarily large and, hence, spatial curvature
k/a arbitrarily small. To see this, let

J'

dt, (1+x) (3.8)

(2I')'"=—1 —e '~—= =p, '/2cosi/ .1+x (3.9)

=d (e ~a „)6 (2dg/dt „)dP
p, sin i/ 1i/ h d ( a „)

(1 —p„c0$4) (3.10)

When integrated over i/ from 0 to 2m. with p, & 1 and
over a finite range of a, , (3.10) gives a finite measure,
though it diverges as i/ ~cos 'p, '/ if p, & 1. Thus al-
most all solutions (i.e., all but a finite measure) at fixed
p, &1 and with x & —1 have a, arbitrarily large and,
hence, spatial curvature k/a arbitrarily small.

However, if one does not require p, & 1, one does not
have a solution of the flatness problem, because (3.10) in-
dicates that there is an infinite measure of solutions
which have p, & 1, even within a finite range of a, , and
these solutions need never become Aat. For example, if
k =+1, the measure at an extremum of e ~=a, Q„(i.e.,
p=O, which occurs at p„=e ~) is

d(ep) h 1 —3 sin i/'
dg

1 —e icosi//
(3.11)

which in any fixed range of P & 0 diverges at
1 —e icos/=e ~=0, i.e., as the extremum at fixed p is

Then at fixed p„, dP/dt, is a (double-valued) function of
p, and the constraint (2.39) implies that dpldt, is a
(double-valued) function of /3, so the action (2.37) leads
to the measure

co=d( 2e ~dp/dt„—) hdp+d(2e ~dpldt, ) Ada

=d(e ~) h(2dg/dt, )dP

is moved to infinite e ~=1+x =Q, /a, . If the ex-
tremum is at e ~& —', , it is an absolute maximum for e ~

along the trajectory, and the entire trajectory also has
a, less than the resulting value of (e ~+e~)'/ and,
hence, always has significant spatial curvature.

(1+x)'"a, (x)=
/x

/

(1+x) [(1+4a„')'"+ 1]'
4a,

(4.1)

as

4X 1T(X)=X
4X —1

(4.2)

or, using the coordinates p and p in the region Q„&0
where the curves occur, as

P(P)= —ln
~

1 —e (4.3)

Along these curves a'„Q', =f„=O, so that either a„
(if dX/dT=dpldp=+ I ) or Q„(if dXldT =dp/d/3
= —1) has an extremum there. These two curves divide
the (a„, Q„) parameter space into three regions (cf. Fig.
2 of Ref. 5):

[( I+4a 2)l/2 1)2
Q, &

4a~
(4.4)

[(1+4 2)l/2 1)2 [(1+4a 2)1/2+ 1]2
II: &Q, &4a, 4a~

[(1+4a 2)1/2+ 1]2
III: &Q, .

4a~

(4.5)

(4.6)

In regions I and III, the mass squared f„ is positive,
so the trajectories are timelike in the flat metric (2.29) or
(2.42). That is, dQ lda, &0,

~

dXldT
~

& 1, or
~dP/dP~ &1 for Q &0 and ~dgldP~ &1 for Q &0

(which occurs only in I). In region II, f, is negative, so
the trajectories are spacelike: dQ„ /da „&0,

~

dX/dT
~

& 1, or
~
dgldP

~
& 1 (since Q, &0).

The boundary between regions I and II, given by Eq.
(4.1) for —1&x &0 (so the + sign is —) or (4.2) for
——,

' &X &0 or (4.3) for P &0, is timelike in the flat
metric (2.29) or (2.42). Thus, a trajectory which leaves I
to enter II, and hence becomes spacelike, cannot return

IV. SOLUTIONS WITH k =+1
Now the dynamical equations and canonical measure

will be used to analyze the FR%' models with the
R +eR Lagrangian. First, consider the case with posi-
tive spatial curvature (2.2), k =+1. The trajectories in
the flat metric (2.29), (2.42), or (2.44) are null at the van-
ishing of the mass squared f„(a,, Q, ), given by Eq.
(2.17) with a, —:(24e) ' a and Q „=(24e) '

Q
=(24e) ' a(1+2eR), which occurs at the singularity
a, =0 and on the two other curves f„=0which may be
alternatively represented as the two branches of
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to I unless it first traverses II into III and then returns
across II with the opposite sign of a„, Q„, X, and P. In
the other direction, a trajectory which enters I from II
may return to II (with the opposite sign of dX/dT =+1
or dP/dP=+I at the boundary). Equation (2.32) im-
plies that d a, /dQ„&0 in region I, so a trajectory
which enters I will inevitably return to II unless it in-
stead hits a„=O with Q„&0. In particular, unless a tra-
jectory is null within I and, hence, has a„or Q, infinite,
it cannot have Q, going to oo in region I, but instead
must reach a, =0 at finite Q„&0 or else cross into II at
finite Q~ &0.

The boundary between regions II and III, given by Eq.
(4.1) for x &0 (so the + sign is + ) or (4.2) for X & —,

' or
(4.3) for P &0, is timelike for x & 2, a, & —,'v'3, X & —,

' V'3,

P&ln —,', or P & —,'ln3 and is spacelike if these inequalities
are reversed. A trajectory crossing the timelike part of
the boundary, going from III into II, becomes spacelike
in II and must cross II to enter I, whereupon it will
inevitably return to II or else go to a„=O at Q, &0 as
discussed above. A trajectory going from III to II
across the spacelike part of the boundary with a', =0
(dX/dT =dP/dP=+ I) has a~ increasing and Q„de-
creasing in II and hence must either return to the space-
like part of the boundary with Q', =0
(dX/dT =dP/df3= —1) there and reenter III or else
cross II and enter I. A trajectory crossing the spacelike
part of the boundary into II with Q'„=0 there, either
must return to the boundary, with a', =0, at a smaller
value of a, and a larger value of Q, (e.g. , the time re-
verse of the first possibility in the previous sentence), or
else it must hit a, =0 at finite Q, (a, =0) &0, except for
a single intermediate case on the border between these
two classes of possibilities.

This borderline curve is the limit of the previous
curves as the end-point value Q„(a, =0) is taken to
infinity. For large Q, , where the spacelike part of the
boundary has the asymptotic behavior a„—Q„' or
P-O, the limiting curve has a ~ ——', Q,
—+3 '~ (t, o t„) or P—- ——,'ln —', and, thus, is precisely
tuned to avoid going either back to the boundary or to
a„=O at any finite Q„, though it does reach a„=O at
finite time, unlike the analogous solution in the massive
scalar-field case. ' There is one borderline curve for
each point on the boundary at which it enters region II,
so there is a one-parameter family of such curves, a set
of measure zero compared with the two-parameter set of
all possible trajectories.

A trajectory going in the opposite direction, from II
into III, has as a consequence of Eqs. (2.39) and (2.40),

(a R) = — a'R .
6e

(4.g)

Thus, except for degenerate null trajectories with infinite
time derivatives, trajectories cannot remain in region III
indefinitely, just as in region I, but must return to region
II.

