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The phase space of general relativity is first extended in a standard manner to incorporate spi-
nors. New coordinates are then introduced on this enlarged phase space to simplify the structure
of constraint equations. Now, the basic variables, satisfying the canonical Poisson-brackets rela-
tions, are the (density-valued) soldering forms 0. '& and certain spin-connection one-forms A, &

Constraints of Einstein's theory simply state that o. ' satisfies the Gauss law constraint with respect
to A, and that the curvature tensor F,» and A, satisfies certain purely algebraic conditions (in-

volving o. '). In particular, the constraints are at worst quadratic in the new variables o. ' and A, .
This is in striking contrast with the situation with traditional variables, where constraints contain
nonpolynomial functions of the three-metric. Simplification occurs because A, has information
about both the three-metric and its conjugate momentum. In the four-dimensional space-time pic-
ture, A, turns out to be a potential for the self-dual part of Weyl curvature. An important feature
of the new form of constraints is that it provides a natural embedding of the constraint surface of
the Einstein phase space into that of Yang-Mills phase space. This embedding provides new tools
to analyze a number of issues in both classical and quantum gravity. Some illustrative applica-
tions are discussed. Finally, the (Poisson-bracket) algebra of new constraints is computed. The
framework sets the stage for another approach to canonical quantum gravity, discussed in forth-
coming papers also by Jacobson, Lee, Renteln, and Smolin.

I. INTRODUCTION

The presence of gauge freedom in a physical theory
rejects itself in its Hamiltonian formulation through the
fact that not all points of the phase space are accessible
to the system; there are constraints. The canonical
transformations generated by the constraint functionals
correspond precisely to gauge motions in the phase-
space variables. In Yang-Mills theory, for example,
these transformations cause rotations of the internal in-
dices under which physical observables remain un-
changed. In general relativity, on the other hand, the
canonical transformations generated by constraints cor-
respond to motions in physical space-time and are there-
fore intertwined also with dynamics. Consequently, con-
straints play a qualitatively different role; they are vastly
more powerful than in other gauge theories. This
difference is expected to be crucial in the quantum
theory. In the Yang-Mills case, it is relatively straight-
forward to impose the quantum constraints on physically
admissible wave functions; it is the action of the Hamil-
tonian that is nontrivial. One can argue that the situa-
tion will be opposite once we bring in gravity. Now, the
crucial problem is the imposition of quantum con-
straints; at least formally, the action of the Hamiltonian
is rather simple once the quantum constraints are
satisfied. This feature is independent of the type of
matter fields present. It arises simply because the theory
has no fixed, kinematical background geometry.

It is therefore important to arrange matters such that
the constraints of general relativity acquire a simple

form. The purpose of this paper is to introduce new
variables on the gravitational phase space which bring
about such a simplification. Furthermore, the use of
these variables enables one to embed the constraint sur-
face in the phase space of Einstein's theory into that of
Yang-Mills phase space. In addition to being a useful
tool to relate the mathematical structures of the two
theories, this embedding opens up new avenues in canon-
ical quantum gravity. '

The traditional choice of the basic, canonically conju-
gate variables for general relativity consists of a
positive-definite three-metric q, b and its conjugate
momentum, a tensor density p'", of weight 1, both
defined on a three-manifold X. The strength of this
choice lies in the direct geometrical significance of these
fields: In a four-dimensional solution of Einstein s equa-
tion on X)&R, q, b can be identified with the pullback to
X of the four-metric and p' is related to the extrinsic
curvature k' of X through

ab
( detq )1/2G —1(~ah It. mn ab

)

where G is Einstein's constant. [G =(8trc ) (Newton's
constant). In what follows we use c = 1 units. ] Howev-
er, the expression of the constraint functionals is quite
complicated in terms of these variables (see Sec. II A).
Indeed, the constraints are nonpolynomial in their depen-
dence on q,b. This feature makes it dificult to perform
technical manipulations, and, in particular, to unravel
the structure of the reduced phase space. In the spatial-
ly compact case, for example, the reduced phase space