Trajectories in II are spacelike in the metric (2.29) or
(2.42), so they generically traverse II in going between I
and III (which must happen for all trajectories in II with
Q„&—,'&3, the part of II in the domain of dependence of
both boundaries in the metric —ds ) or else go between
I or III and the singularity at a, =0. A one-parameter
family of borderline curves in II was discussed above,
which goes between a point on the boundary with III
and the limit Q„= oo with a, ——,'Q, ' asymptotically.
This family may be extended to include curves which
each enter II at some point on the boundary with I (this
point now giving the single free parameter) and staying
in II to become a„——,'Q, ' asymptotically as Q, in-

creases indefinitely.
Except for certain one-parameter or discrete solutions

to be discussed below, the generic (i.e., two-parameter)
solutions in the k =+1 case correspond to trajectories
which have both ends at a, =0, i.e., both a big bang and
a big crunch. The simplest such solutions go between
a, =0 at Q„&0 and a„=O at Q, & 0 with Q„changing
monotonically and without ever entering region III. The
discussion at the end of Sec. III shows that there is an
infinite measure for such solutions with P having a max-
imum value & —

—,'ln —,
' (i.e., a, Q, having a maximum

& —,') in region II. None of these solutions have any
inflationary phase or even ever have a, get larger than
some upper limit of order unity, so it is not the case that
almost all solutions with the R +eR Lagrangian exhibit
inflation.

All other generic solutions enter region III as well as I
and II and have one or more traverses of II, where a
traverse may be defined as a crossing of region II be-
tween its boundaries with I and III (or vice versa)
without reaching the singularity a ~ =0. Trajectories
which enter III (or merely turn around at its boundary)
must have their maximum value of P (which will occur
during a traverse or at its end point) be & 1, so by Eq.
(3.11) there is only a finite measure for such solutions
with P bounded above. In other words, almost all solu-
tions which reach the boundary of III have P eventually
become arbitrarily large.

The constraint (2.39) implies that for k = +1, the "en
«gy density" (3.'7) obeys p~ &e ~, with equality at the
maximum for p. Equation (2.40) leads to

3p dp
dt~

3p dV
dP

(4.7) dP
dt„

&0, (4.9)

which is negative in III, where p is positive and p (p) is
monotonically increasing, so, unless P= oo, the trajecto-
ry eventually has dP/dt„&0, and then P decreases to its
value —

—,'ln(1 —e ~) on the boundary with II (unless the
trajectory returns to the boundary even before P starts
to decrease). The same conclusion may be derived from
Eq. (2.15) written in the form

so p„will decrease as P increases, eventually becoming
very small if P becomes very large. Then
x =—2' —=e ~ —1 will also be very small, so the potential
(2.38) will have the approximate form V(P)=2/, that
of a scalar field of dimensionless mass m, =2. Hence,
Eq. (2.40) will lead to oscillations of very small magni-
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tude in P. Averaged over each oscillation, the kinetic
and potential pieces on the right-hand side of Eq. (3.7)
will be approximately equal, so for p, «1, Eq. (4.9) will
be

(4.10)

leading to dustlike FRW behavior with an approximate-
ly constant "energy"

2 2 3

Eg =pgag =pge 3P g +& +&
3/2a, =const

(1+x)
in the constraint equation

da~ E,
k

(4. 1 1)

(4.12)

For k =+1, the evolution of a, —=e~ has approximately
the standard cycloid solution, which may be written in
parametric form in terms of an angle 0 & 0 & ~ as

a, =E, sin 0,
t„=E,(9—sin9cos8) .

Meanwhile, the oscillations of P will go roughly as

P= —,'(E„/a, )'~ cos(2t, +80),

(4.13)

(4.14)

(4.15)

1 «E~
'

&&a ~ =a ~ &&E~ (4.16)

Because almost all of the k = + 1 solutions which
reach P&0 have an arbitrarily long period of approxi-
mately spatial flatness, the character of these solutions
and the measure for inflationary and noninflationary
classes (both of which turn out to be infinite) will be dis-
cussed below, in Sec. VI on k =0 solutions. In the
remainder of the present section, the class of solutions in
which /3 has bounded positive extrema will be con-
sidered. Generically, these trajectories have a, =0 at
both ends and various traverses in between, as the solu-
tion oscillates between regions I and III by crossing back
and forth across II.

Similar to the case of Einstein gravity with a massive
scalar field, ' ' a subclass of these R +eR solutions will
have one or more bounces, a bounce being defined as a

where 00 is an arbitrary phase angle. E, and 00 may be
regarded as the two arbitrary parameters of the solution
in the dustlike regime. One sees that for p, « 1,
a, =Q, e ~ will be very near a, , except for some very
small oscillations, and t, = e ~ t, will be nearly

equal to t, .
Solutions which have /3—= lna „become arbitrarily

large will, thus, also have arbitrarily large E, =a~
and will have an arbitrarily large number of oscillations
of P, of order E„periods, or 2E„ traverses of region II.
The energy density p, =E, /a, will decrease to the ex-
tremely low minimum of 1/E~, but long before it
reaches this, there will be a very long period in which
the dimensionless spatial curvature k/a, =k/a, will
be negligible compared with p, ~ For example, one is in
both the dustlike and spatially flat regime for

trajectory segment which enters region II from the
spacelike part of the boundary with III and then returns
to that boundary with III without going to I (as a
traverse does) or to a, =0. The limiting case of a trajec-
tory which turns around with a„=Q„=O at a single
point on the spatial part of the boundary of region III
without actually entering II will also be called a bounce.
Bounces are always confined to the region P & —,

' ln3,
—

—,'ln —,
' &P&ln —,'. Out of the finite measure of solutions

which have a maximum for /3 which is greater than zero
but less than some given upper bound, only a fraction
less than unity (but greater than zero) will have one
bounce, and only a fraction of these two bounces, and so
on. Bounces basically convert decreasing P to increasing
P so that the conformal metric (2.33) can begin reex-
panding, leading to a new sequence of traverses in which
P reaches a maximum and begins recontracting again
(perhaps with a nearby minimum and another maximum,
since bounces do not give the only local minima for /3,

though they apparently provide the only minima
effective for converting contractions that persist over
more than part of a single traverse into expansions that
also persist over more than part of a single traverse).
The nonzero measure of solutions which have only a
finite number of bounces interspersing its traverses will
eventually have a „collapse to 0 (in both directions
along the trajectories).

However, just as in the massive scalar-field case, ' '
there will be a set of solutions of measure zero which
have an infinite number of bounces. A discrete but ap-
parently uncountable and even fractal family of one-
parameter solutions will have a„=O at some value of Q,
(the one continuous parameter) at one end but will have
no end in the other direction, rather an infinite sequence
of traverses interspersed with bounces. The number of
traverses between each bounce gives an infinite sequence
of integers, which are the discrete parameters. If the
trajectory starts at a, =0 with Q, &0, the first integer
(the number of traverses before the first bounce) will be
odd, and all of the other integers will be even (since the
trajectory must always return to region III with its
spacelike boundary before another bounce can occur). If
the trajectory starts at a, =0 with Q, &0, but crosses II
to I (not a traverse, since not from III) before traversing
to III, again the first integer will be odd and all the rest
even. If the trajectory goes from a„=O and Q, &0 to
III first, all of the integers will be even. One might con-
jecture that for each value of Q, at a, =0 and for each
allowed infinite sequence of positive integers (by the
rules above, i.e. , the first integer is odd if Q, &0 and ar-
bitrary of Q, & 0, and the remaining integers are all
even), there exists a corresponding solution, and that it
is unique, but the proof or refutation of this conjecture
will be left as an exercise for the reader.

There will also be another apparently uncountable and
fractal discrete set of solutions with no continuous pa-
rameters which never reach a, =0 and so give complete
nonsingular spacetime metrics (2.1), now with a doubly
sequence of traverses and bounces, just as apparently
occurs for the massive scalar-field case. ' Again, the
discrete parameters may be taken to be the numbers of
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V. SOLUTIONS WITH k = —1

Now consider Friedmann-Robertson-Walker models
with negative spatial curvature (2.2), k = —l. In this
case, the trajectories of the fiat metric (2.39), (2.42), or
(2.44) are null on the single curve f, =0 (for a, &0)
given by

1/2

a„(x)=

Q„(x)=(1+x) —1 —x
x

1/2 (5.1)

[ 1+( 1 4 2)1/2]2
&0

4a,

for x =—2eR & —1, or by

T(X)= —,'(a, +Q, )—:—,'a„(2+x)=X 4X —1

4X'+ 1
(5.2)

for X—:—,'(Q„—a, )
—= —,'a„x &0, or, using

a„=—(24e) ' a =e~ ~ and Q, =(24e) ' a(1+2eR)
= —e~+&, by

P= —ln(1+e ~) &0 (5.3)

for P= —,'ln( —1 —x) arbitrary. This curve divides the

(a», g» ) parameter space into two regions:

traverses between successive bounces, which this time
forms a doubly infinite sequence of even integers. One
may conjecture that there is a one-to-one correspon-
dence between the doubly infinite sequences of positive,
even integers and these discrete solutions. The evidence
for this would be similar to that for the scalar-field
case. ' The existence of these discrete nonsingular solu-
tions answers a question posed in Ref. 15.

One countably infinite subset of the perpetually bounc-
ing R +eR universes consists of periodic solutions,
characterized by a finite sequence (n, , nz, . . . , n1) of
positive, even integers of arbitrary positive-integer length
l which repeats indefinitely in both directions, so
n; =n;~,d~) for all i. If n; =n~ i for some j and all i, the
trajectory will have two moments of time symmetry per
period where it momentarily halts on one of the curves
f„=O with a„=Q„=O and then reverses its path, but
for I & 2 there need be no moments of time symmetry.

IV: f, =a, (Q, —a, ) +a, g, &0

4X —1or T&X
4X +1

(5.4)

4X —1V: f, &0 or T&X
4X +1

(5.5)

The boundary curve f„=O is timelike for x & —2,
Q, & ——,', T &0, X & —

—,', P& —ln2, or P&0, and it is

spacelike if these inequalities are reversed. A trajectory
entering region IV from V by crossing the timelike part
of the boundary, or by crossing the spacelike part with
Q'„=0 (dX/dT=d1t1/dP= —1) there, becomes space-
like in IV with a„decreasing and Q„ increasing and,
hence, must either go to a, =0 or else emerge back into
V across the spacelike part of the boundary. On the
other hand, a trajectory crossing the spacelike part of
the boundary into IV with a '„=0 (dX /d T = dP /
dp=+1) at the boundary has a„ increasing and Q, de-
creasing in IV and, hence, must eventually emerge from
IV back into V.

In the opposite direction, a trajectory emerging from
IV into V across the spacelike part of the boundary be-
comes timelike in V with a'„& 0 and Q'„& 0 and so can-
not return to IV. Instead, a, and Q„both simply con-
tinue to increase indefinitely, and the Universe expands
without limit.

However, a trajectory crossing the timelike part of the
boundary into V can recross the timelike part back into
VI. Indeed, if it crosses into V with a ', =0 at the
boundary and, hence, has Q, decreasing in V, Eq. (2.32)
implies that d a „/dg„& 0 in the part of V with
x & —2, Q, & —a, , or T &0, so such a trajectory must
bend back to reenter IV, this time crossing the boundary
with Q'„=0, and then Q„ increases thereafter in IV and
also later in V if the trajectory returns there (across the
spacelike part of the boundary), rather than hitting
a, =0.

On the other hand, a trajectory leaving region IV by
crossing the timelike part of the boundary with Q', =0
may either expand indefinitely in V (and inevitably must
if it ever reaches a~ & —,, so that IV is no longer within
its future null lines) or may bend around to reenter IV
with a» =0. In the latter case, one may use Eqs. (2.39)
and (2.40) combined into the form

d 2P

dP2
1 —(dgldP)
2V —ke

—(6V —2ke e)
dP dP

1 —(dgldP)
e

—2P
( 1+ —2d )2

—2e ~ —2e ~ —(2e ~—3 —6e ~ —3e ~)4p (5.6)

to show that after the trajectory enters IV with
dt()/dP=+ 1, dP/dP decreases somewhat but stays posi-
tive as p and 1t1 decrease, but then, at least for p& —ln2

(if not before), one must have d /Id p & 0, so the trajec-
tory must thereafter have dpldp increase again in IV
and cross the spacelike part of the boundary rather than
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=dP/l, d [2e ~(e ~+2@) ]

=2e ~(e ~+2+) 2dPP, dg' . (5.7)

ever reaching a„=0. Thereafter, it has both a» and Q„
increasing monotonically, as discussed above.

The fact that the preceding trajectory could not go to
a, =0 in the future means that in the opposite direction
of time, a trajectory cannot start at a, =0 and cross the
timelike part of the boundary of region IV with a', =0.
Instead, if it reaches the timelike part of the boundary it
must have Q'„=0 there. Once it thus gets into region V,
the preceding argument implies that Q„will increase
monotonically thereafter, even though a, may suffer a
temporary decrease while the trajectory cuts through
part of region IV again, but, in any case, a, cannot de-
crease to zero again. Of course, the same is true (except
for now no possibility of a decrease of a„) if the trajec-
tory goes directly in region IV from a„=0 at Q, &0 to
the spacelike part of the boundary or if it starts from
a, =0 at Q» & 0 and, hence, has its entire expansion in
region V. In particular, there are no trajectories in the
k = —1 case which are singular (have a„=0) at both
ends; all solutions expand forever in at least one or the
other direction of time.

However, unlike the case of Einstein gravity with a
massive scalar field, the R +eR Lagrangian allows
k = —1 solutions which have no singularities at all. In
one direction of time, these nonsingular solutions con-
tract from infinite a„and Q„ in region V, cross either
the timelike or spacelike part of the boundary into IV at
a minimum for Q„, have Q„ increase but a, continue to
decrease in IV, emerge back into V across the spacelike
part of the boundary where a, has its minimum, and
then expand forever again to infinite a» and Q, . Of
course, there are also the time reversals of these trajec-
tories. Like the singular trajectories, they are generic in
the sense of having two continuous parameters, which,
for example, could be chosen to be coordinates for the
two points at which they each cross the boundary be-
tween regions IV and V. If these two points coincide,
one gets a one-parameter subset of solutions which do
not really enter region IV but instead have a, =0 and
Q„=O there at a point on the spacelike part of the
boundary as a moment of time symmetry. The expand-
ing and contracting parts of the trajectory coincide in
the (a», g» ) plane, and in this case the slope is not null

at the boundary f„=0but rather is orthogonal to it in
the fiat Lorentz metric (2.29), (2.42), or (2.44).