36 1587 1987 The American Physical Society



1588 ABHAY ASHTEKAR 36

acquires certain conical singularities, whose structure,
however, turns out to be significantly simpler than what
one is first led to expect from the form of the con-
straints. This simplicity came as a surprise and suggest-
ed that there should exist other variables in terms of
which constraints become more manageable and the sim-
plicity of the conical singularities transparent. Another
issue obscured by the complicated dependence of con-
straints on q, b and p' is the simplicity of (anti-)self-dual
solutions of Einstein's equation. Over the past decade, a
complete analysis of (anti-)self-dual solutions has become
available, thanks to the techniques introduced by New-
man, Penrose, and Plebanski. Considering the complex-
ity of the full Einstein equation, it is remarkable that an
exhaustive treatment of such a large class of solutions
should be possible. Moreover, it turns out that the clas-
sical S matrix is trivial in the (anti-)self-dual case: in

spite of nonlinearities, the classical S matrix is the
same as in the linearized limit. This suggests that the
(anti-)self-dual system may be exactly integrable. Nor-
rnally, the Hamiltonian formulation is well suited to ad-
dress these issues. However, because of the complexity
of the Einstein constraints as functionals of q, b and p',
it has not been possible to investigate these ideas.
Indeed, the mathematical simplicity of (anti-)self-dual
equations has been a complete mystery in the Hamiltoni-
an framework. Finally, the nonpolynomial dependence
on q, b has made it impossible in quantum theory to con-
struct the momentum representation; all work in canoni-
cal and path-integral quantization has, consequently,
been restricted to the configuration representation.

It is therefore tempting to look for other canonically
conjugate pairs on the gravitational phase space. The
rich structure of (anti-)self-dual solutions suggests a stra-
tegy: look for variables which capture the (anti-)self-
dual part of the four-dimensional curvature. We will
follow this strategy.

It turns out that the variables best suited for our pur-
pose are certain spin connections which turn out to be
potentials for the (anti-)self-dual part of the Weyl curva-
ture when constraints are satisfied. Therefore, we begin
in Sec. III by enlarging the gravitational phase space to
incorporate spinors. Such an enlargement is needed, in

any case, if one wishes to introduce spinorial matter, and
has appeared in the literature in the guise of triad (or
tetrad) formulations. In Sec. IV we introduce the new
variables: the spin connections. These have information
about both the three-geometry and the extrinsic curva-
ture. Consequently, the standard constraints of
Einstein's theory can be reexpressed merely as algebraic
conditions on the curvature of the spin connections.
(When all the constraints are satisfied, these connections
reduce to those introduced by Sen in a somewhat
different context. ) The algebraic conditions involve only
the curvature and the Infeld —Van der Waerden symbols
which solder spinors to the tangent space at each point
of X. In addition, the Infeld —Van der Waerden forms
and the spin connections may be thought of as canoni-
cally conjugate variables on the extended phase space;
each set forms a (complete) set of commuting (with
respect to Poisson-brackets) variables and the two have

c-number Poisson brackets between each other. Section
V discusses the various simplifications that arise from
the use of these new variables in place of q, b and p' . In
particular, the result on the embedding of the constraint
surface of Einstein's theory into that of Yang-Mills is
obtained. In Sec. VI we show that the constraints form
a first-class system. In Sec. VII we present the expres-
sion of the Hamiltonians —i.e. , generators of (asymptot-
ic) space-time translations —in terms of the new vari-
ables. Section VIII summarizes the situation and points
out some of the possible applications of the framework.
Some mathematical preliminaries are collected in Sec. II
and in the Appendix.

For simplicity, throughout the technical discussion,
we have restricted ourselves to the source-free case. It is
clear from the presentation, however, that the incorpora-
tion of matter sources and/or cosmological constant is
relatively straightforward. Our space-time signature is
—+ + + and conventions on curvature tensors are
D),Dbjk, =:—,'R,b, "kd, R„:=R,b, , and R =R, '.

II. PRELIMINARIES

This section is divided into two parts. In the first part
we briefly recall the standard Hamiltonian formulation
of general relativity. This summary will serve to fix no-
tation and conventions and provide the point of depar-
ture for the discussion of the extended phase space in
Sec. III. In the second part, we recall certain differential
geometric results obtained by Sen using SU(2) spinors.
These motivate the definitions of the new variables in
Sec. IV.