The fact that the nonsingular solutions are generic
means that they have a nonzero measure, which may be
evaluated on the initial data surface dgldt» =0, which
occurs in region IV. There the constraint (2.39) with
k = —1 gives dp/dt» = —(e ~+2V)'~, where the
direction of time has been arbitrarily chosen to agree
with the original description of these trajectories in the
previous paragraph. Equation (2.38) with the lower sign
for this Q, &0 region implies that V & ——,', and the con-
straint gives ——,'e ~& V. Then the action (2.37) leads

to the measure

co» =d(2e ~dP/dt, ) AdP+d ( —2e ~dP/dt, ) Ada

Integrating this over region IV gives

dP J 2e ~(e ~+2V) ' dV
oo —e -'t'/2

2e ~(e ~ 1) ~dP=~ (58)

which is finite.
On the other hand, the measure of the singular solu-

tions, which may be obtained from Eq. (3.4) in terms of
the parameters Q, and d(Q„)/d(a» ) at the singulari-
ty, is infinite. Thus, almost all (i.e., all but a finite mea-
sure) of the k = —1 solutions are singular.

Because all k = —1 solutions expand to (or contract
from) arbitrarily large sizes and arbitrarily low values of
the "energy density" p» given by Eq. (3.7), unlike the
case for k =+ 1 solutions, we can evaluate the measure
(3.10) at any fixed p» & 1 and find that then almost all
solutions have an arbitrarily large size a, and, thus, are
arbitrarily near spatial flatness. Thus, we can wait until
Sec. VI on k =0 solutions to calculate the measure for
the inflationary and noninflationary solutions, both of
which will be infinite. Of course, for any given solution,
even though it has arbitrarily large "energy" E, given
by Eq. (4.11) in the dustlike regime, one can integrate
the constraint equation (4.12) with k = —1 forward in
time until a, =a, &E, and find that over all of the
remaining infinite expansion time the spatial curvature
will dominate the dynamics. However, this will occur
only when p, has dropped to the extremely low value
& 1/E, , and so, at fixed p„only the finite measure of
solutions with a, &p, ' will have entered that asymp-
totic stage.

VI. SOLUTIONS WITH k =0

We have seen that almost all FRW solutions with the
R +eR Lagrangian (i.e., all but a finite measure) that
expand to ag—:24Fa „Q, & 16' continue to expand to an
arbitrarily large a and Q and include an arbitrarily long
phase in which the spatial curvature is negligible, thus
acting effectively as k =0 solutions even if actually
k =+1. (There is also an infinite measure for the class
of k =+1 solutions with a»g» bounded above by
which always have significant spatial curvature, but
these and the various classes of finite positive or zero
measure will be considered no longer in this section. )

~hen k =0, f» =a» (Q» —a» ) is homogeneous in

a» and Q „, so the auxiliary metric (2.27),
d& = f » da „dQ, , ha—s a conformal Killing vector
a„B/Ba„+g 8/Bg„. Thus, its timelike geodesics,
which represent solutions of the dynamical equations
(2.17)—(2.19) for a»—:(24') ' a and Q„=—(24') '

Q,
are invariant under the scale transformation a, ~Ra, ,

Q» ~A, Q, , r~A, r, which gives f» ~A, f, and
but leaves t„—:(24m) ' t, R» =24ER,

H„—:(24m)' ~d/a, x—:2eR, y—:(24m )'~ R, and
z —= (6e)' a /a unchanged.

After taking out the scale freedom, there is only a
one-parameter family of physically distinct k =0 solu-
tions. For example, the solutions can be given by curves
in the (x,y, z) space obeying Eqs. (2.23)—(2.25) and lying
on the constraint surface (2.26), which for k =0 is
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x —4yz —4(1+x)z =0 . (6.1)

One may use Eq. (6.1) to eliminate one of the three vari-
ables (x,y, z) from the dynamical equations and then
take the ratio of the remaining two time derivatives to
eliminate t, and get a single autonomous first-order
differential equation for the remaining two variables.
The solutions are then a one-parameter family of curves
in the space of these two variables. Once such a curve is
found, one can integrate the reciprocal of one of the
time derivatives to get t, along the curve, and the ex-
pansion rate may be integrated over time to get

lna~ = 2z dt, +const, (6.2)

dx
dz

X 2Z

2z x —4Z 2

where the constant of integration represents the scale pa-
rameter, which is the second arbitrary parameter of the
k =0 solutions. (The constant of integration for t, may
be considered as the third arbitrary parameter for the
solutions of the full fourth-order system with one con-
straint, but since it is trivial for all k, it was already
dropped in Sec. II.)

It is simplest to eliminate y by means of the constraint
(6.1), since it is linear in that variable and, hence, leads
to a unique solution (when z &0). Inserting
y =(x /4z) —(1+x)z into Eqs. (2.23) and (2.25) and tak-
ing the ratio gives

For each of the one-parameter sets of solution curves in
the (x,z) plane, one may integrate the reciprocal of Eq.
(2.25) to get

dz 2z dx
x —4z x —4(1+x)z

(6.4)

and then use Eq. (6.2) to evaluate

2z dz 4z dxlna, =
x —4z x —4(1+x)z

(6.5)

(6.6)

Although Eq. (6.3) is fairly simple algebraically, its
singularity at z =0 (i.e. , H =0 or a =0) poses some hin-
drance to an immediate qualitative understanding of the
solutions, all of which go to z =0 at x =0 (i.e. , R =0) an
infinite number of times. As a solution approaches
z =0, Eq. (6.1) implies that it has z-x /4y, so it is the
value of y which distinguishes the solution there, but
that variable has been eliminated from the differential
equation (6.3). It would be better to find solution curves
in terms of two variables such that different solutions
remain distinct at all times. After some trial and error,
it was found that the following transformation
(x,y, z) ~(r, u, v) is useful:

x —= (r —u) +u, y = ,'(r —u)v+u, —z—:,'(r —u), —

whose inverse transformation gives

3/2 2r—:y —xz+2z+4z = — (x —z +21na, )=(24@) 4e +lna =(6e) 6e +HH
a

u =y —xz+4z = — (x —z )=(24') i 4~
3 1 d p imp (a )"

2 dt,
H=(6e)' 6e
H

—H (6.7)

dz I d 1

dt 2 dt a dt,
= 12m — = 12eH,

a

r2=u 2+ v
2 (6.&)

was assumed in all equalities except the —= ones in Eq.
(6.7). Then the dynamical equations (2.23)—(2.25) be-
come

where the k =0 constraint (6.1), which takes the simple
form

which, as always, preserve the constraint.
These equations give curves in the unrestricted (u, u)

plane which do not intersect at any finite t, , though
they all spiral in to the origin at t„=oo (if the direction
of time is chosen, as shall be assumed, so that the
Universe is expanding, which implies that both z and r,
neither of which can change sign during the evolution,
are positive). If one takes

dt's
= —3u = —3(r —u ), (6.9)

u—:r cosO, v =r sinO, (6.12)
du

dt,
= —2v —3u = —u(2+3u), (6.10) then Eqs. (6.9)—(6.11) imply that

=2u +3uv —3rv =u (2+3v) —3u +u +u, (6.11)
dt~

dr = —3r sin O,dt, (6.13)
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dO =2-+ 3r sin6( 1 —cos8),
dt