A. Phase space of general relativity

Fix a three-manifold X in which topological complica-
tions, if any, are restricted to a compact set. More pre-
cisely, we assume that either X is compact or the com-
plement of a compact set of X is diffeomorphic to the
complement of a ball in R . For brevity, throughout
this article we shall focus only on the technically more
difficult noncompact case. Results in the compact case
are easily obtained by ignoring our boundary conditions
and setting our boundary integrals to zero. Also, al-
though our assumption implies that X has at most one
asymptotic region, it is straightforward to extend the
framework to allow more such regions (as, for example,
in the Kruskal extension of the Schwarzschild space-
time).

The configuration space C is the space of all positive-
definite metrics q, b on X with an appropriate asymptotic
behavior. A possible choice of boundary conditions is
the following. Fix a positive-definite metric e,b on X
which is Euclidean, i.e., flat outside some compact set.
Let r denote a radial coordinate with respect to e,b.
Then, we let q, b E C iff it has the form'

4
M(0, $) 1

qb 1+ eh+0
r r

Fix a point q, b in C. A tangent vector at q, b is
represented by a second-rank, symmetric tensor field
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(5q),b, on X, which has the same falloff as (q, b
—e,b ). A

cotangent vector is therefore represented by a second-
rank, symmetric tensor density p' of weight 1, with the
falloff and

cN(q, p):=f N'c, (q,p)

1
p q~b =0

r
1and p' ——,'pq'b=o

r2
(3)

Cz(q, p):= f NC(q, p) .

Sl
~ (q ~)((6q, 5p), (5q', 6p') )

:=f (6p)' (5q)', b
—(6p)'' (6q).b . (4)

so that the action of the covector p
'" on any tangent

vector (5q),b,

p"o (6q).b
= f p'"(6q).b,

X

is well defined. Thus, the falloff conditions on q, b deter-
mine those on p '". Had we required all pieces of
(q,b

—e,b) to fall off only as 1/r, we would have ob-
tained only those p' which fall off faster than 1/r so
that the three-momentum would have vanished identi-
cally on the entire phase space. However, our choice (2)
of the boundary conditions is not unique. It is only that
it provides a simple way to construct a phase space
which is neither too large nor too small to be physically
interesting. A rigorous treatment, which is feasible but
would require considerably more space, would involve
appropriately weighted Sobolev spaces and a careful
handling of functional analysis.

The phase space I is the cotangent bundle over C.
Thus, a point of I is a pair (q,b,p' ) satisfying (2) and
(3). I has a natural symplectic structure Il whose ac-
tion, at a point (q,p) of I, on tangent vectors (6q, 5p)
and (5q', 6p') at that point, is given by

From boundary conditions imposed on q,b and p', it
follows that, at a general point of I, these integrals will

converge only if the smearing fields, N' and X, tend to
zero at infinity. " We shall assume that they fall off as
1/r and their nth (D) derivatives fall off as 1/r" + '.
Then, CN a and Cz are smooth on I . The canonical
transformation generated by CNa corresponds to the
one-parameter family of diffeomorphisms generated by
cV' on X and that generated by Cz corresponds, on the
constyaint surface, to "time evolution" via Einstein's
equation with lapse Ã. These constraints constitute a
first-class system. The Poisson brackets are given by

[CN, CM I
——C~ with IC'= (LNM)',

[CN, CM [ = —Cz with K =(XNM),

[ C)v, CM I
= —CL with L '= q' (NQ M MBbN) . —

Finally, let us consider the generators of asymptotic
space-time translations, i.e., shift-lapse pairs ( T, T),
which correspond, respectively, to translational Killing
fields T' of e,b and asymptotically constant functions T
on X. The Hamiltonian HT generating the asymptotic
space translation T' is given by

Not all points of I are accessible to the vacuum (Ein-
stein) gravitational field: There are constraints. These
are given by

HT(q, p) = f (Xrq, b )p' (10)