(6.14)
This gives curves with dv /du =0 at

dv u 3&u'+v'
+

du v 2+3v (6.15)

so r always decreases monotonically, and 0 increases
monotonically for r (3 8. One can also divide Eq.
(6.11) by (6.10) and use (6.8) to get

u = ,'v—(1+3v) 'i sgnv (6.16)

and with dv/du = m at v =0 and at v = 3.
In order to calculate the approximate behavior of the

solution curves in the (u, v) plane in parametric form, it
is convenient also to introduce two new variables

+(2p) sin =+(y u)'"=+(2z)' '= t-0 ' '=+(24e)' 'H' '—:+(24e)' '(a/a)' ',""2—
3/2

+E~
+ (2r) ~ sin —+(2r)' cos — =s + —= —= i~2—:+

s s ]20, '

(6.17)

so that in terms of these, the previous variables may be
written as

ds 2 i dw=$ —$ w=
dw ds s —w3

(6.25)

x =sw, y = —,'( —s —s w+w ), z = —,'s

r = —,'[(s' —w) +s ], u = —,'[(s' —w)' —s ],
v = —s(s —w) .3

(6.18) which by the change of variables

+23/'4X &/'2 —2'/' Y
—'

(6.19)
(6.26)

becomes an Abel equation of the first kind in standard
form

The joint sign of s and w is irrelevant, so there is a 2-1
map from (s, w) to (u, v). The dynamical equations now

take the simple form

dY Y3+X
dX

(6.27)

ds

dt*

dw

dt

=w —s 3

= —s

(6.20)

(6.21)

Once s(w) or w(s) is found, one can use Eq. (6.20) or
(6.21) to integrate t„, and then

2d
lna„= f s'dt„= —f s dw = f s —w

These may be combined into a single second-order equa-
tion for the square root of the Hubble expansion rate,

S 2 ds
2 +3$ +s =0

dt,
(6.22)

which is equivalent to Eq. (2.8) of Mijic et al. , or into a
single equation for w,

2 3dw dw
(6.23)

dt,
+w =0,

1
r =

2
ds

2

+s 1

2

2
ds dw

dt~

2

1
u =

2
ds

dt.

2

2 1—s
2

2
ds dw

,(6.24)

each of which is a nonlinearly damped harmonic-
oscillator equation. One may then note that Eq. (6.19)
becomes

S ds
1

dr
v

' r+u
(6.28)

After taking out the scale freedom, which comes from
the constant of integration in Eq. (6.28), the single
remaining physical parameter of the k =0 solution may
be taken to be wo, the value of w at a, =0 (and, hence,
necessarily at s =+co ). Without loss of generality, one
may fix the arbitrary joint sign of s and w so that s starts
at + ~ at a, =0. For later convenience, we define

so ——wo
' —=w' ' (a, =0), (6.29)

which can have either sign, as wo can, and is not to be
confused with the positive infinite initial value of s.

If wo —=so =+ an, one gets a one-parameter (the scale
parameter) set of k =0 solutions, of zero measure, which
evolve along the separatrix of Eq. (6.25). This solution
has the form

ds
v =s

dt
ds dw

dt, dt,

w(s)=w„(s)=s' ——,'s '+ —,', s ' —
—,', s +O(s '

)

(6.30)

Alternatively, one may combine Eqs. (6.20) and (6.21)
into the single first-order equation

or

v(s)=v„(s)= ——,'+ —,', s —
—,', s +O(s '

) (6.31)
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for large $ and takes an infinite amount of time to ex-
pand from a, =0 with a rough time dependence:

and, hence, leads to Q„varying linearly with a, there,
may be taken to be

(6.32) lim Q„= lim ( —„'e)' aR =a, owp,
a~ ~0 a~p

(6.42)

x= —t, , y= —t, , z=r= —u= —-t,
9 Q 7

1 1v= ——+
12t~

a„=a, s ' e ' =a, ( —'t ) —' e

16R~ = —,t,

(24e)5/12 (
2 r)

—i/6 —t /72@

108m

(6.33)

(6.34)

d(Q„')
lim = lim —', e~„-o d(a„) ~-o' H

(6.43)

Q„=—', a, ln
a, a,—', ln
a ' a

(6.44)

These limits are 0 and oo, respectively, for the separatrix
solution (6.30)—(6.35), which has a, p=0 and wp ——+ oo

in such a way that, for a sufficiently small a, ,

1/12

(6.35)

w = wo —(2r, )'",
1

r ~ Q
16t,

(2r )
—1/2

1

4t,

(6.36)

(6.37)

x =wo(2t, ) '/, y = ——,'wo(2t„)

z =(4r, )

a„=a„p(2t, )'/, Q„=a,pwp[1+ —,'wp(2t, )
/ ],

(6.38)

(6.39)

for large negative t, if the origin of the coordinate t, is

appropriately chosen (e.g. , t, is roughly zero when s first
crosses zero). Although the resulting spacetimes are
nonsingular throughout an infinite range of the proper
time t of a co moving observer, any geodesic with
nonzero spatial momentum will reach a =0 and R = oo

at a finite value (in the past) of its affine parameter, so
the separatrix solutions are geodesically incomplete and
represent singular spacetimes, as do all other k =0 solu-
tions (which reach a =0 at finite t).

Now turn to the generic k =0 solutions, which have
finite wp. Set t, =0 at a, =0, where s = + ce and
w =wp. Then the initial evolution, for

((w 0 =sp, is roughly

which goes to zero with an infinite derivative at a, =0.
Now consider the evolution for values of t, larger

than roughly sp, where it leaves the "radiation" re-
gime. If wp=—sp has a magnitude of order unity or
smaller, the solution will only leave the a ~t' regime
when u and U, $ and w, or H and R begin oscillating and
the solution begins spiraling around the origin in the
( u, U ) or (s, w) plane. This spiraling behavior occurs
asymptotically with time for all k =0 solutions and
represents a "dustlike" regime with asymptotically con-
stant "energy" E, defined by Eq. (4.11), which is of or-
der a, p for w p fairly near zero. The transition between
the "radiation" and "dustlike" regimes is hard to de-
scribe accurately by an explicit closed-form analytic
solution and so will not be described here, but the main
point is that there is not a long inflationary period
(

~

H &&H for many e folds of expansion of a) if

gawp

1.
Therefore, turn to the consideration of the solutions

with
i wo

~

&& I, which do turn out to have a long period
of inflation between the "radiation" and "dustlike" re-
gimes. By Eq. (6.25), w will change only negligibly com-
pared with s (which decreases from + ao), until s drops
near w ' . Hence, one may rePlace w by w p:sp on the
right-hand side and integrate to get

s S dS 3 s S dS
w =wp+ Sp +s' —w(s') oo S —Sp

a =(96e)' a, ot' R =3(6e) wot

(6.40)