C, (q p):= —2q, D„p "=0 One often integrates by parts and rewrites HT, as

and HT(q, p)= —2 f T.D,p' +2 It) T.p' dSb

C(q,p):= —(detq)'~ G 'R

+G (detq) '~ (p'"p,„—'
p ) =()

where D and R are, respectively, the derivative operator
and the scalar curvature of q,b. Given constraints, it is
natural to ask for the canonical transformations they
generate. Note, however, that canonical transformations
are generated by (real-valued) functions on the phase
space. C, and C, on the other hand, are mappings from
I to vector and scalar fields on X. Therefore, to obtain
functions from them, we have to smear them with vector
and scalar fields. Set

= f T'C. +2 f T,p'bdSb,

to bring out the fact that, on the constraint surface, the
numerical value of this Hamiltonian is just a surface
term, the Arnowitt-Deser-Misner (ADM) three-
momentum. Note, however, that, because of the conver-
gence problems mentioned above, the passage from (10)
to (11) is subtle: one first performs the integration in
(10) over a finite volume, integrates by parts and then
takes the limit. The integral, particularly the volume in-
tegral, in (11) is to be understood in this limiting sense;
one first integrates and then takes the limit. In the same
sense, the Hamiltonian HT generating an asymptotic
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time translation, is given by

HT(q, p)= f TC+ —fsq T(B,qb, —dbq„)e "dS",
x G

fabc Tr fabO c

1
abc cdek [a kb] —~ [a kb]cv'2 (15)

(12)

where 0 is the derivative operator of the background
metric e,b. Again, when the constraints are satisfied, the
numerical value of Hr(q, p) is given just by the surface
term, the ADM energy. In presence of matter sources,
the expressions of constraint functionals acquire extra
terms involving matter variables. The form (11) and (12)
of the Hamiltonians, however, remains the same in ab-
sence of derivative couplings. ' In particular, on the
new constraint surface, the numerical values of the
Hamiltonians are again given by the surface integrals in
(11) and (12).

B. The Sen connections

Fix, as in Sec. IIA, a three-manifold X and consider
SU(2) spinor fields iL,p~, . . . on it. The spinorial in-
dices are raised and lowered by the alternating spinors

and E AB .'AB

~A ~ ~BA
B andp =e pB .

The Infeld —Van der Waerden fields o.,A solder the spi-
nor indices to the tangent space at each point,

~a = ~aA ~B

and define a positive-definite metric q, b, a compatible al-
ternating tensor e,b„and a torsion-free derivative opera-
tor D, (on tensor and spinor fields) via

B
~bB = —TrO ~b

B D A
~abc 2~a A ~bB ~cD

= —+2 Tlo 0 bo

Here, R,b, =——R,bM o.,N is the spinorial curvature ofN M

the o.-compatible D. The spinorial and tensorial curva-
tures of D are related by an identity

R.b
= —&2R abp e (16)

Thus, the curvature of —D depends not only on the
Riemann tensor of q, b but also on k, b and its deriva-
tives. Furthermore, this dependence is of a particularly
convenient form. We have

q" f„,=—+ D'(k.„—kq.„)v'2 (17)

and

e' ' f,b, —— ——( —R +k'"k, b
—k ) .

2
(18)

Now, if we were to think of k,b as the extrinsic curva-
ture of X, (17) and (18) are precisely the left-hand sides
of the constraint equations that the pair (q,b, k, b ) has to
satisfy in order to qualify as Cauchy data for Einstein's
vacuum equation. [Using the definition (1) of p', ' van-
ishing of (17) and (18) can be seen to be identical with (5)
and (6), respectively. ] Thus, the constraints of general
relativity are coded in the algebraic structure of the cur-
vature of ~D: they simply require that f,b, e'

d
b—e

symmetric and trace-free.
Let us choose a pair (q,b, k, b ) such that the initial-

value constraints (17) and (18) are satisfied. Then, upon
evolution by the remaining Einstein equations, one ob-
tains a four-dimensional metric g, b of signature
( —+ + + ) which is Ricci fiat. It turns out' that
there is a simple relation between the Weyl curvature of
g,b, evaluated on X, and the curvature forms f,b, . —

and f,b, e'"d ——&2—( E,d+iBcd ), — (19)

[For details on SU(2) spinors and their relation to
SL(2,C) ones, see Ref. 9 or the Appendix. ]

We can now recall Sen's results. Fix on X a second-
rank, symmetric tensor field k, b and introduce two con-
nections —D via

+ l
Da ~bM —Da ~bM —+—kaM~2 ' (13)

where k,M ——k,bo- M . These will be referred to as Sen
connections. Let us compute the curvature of these con-
nections. Since the action of —+D on tensors is the same
as that of (the metric compatible connection) D, let us
focus only on the spinorial curvature. We have

+ N . + +
fabM k+, = 2 D[a Db]XM

where E,d and B,d are, respectively, the electric and the
magnetic parts, relative to X, of the Weyl curvature.
(E,b =—C, b„g g" and B,b =—* C, b„g g", where C,
is the Weyl tensor, * C, b„, its dual and p, the unit nor-
mal to X with respect to g,b. ) Thus, when constraints
are satisfied, —+D can be interpreted as potentials for the
(anti-)self-dual part of the curvature of the four-
dimensional space-time. It is remarkable that one can
feed information about extrinsic curvature into the con-
nections —D just in the way needed to code the Einstein
constraints in certain (algebraically isolated) parts of
F,b, and the (anti-)self-dual part of the four-

dimensional Weyl curvature in the remaining parts.

III. THE EXTENDED PHASE SPACE

so that

= R,bM —k[a
~

M
~

kb]P
N

+&2iD [a kb)M A ~, (14)

Let 2 be a three-manifold as in Sec. II A. We wish to
introduce an extension of the phase space I to incorpo-
rate spinor fields. However, since X is not equipped
with an a priori metric, we must first spell our the sense
in which our fields are to be spinorial.
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Consider, in addition to the tensor fields T'
on X, objects such as k M. . . N' ' ", . . . d with inter-
nal SU(2) indices A B,M X. [Objects such as

with only internal indices are to be
thought of as SU(2) "Higgs scalars. "] Formally, one can
regard A, M. . . N', . . . d either as generalized ten-
sors in the sense of Ref. 14 or as cross sections of suit-
able vector bundles over X. The SU(2) character of
internal indices refers to the following structure. First,
the space of fields (restricted to any one point of X) with
one internal index A, is a two-dimensional, complex vec-
tor space. Second, there exists a preferred nowhere van-
ishing skew field e . We denote its inverse by eAB—
e e AM

——6M —and raise and lower internal indices
with these e:

and pA =pA AB B (20)

Finally, there exists an isomorphism, called an Hermi-
tian conjugation and denoted by a dagger, from the
space of objects with internal indices onto itself such
that

(kg +cpA ) =X»i +cp»i, (k A
)' = —k»i

e AB=eiB»»(k ) AA +A

equality holding iff kA ——0,
(~~pa) =~ ~p a

(21)

(D,' D, )A.bg ——C—,b'A, ,„+C, „Ab~ . .(22)

Thus, there are as many connections as there are fields
C,b' and C, A with above algebraic symmetries. Next,
we compute the curvature. The "tensorial part, "R,b

and the "internal part, " F,bM, of the curvature are

where c is any complex number and c its complex conju-
gate. The group of isomorphisms from the system of
Higgs scalars to itself which preserves its structure as a
tensor algebra, the alternating tensor, and the dagger
operation is precisely the group of local SU(2) transfor-
mations.

Note that the internal indices are not to be thought of
as spinor indices since we do not yet have a soldering
form to tie them down to the tangent space of X.
Nonetheless, as in gauge theories, we can introduce con-
nections on these generalized tensors. ' '' A connection
D maps a generalized tensor field with a given index
structure (e.g. , A,

" M. . .~', . . . d ) to another one
which has an additional covariant index m (written
D " ' ~. . .~', . . . d ) such that the following
properties hold: (i) Additivity D (A, . . . +p

' '

. . . )

=D A,
'

. . . +D p
'

. . . ; (ii) Leibniz
rule D (k

'
. . . p . . . )=(D A, . . . )p

'

. . . D p
'

. . . ; (iii) U D f=L,f for all func-
tions f on X; (iv) torsion-free property D(,Db)f =0; and
(v) annihilation of e, D e„z——0. It is straightforward to
analyze the structure on the space of these connections.
First, we ask "how many" connections are there? One
can show that any two connections D and D' are re-
lated by a pair of fields, C,b' and C,A, satisfying
C[ b] =0 and C, [AB]

——0:

given by

~D[aDb)~mM Rabm ~nM +FabM ~mN

They satisfy the identities

(23)

N
Fab [MN] =0, D [a Fbc]M =0

(24)

The fact that all of this structure can be introduced pri-
or to a soldering form or a metric will be significant later
in this section as well as in the next section.