(s —so) &3so
=sp + —,'In —i/3 arctan

3$0 '' s +Sps +Sp 2S +Sp

This approximate power-law expansion, the same as for
2

a radiation-dominated universe, gives H = —2H
= ——,'t, which is noninflationary. Here the positive

dimensionless quantity a, p represents the arbitrary scale

parameter from the constant of integration in Eq. (6.2)

or (6.28). It transforms as a, o ~Aa, o under the action

of the conformal Killing vector of the auxiliary metric

(2.27) discussed above, which does not alter any of the

variables in Eqs. (6.36)—(6.38). One sees that the sign of

wo or sp is the same as the sign of Q~ or of Ra at a„=0.
In fact, the two parameters of the geodesic in the metric

(2.27), which near a„=O has the form

(6.45)

which is valid for

wp —wi «/s3 —w
f

(6.46)

or
s —so»

I
so

/

'In iso i
(6.47)

Similarly, in this same region one can integrate Eqs.
(6.20) and (6.28) and fit the results to Eqs. (6.36) and
(6.39) in the overlap region s »

~
sp

~

to get

(s —so)' &3$0
t, = ——ln —i/ 3 arctan

3Sp 2 $ +SpS +Sp 2$ +Sp

ds ——d( —,'a„)d ( —,
' Q„), (6.41) (6.48)



36 PROBABILITY OF R INFLATION 1619

a, =a„p(s —tv) =a, o(s —sp )
3 —1/3 3 3 —1/3

The solution is highly inflationary when

(6.49) s, »
I
1+3u

I
»s, — 1«3s, (t„—t, o) «8ln

I
s1

I

(6.58)

—2 — )
4

(6.50)

which occurs for
I

s —1v
I
«

I

s
I

or
I

s —so
I«

I
sp

I

. In this part of the region (6.47), Eq. (6.48)
reduces to

which includes all of the highly inflationary part of re-
gion (6.47) but goes beyond it to include also small
values of

I
1+3v I, which are not in (6.47).

In this region, one may solve for the various quantities
in terms of v or t, to get

1
t t p+ 2

ln
3Sp

sp

S —Sp
(6.51)

1
s =si+ (ln

I
1+3v

I

—3v)
9s1

where

1
t~p =

2
[ln3 —3 ' m+2vr3'/28( —sp )],

6sp
(6.52)

23$] (tg t+Q )=sp+
I
s1

I

e * — (t, —t~p),
3$1

1w=s, + ln
I
1+3u

I
=sp —s, (t„—t,o),

3$1

(6.59)

(6.60)

with the Heaviside step function 0( —sp ) needed because
as s decreases from + oo to near sp, the arctangent in
Eq. (6.48) increases from 0 to near ~/6 if sp &0 but de-
creases from 0 to near —5~/6 if sp &0. Similarly, Eq.
(6.45) reduces to

x =s, + —', ln
I
1+3v

I

—
—,
'

u

4 4 2so Ts1 (tv tv )0

4 3$] (tg tgp)+(sgns1)s, e (6.61)

1
w =sp +spt, p

— ln3

3$p

3Sp

S —Sp
I

y= —,'s, (v —1)

2 2 3 3$] (ti] ti]cp )
2

= ——', s, ——', (sgns, )s, e (6.62)

=sp +2spt, p
——,sp ln3 —spt,3 —1 (6.53)

To continue the evolution as s gets very near sp,
change the dependent variable from m to
v = —s(s —tv), so that3

dv v 3 1+3U
dS S U

(6.54)

s =s, —~4v+ —', ln
I
1+3v

I
(6.55)

which matches to Eq. (6.53) in the overlap region
1 «

I
u

I
«s if sgn(1+3u) = —sgnsp and if

s1 =sp ——"ln
I
sp

I

——' ln3 — [1—60( —sp)] .

(6.56)

Integrating t„ in this region and matching to Eq. (6.51)
gives

For s «
I

1+3u
I
«s, which begins to be true when

s —sp drops well below
I
sp

I

and ceases to be true only
when the curve gets very near the separatrix (6.31), the
first term on the right of Eq. (6.54) is negligible com-
pared to the second term. Dropping it and integrating
the separable equation that remains gives

1z—:—,'s = —,'s1 + z
(ln

I
1+3u

I

—3v)
9s1

3$] (tg t+Q )= —,'so +(sgns1)s, e

—1(t„—t„P),

V
2

7 =— $ +l

s 2

1= —,'s, + (ln
I
1+3v

I

—3u + —'v~)
9s 1

2

—3s (t —t )= —,'so +2(sgns, )s, e

—6s l (t ~ —t ~P
2

+ —,s1 e —
—,'(t, —t„p),

2—s +] 2

s 2

1+ ( —ln
I
1+3v

I
+3v+ —'v )

9s 2

2
9 6 ] t+ eo)—2so + —s1 e + —(t —t p)

(6.63)

(6.64)

(6.65)

9s
t~ =t~p+ In

3$ 1+3v

2
4 3$] (tg tgp)

v = ——,
' —3(sgns1)s, e

(6.57)
—3$1a, =a, p 1+3U

1/3

These approximations are valid for
s (t

3
—1/3

I I

—1 ~i 1~@ ~eo1
(6.66)
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Q, =a, (1+x)
s (t=s,a„=3 ' a, p ~s&

~

e '

a =—(24e) '"a„H=—(24e) -'"s' 1

26

(6.76)
(6.67)

5s 4 9 4
3 4 4exp( —s ——s, —1),

$1
y= —

—,s + —„s +O(s )—2 2 2 —2 —6

(6.68)

S
x =s ——'+ 0 (s ) — exp( —'s ——'s, —1 ),

3 3 4 4
S]

In the (s, tu) plane, the curves are nearly horizontal,
tu(s)=tup, for

~

1+3u
~

&&1 or 3s& (t„—t p)« In(s~ /ln
~

s&
~

), but then they approach closely to
the separatrix w„(s)=s when these inequalities are re-
versed. In the (u, u) plane they are roughly parabolas,
focused nearly on the origin, for

~

1+3u
~

&&1. At

1t, =t„=t„+,ln(9es, )
4

3$]

(6.77)

z=——s = —s, ——(t —t i)2 l 2 1

2 2 3
(6.78)

(6.79)

u = —
—,'s + —,', s +O(s )

s
r = —,'s + —,', s +O(s )+ exp( —,'s ——,'s, —1),

$1

1
[8 ln

~
sp

~
+ 5 ln3 —3

2
+ exp( —s ——s

&

—1),s 4 9 4
3 4 4

$1
(6.80)

+1+2w3'~ 0( —sp)], (6.69)
S

u = ——,'+ —,', s +0 (s ') — exp( —,'s ——', s, —1),
S1

~

1+3u
~

drops below unity and u reaches its minimum
value = ——,'s1 . Thereafter, u increases as the curve ap-

proaches the separatrix, u „(s ) = —
—,
' .