We now introduce soldering forms which tie the
abstractly defined internal indices to the tangent space of
X, thereby making them spinor indices. Consider iso-
morphisms o.,A from the tangent vectors X' to X to the
trace-free, second-rank, Hermitian spinors

——o.,A
k'. Denote the inverse mapping by o'A

Properties of e, Hermitian conjugation, and 0. imply that

q b:= C7 A C7bB = —Trg Ob
B (25)

is a positive-definite three-metric on X. Thus, given a
specific 0. , we are back to the standard spinorial
scenario, discussed, e.g. , in the Appendix. We now wish
to regard o. as a basic dynamical variable and the struc-
ture outlined prior to the introduction of o. as the
kinematical arena. In particular, the forms eAB and e
(and the Hermitian conjugation operation) are to be
thought of as c-number entities, fixed once and for all,
independently of the choice of the dynamical variable.
The metric q, b is to be thought of as a secondary object,
derived from the primary dynamical variable o. AB

We are now ready to define the new, extended phase
space I". Fix, outside some compact region in X, a sold-
ering form o'„(and its inverse Ocr, ~ ) whose connec-
tion D is Hat. Thus, cr is a soldering form of an Eu-
clidean metric e,b. Denote by C the space of all solder-
ing forms o'A such that

2
M(H, (5)1+ 0 a B+O 1

2
(26)

Then C is the new configuration space. Given any o. in
C, we obtain a q in C via (25). Thus, there is a natural
projection g from the new configuration space C to the
traditional one C: itt(o'z )=q,b, where q,„ is the in-
verse of q'"= —Tro'cr". (The reason for choosing o'„
rather than o.,A, as the configuration variable will be-
come clear in Sec. IV.) Let o. , and o.

2 project down to
the same metric: q,b. Then, it follows from (25) that o. ,
and o 2 are related by a local SU(2) transformation.
Thus, the enlargement of the configuration space from C
to C has been brought about because of the freedom to
perform internal SU(2) rotations. Indeed, while q,b has
six real components per space point, o'A has nine; the
new three degrees of freedom correspond to precisely the
three SU(2) rotations.

The momentum conjugate to o'
A is a density of

weight 1, M, A, whose index structure is opposite of
that of o'A and whose falloff is given by
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1
TrM, o'= 0

T

(27)

X~ —— —Tr —,
' A, cr' + A, M,

6 5
(32)

[M,„+—,'(TrM o )o,„]=0
r2

The action of the (cotangent vector) M, z on any
tangent vector (5cr )'„at a point o'z of C is given by

M05o".= f —TrM, o' . (28)

Again, the falloff'(27) of M, z is precisely such that the
integral on the right-hand side of (28) converges

The extended phase space I is the cotangent bundle
over C. Thus, a point of I is a pair (o'z, M, z ). The
natural symplectic structure 0 on I is given by

&
~ ( M)((5o, 5M), (5o', 5M') )

Tr[(5M,' )(5cr') —(5M, )(5cr' ')], (29a)

where (5cr, 5M) and (5o ', 5M') are any two tangent vec-
tors at the point (o,M) of I . Consequently, the Hamil-
tonian vector field Xf generated by an observable f is

Xf= f Tr cd 5

a

5f 5

6M, &0'
(29b)

and the Poisson brackets between any two observables f
and g are

(f )= JT 5f
6M,

(29c)

C,b =——TrM
t a O.

b~ =—M~ab~
——0 (30a)

or

C AB a (AM B) MN 0aN (30b)

Let us compute the corresponding canonical transforma-
tion. Given any trace-free, Hermitian spinor field Az
we can define a constraint functional on I:

—Aw CBB (31)

which is differentiable on I only if Az tends to zero at
infinity (faster than 1/r). In this case, the Hamiltonian
vector field is given by

Next, let us examine the constraints. In the transition
from C to C, we have added three degrees of freedom to
the configuration variables. Since the physical degrees
have not changed (we are still dealing with the vacuum
Einstein equation) we have three new constraints. From
a Lagrangian viewpoint, these arise because the La-
grangian is insensitive to SU(2) rotations on internal in-
dices. More precisely, because the Lagrangian does not
depend on the time derivatives of the three variables in
o'„~ that undergo change under internal, SU(2) rota-
tions, the corresponding momenta vanish. From a Ham-
iltonian viewpoint, the SU(2) rotations are gauge
motions, whence their generating functionals should
vanish. The three new constraints are

Thus, the infinitesimal changes in o'
& and M, z

caused by the canonical transformation are precisely the
(infinitesimal) rotations of internal indices by A „
Algebraic symmetries of Az imply that it is a generator
of SU(2) transformations (see Appendix). Hence, the
canonical transformations generated by the new con-
straints, Eqs. (30), generate small, i.e., tending to zero at
infinity, SU(2) gauge transformations on the basic
dynamical variables. Set

M(ab) ab (33)

so that, when (3) is satisfied, p' =M' . Then, the
remaining constraints are the standard ones: Eqs. (5)
and (6), where q, b and p' are now regarded as functions
of o' and M, . Thus, we now have 3+ 3+ 1=7 con-
straints. The configuration variable cr'„has nine com-
ponents per space point. Thus, we have two degrees of
freedom per space point. The canonical transformations
generated by (5) and (6) continue to retain their interpre-
tation.

To summarize, the extended phase space I consists of
pairs (o'z, M, z ) satisfying the boundary conditions
(26) and (27). The Poisson brackets are given by (29).
There are seven constraints. Six of them, (30) and (5),
are linear in momentum and the seventh, (6), is quadra-
tic. The Hamiltonians generating (asymptotic) space and
time translations are given by (11) and (12).

We note the following.
(1) In terms of o'z and M,„,and q,„and p'" given

by (25) and (33) are secondary or derived quantities.
One can therefore compute their Poisson brackets using
(29). One obtains

[q,b(x), q,d(y) I =0,
[p' (x),q,d(y) } =25'[, 5 d[5(x,y),
[p' (x),p' (y) )

= —,'5(x,y)(M[" q""+M ' q"'

+M [cb] ad+M [db] ac)

Thus, modulo the new constraints (30), q, b and p'" have
the same Poisson brackets as in Sec. II. That is, the en-
largement of the phase space I is compatible with the
symplectic structure Q.

(2) In the above enlargement, we first extended the
configuration space from C to C' by introducing internal
indices (which, ultimately, play the role of spinorial in-
dices) and then removed the gauge freedom correspond-
ing to internal rotations by imposing new constraints
(30). The passage from q, b to a' is essential if one
wishes to introduce spinorial matter and also for the spi-
norial variables for pure gravity, to be introduced in the
next section. However, could we not have avoided the
introduction and subsequent elimination of the freedom
to perform internal SU(2) rotations by a "gauge-fixing
procedure" which associates with each q,b a canonical
o'? Recall that there is a natural projection mapping it
from C to C which maps each o' to a q,b. Thus, C may
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be regarded as a fiber bundle over C, each fiber
representing the group of local SU(2) rotations. The nat-
ural question now is: does C admit natural horizontal
cross sections? If it does, we could have used a horizon-
tal cross section for the new configuration space. This
space would be isomorphic with C so that there would
be no additional gauge. At the same time, being a sub-
space of C, it would provide soldering forms —and not
just metrics —to enable the introduction of spinors. To
analyze this issue, let us first consider tangent vectors
(5o )' at any one fixed point o' of C. Using the "back-
ground" o', we can convert (5o )' into a tensor field
(5o ) „=Tr(5o )'o.„q, . The symmetric part (5o )~ „i of
this field gives the variation in the metric q, b caused by
(5o ): Eq (.25) yields 5q, &

——2(5cr )i,i, ~. Thus, if
(5cr) „=(5o){ „l, the tangent vector (5o )' generates a
pure, internal gauge rotation which leaves the metric q, b

unaffected. On the other hand, if (5o ) „=(5cr )i
(5cr)' has "no internal gauge part. " Hence, given any
(5o ), we can divide it into a "vertical part" (5o ){,b) and
a "horizontal part" (5o. )i,i, ~. Thus, at each point of C,
there are naturally defined horizontal subspaces of the
tangent space.