When
~

1+3u && 1, so that the solution is near the
separatrix (6.30), one can linearize the equation

d $5m

[s ' —w „(s)][s —w „(s)—@au]
(6.70)

for the deviation 5tu =—w(s) —w„(s), integrate with the
asymptotic expansion (6.30), and match to Eq. (6.60) in

the overlap region s «
~

1+3u «1 to obtain

$ dS
6w =exp (s' —tu „)

2—s 4
3 4 4exp( —'s ——'s, —1),

S1

(6.71)

t„=t, , + —,'(s, —s )+O(s ),
s = (sgnsi )[s& —

—,'(t„—t, , )]'

—,s ——,s, —1=(t„—t„) —3s, (t, —t„~ ) —1,9 4 9 4 2 2

(6.72)

(6.73)

This is valid for all s1 —s »1 as s decreases, until s
itself becomes of order unity. For s &s& ——", ln

~
s, ~,

~

6tu &O(s '
), so that for smaller values of s" the

correction to the separatrix is smaller than the accuracy
to which it is given in Eq. (6.30). In this region one also
obtains, using Eq. (6.69),

(6.81)

=a„p(3es, )' [s& —
—,'(t —t„)]

&& exp[s, '(t, t„)——,'(t, —t, , )'], —

Q„=a,p(3es, )' '
~

s
~

" 'exp( ——,'s + —,'s, 4) .

(6.82)

(6.83)

This represents inflationary expansion with an approxi-
mately linearly decreasing Hubble expansion rate:

H=(24e) ' s =(24e) ' [si ——', (t, t„i)]—
1=Hi — (t —ti) .

36m
(6.84)

r = —', (I9 —Op ——,'sin28) (6.85)

For t, = —,$1 = —,so ———2wo, the inflationary expan-3 2 3 2 3 2/3

sion will come to an end, and the solution will begin
spiraling around the origin in the (u, u) or (s, w) plane.
In the transition region where r is of order unity, there is
no useful small parameter available (such as 1/sp is for
r »1) to expand in to give good approximate solutions.
However, for r &~1, the curves spiral counterclockwise,
inward toward the origin of the (u, u) plane with

$2
tu =s' ——,'s '+O(s ')—,exp( —',s ——', s, —1),

$1

(6.74)

(6.75)

where now the free parameter is the phase constant 00,
which in principle could be determined numerically as a
function of so. For large so this phase can be shown
from Eqs. (6.71) and (6.56) to have the asymptotic func-
tional dependence

—(9/'4]'I —(9/4)sp
Op(sp) 9 +6&s ~

e =0 +3 exp —[1—60( —sp)] 0&spe
2&3

(6.86)

where 0„ is the phase constant for the separatrix, and 01 is another constant that could, in principle, be determined
numerically.
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In the region r ((1 or t, ))sp, where r(8) is given by Eq. (6.85), one obtains, with

r„=—', s, '+0(1)=-', s, '+0(1),
the following asymptotic behavior of the various quantities:

0=2r+r '( co—s2r+ ,'co—s4r)+0(r ),
s =( ,'r) —' [sinr+r '( —,'Hosinr —,'co—sr —,

'—cos3r)+0(r )],
w =( ,'r) —' [cosr+r '( —,'Oocosr+ —,'sinr+ —,', sin3r)+0(r )],
x =—', r '[sin2r+r '( —,'Oosin2r+ —,

' —
,",co—s2r —,'c—os4r)+0 (r )],

y = —,'r '[cos2r+r '( ,'Ooco—s2r+ —,', sin27+ —,'sin4r)+0(r )],
z = ) 7 [ 1 cos—27+x . '( —,

'
Hp ——,

' Hocos2r —
4 sin2r ——,

' sin4r ) +0 (r ) ]

r = —',r '[1+r '( —,'80+ —,'sin4r)+0 (r }],
El =

3
T [cos2r+ r '( —,

' Hocos2r+ —,'sin2r+ —,'sin4r)+ 0 (r )]

U = ', r '[sin—2r+r '( —,'gosin2r ——,'+ —,'cos2r ——,'cos4r)+0(r )],
3s /4a, =a „oa(s I )s | e ' r [1+r '( ——,'80 ——,'sin2r) +r ( —,', 80 —

—,', Hosin2r+ —,', + —,'cos2r+ —,', cos4r)+0 (r )],

(6.87)

(6.88)

(6.89}

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)
2/3 3s1 /4 2/3Q, =a,oa(s, )s, e ' r [1+r '( —

—,
' 80+ —,'sin2r)+r ( —,', 80 + —,', Oosin2r+ —,

' —,",cos2r+ ——,', cos4r)+ 0 (r )],
(6.98)

where a(sl ) is a function of sl (or of so) which appears
to be asymptotically constant and of order unity for
large

~
s,

~

(or at least varying more slowly than a power
law); it could, in principle, be determined by numerical
integration. One may use Eq. (6.56) to write

2/3 3s I /4 —5/6
4

sl e =3 exp — —[1—60( —so)]

2/3 so /
Sp (6.99)

in terms of so for large
~
so

~

. Here, as in Eqs. (6.52),
(6.56), and (6.86), 8( —so) is the Heaviside step function,
which should not be confused with the phase constant Op

or the angle 8 of Eq. (6.88).
The behavior of Eqs. (6.88) —(6.98) is that of small os-

cillation about "dustlike" or "matter-dominated" evolu-
tion' with the asymptotically constant "energy" from
Eq. (4.11) being

9s /4
(6.100)

Using the definitions (2.20)—(2.22), (6.7), and (6.17) of the
various quantities above, one sees that the leading-order
behavior agrees with that of Eqs. (2.23)—(2.25) of Mijic
et al. if r=co(t t„)+n./2, —but the 0(r ') corrections
difFer.

Thus, we see that the R +eR k =0 solutions with
large positive or negative initial values mp =Sp of3

w =(2e /3)'i R /H' expand initially [t„:—(24E) ' t
(so ] with a ~ t ', like radiation-dominated Einstein
solutions, and then enter a period of exponential or

/

H /H
/

=
/

—,'s /U
/
)p (6.101)

for some positive p which is not too small. For example,
a~ ~ t~ gives H /H = —p, as does a k =0 Einstein solu-
tion with the ratio of pressure to energy density being
(2 —3p)/(3p) (and, hence, near —1 for highly
inflationary behavior with p large). By counting only the
first continuous epoch in which (6.101) holds, we are ex-
cluding the short period of its validity during each oscil-
lation of H =(12') 'u throughout the "dustlike" regime.

For 1«p «sp, which wi11 be assumed henceforth,
inflation will begin at a time when Eq. (6.55) is valid, at

9s, +4ln( —3s, /p) s, 4

sgns I—18p sgnsI+12 2p
(6.102)

I

inflationary expansion for sp ( t, (
—,'sp . For

—,'sp 5 t, & oo, the solutions behave as dust-dominated
Einstein solutions with a ~ t when averaged over each
period in the oscillation of x =—2'. However, for solu-
tions with

~

so
~

1, there is little or no inflation between
the "radiation" era (a ~t' ) and the "dustlike" era
(a cc t ). In the (u, U) plane, these noninflationary solu-
tions have U ——(2u) as u decreases from + oo all the
way down to some number of order unity, where these
solutions begin spiralling around the origin without first
approaching the separatrix.

Now we may consider how the measure associated
with these solutions depends upon the amount of
inflation. First, we calculate how much inflation occurs.
For concreteness, define inflation to be the first continu-
ous epoch during which
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and end at a time Eq. (6.81) is valid, at

4 2s —p —— —p3 9 3
(6.103)

Then using Eqs. (6.66) and (6.82) to evaluate the linear
size of the Universe at these two times and taking the ra-

tio gives an expansion factor during inflation of

a„(end)
1+Z —=

a, (beginning)

4 5/12
3eS ]

exp —,s [
——,p

4

2p
(6.104)

One can now insert Eq. (6.56) to reexpress this in terms of so —=wo'

1+.Z =(2p) ~' e ~ exp — [1—68( —so)]
~

so'
j

e
12 6v'3

{6.105)

For ln(1+X) » —,'p »1, this can be inverted approximately to give

so =+[~in(1+Z) ——,'lnln(1+Z)+ —,'p + —,'1np]'~ =+[4ln(1+Z)]' (6.106)

We may now define an inflationary solution as one in

which the expansion factor 1+Z during the regime

(6.101) of inflation is at least some minimum amount, say

1+Z~. Then if this is much larger than e, we find

that the solutions are inflationary if and only if

~
wo

~

=
~

so
~

& w =[—,'ln(1+Z )] (6.107)

Next, we calculate the measure for these various solu-

tions. In terms of the parameters of Eqs. (6.42) and

(6.43), the measure two-form (3.2) at a„=0 is

co=g, dg, hd [[d(g, )/d(a, )]

= —,'dwo h d(a, o ) =6so dso h a, o da, o . (6.108)

2 = 2 2da~ da~
a', —: ——:a, :—2a, z:—a, s

dq dt~

g„=a,(1+x)=a, (1+sw),

dg„dg, a, x —:a w

(6.109)

(6.110)

(6.111)

into the measure two-form (3.2) to get

co= —2a„[a„s ds hdtv +(m —s3)dw hda„—s da, hds]

This of course gives an infinite measure when integrated

over all real wo and all positive a, o. It also diverges for

any nonzero range of wo when integrated over all a, o, so

the total measure for either the inflationary solutions,

satisfying the inequality (6.107), or the noninflationary

solutions, not satisfying (6.107), is each infinite. The ra-

tio of these two infinite quantities is then arbitrary, de-

pending on how it is taken, so, just as for the Einstein
solutions with a massive scalar field, the canonical mea-

sure gives an ambiguous probability for inflation in

FR%' models with the R +eR Lagrangian.
As an example of how to get different values for the

ratio of the measure of inflationary and noninflationary

solutions, consider the procedure of taking the initial

data surface to be at fixed r, so that the initial data are

a, and 0 mod2~. Before fixing r, one can use the
definitions (6.7), (6.12), and (6.17) and insert (for k =0}

T

da~ ds= —2a ds h, dw+ dw R, da
dt~

+ — da~ R, ds
dw

2a, da, du dv
du Rdv+ dv hda, + da, Rdu

r dt~ dt,
r

da~ dr dO=a, dr hd6P+ dOhda, + da, hdr
dt, dt*

On a surface of fixed r, Eq. (6.13) reduces this to

{6.112)

co=r d(a„)h sin 8d8 . (6.113)

fl(r, p, 1+Z )=—f sin 8d8, (6.114)

where 0 is integrated over the range for which the
Universe has an expansion by at least a factor of 1+Z
while the inflationary critenon (6.101) holds. For
21n(1+Z }»p & 1, this means to integrate (6.114) over
the range of 8 for which the parameter tUO obeys (6.107).
Now, the point is that even for fixed criteria p and

1+Z defining which solutions are inflationary, the

range of 8 and the resulting integral (6.114) depend on

the value of r, defined by Eq. (6.7), at which it is evalu-

ated.
For example, at r »w ~ =[~41n(1+Z )]', almost

all values of 0 give wo ~ w, and hence sufficient

inflation, except for a narrow range with 0 just below 0.

The integral of (6.113) diverges for each range of 8,
giving an infinite measure for both inflationary and
noninflationary solutions. However, one gets a finite

measure for each finite range of a, , so one might calcu-
late the probability of inflation as the fraction of solu-

tions within each range of a, which have inflation.
Since the measure (6.113) factorizes, the fraction of
inflationary solutions for each range of a, is
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v= —(2r)' '[(2r)' '+wo]' ', (6.115)

There the solution has to =wo and so Eq. (6.19) implies
that for r »1+wo or u »1+

~

v
~

the curve in the
(u, u) plane has the approximate form

[(2 )1/2+ ]2/3

thus giving

g=sin '(U/r)= —2(2r) ' [(2r)' +no]' (6.116)

Then integrating (6.114) over all 0 in —~ &0 &m except
for the values (6.116) which give

~
wo

~
& w yields

I /2f (r »1, 1&p «r~, e /~ &&1+Z &&e" )=1— w (2r) =1— [ —,'ln(1+Z )]3' 377 3
(6.117)

The answer depends upon r, but for r &&w, as assumed, it is very near unity, so one might conclude that nearly all

solutions have the required amount of inflation.
On the other hand, at r &&1 only a narrow range of 0 near the separatrix corresponds to solutions with significant

inflation (which of course occurs at larger values of r, i.e. , earlier in time). From Eqs. (6.85), (6.86), and (6.104), one
obtains

4
0——,

' sin20 — = 0o =0 +0~
3T

5/4
3e

e ~ [—', ln(1+Z)]'/ (1+Z)
2p

(6.118)

where 8& is the undetermined constant in Eq. (6.86). Differentiating this at fixed r «1 and inserting the result into
Eq. (6.114) with the restriction 1+Z & 1+Z gives

5/4
1 3eft(r « l,p &1,1+Z~ &&e~ )= dOo=28

277 2p
[—ln(1+Zm )] (1+Zm ) (6.119)

Therefore, when the criterion for inflation requires a
large minimum-expansion factor 1+Z in a, the frac-
tion of inflationary solutions within any fixed range of
the scale factor a is small when evaluated at small r
given by Eq. (6.7).

A similar conclusion would result if one evaluated the
ratio of inflationary and noninflationary solutions at
fixed values of t, , p„s +m, or virtually any other
monotonically varying function of time. The analysis
above was done at fixed values of
r =(6e)'/ (H +6eH /H) because this is a fairly simple
monotonically decreasing variable which is locally
defined (unlike t, , which has a locally arbitrary constant
of integration) and which is positive and finite at all
0 & a, & oo (unlike p„, which diverges at
1+x —= 1+2eR =0), though

s +w =(24e)' (H+ ,'eR /H)—

=(24e)' [H +6eH '(H+2H ) ] (6.120)

also has the same desirable properties.
The ambiguity of the fraction of inflationary solutions

within a fixed range of a under a change of r is not in
contradiction with the fact that the GHS canonical mea-
sure is preserved under the Hamiltonian evolution of the

data from one initial hypersurface to another in the con-
strained phase space. Rather, what is happening is that
the solutions at one r within a fixed range of a„(that is,
a range that does not depend on 9) do not remain within
a fixed range of a, as r decreases with time. Those in
the inflationary range of 0, which appear to dominate at
large r, undergo more expansion in going from large r to
small r, so they spread out into a much bigger range of
a, than their noninflationary counterparts. In the large
range of a, that these inflationary solutions exist at
small r, they are dominated by a diA'erent set of
noninflationary solutions which evolved to that range of
sizes from a much larger range of a, at large r than the
inflationary solutions had then . Therefore, the set that
will dominate within a given range of sizes depends upon
the value of r at which the measure is evaluated.
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