Unfortunately, however, as a simple calculation
shows, these subspaces are not integrable. ' Hence,
there are no natural horizontal cross sections of C which
could have served as internal-gauge-free but spinorial
configuration spaces.

IV. THE NK%' VARIABI.KS

The constraint equations (5) and (6) have remained in-
tact in the transition from I to I; the addition of new
degrees of freedom does not, by itself, simplify the con-
straints. This is reminiscent of the situation in triad and
tetrad frameworks. The key step in the simplification
will be the introduction of certain variables on I . The
extension to I is necessary, however, because these vari-
ables cannot be defined on I .

Fix a point (cr'z, M, z ) of I . Then, we can intro-
duce two connections, —2), which act on tensor and spi-
nor fields on (X,o. ):

& 4M=Do~iM+ —II w 4V'2
(13')

or

M,M =G '(detq)' '[II,M +(TrlIi, o")o.M ]

Thus, H, A is related to M, A in the same way that the
extrinsic curvature K'" is related to p'" [Eq. (1)). Note
that H, b

=——TrH, o.
b is not necessarily symmetric in a

and b, whence the connections (13') are not the same as
the Sen connections (13), except when the constraint
(30), M{,i, )

——0, is satisfied. Why do we not simply use
the symmetric part of H, b in (13'). %'hile this strategy
seems at first attractive, it ruins certain crucial Poisson-

where D, is the connection which annihilates the given
o.

A and where H,~ is given by

II,~ —=G(detq) ' [M,M + —,'(TrM&o")o.,M ]

brackets relations [see Eq. (35) below]. Consequently,
for the passage to quantum theory to be manageable, it
is important that (13 ) be used as it is, without symmetri-
zation.

As in gauge theories, it is convenient to work with
connection one-forms A, A in place of derivative opera-
tors. Let us therefore fix a fiducial connection 0, . For
simplicity, we shall assume that 0, commutes with Her-
mitian conjugation, B,kii ——(B,As ), and has zero inter-
nal curvature, B~, Bb~kA ——0. Set

+—N. A, M =B.xM+ 6—A.~~a~,
so that (13') yields

(34)

v'2
(34')

on I . The Poisson brackets between these functionals is
given by

IFF I= f 5F 5F'
(a gM AB

The definition of + A, yields

where I,~ are the spin connection one-forms of D;
(D, —8, )kM =—I,M k~. Thus —3 contain information
about both o. and M. We shall use either +A or A as
one of our new variables.

Before going on to investigate properties of A —,it is
useful to point out an analogy which provides an intui-
tive feeling for these variables. Consider the phase space
of a harmonic oscillator labeled by pairs (q,p) of
real numbers. It is often convenient to introduce a
pair of complex-conjugate coordinates, z =(me@)'~ q
+i( me@)

'
p and z=(mao)q i (mco—)

' p, where m is
the mass and co the frequency of the oscillator. The
variables +A and A on the gravitational phase space
are analogous to z and z. [In the case of the oscillator,
parameters rn and co allow us to form a dimensionally
meaningful combination of the basic variables q and p.
In the gravitational case, the only available constant 6
does not enable one to form a dimensionally meaningful
linear combination of o. and M. However, since H is
analogous to the extrinsic curvature, it has the same di-
mension as the derivative of o. . Hence, it is possible to
add H and the spinorial Christoffel symbols I as in the
definition (34') of —A. In this sense, +A,M on the grav-
itational phase space are as close to the variables z and z
as it is dimensionally possible. ] We shall return to this
analogy at the end of this section.

Let us now compute the Poisson brackets between
these connection one-forms.

First, we shall show that + A (or A) constitute a set
of commuting variables. To see this, fix any C tensor
densities of weight 1, f'„s and f''~s, with compact
support on X and consider the functionals

F«M ) = I f '~x(+ ~. —

and

F'(o,M)= f f'' (+A, )
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[+&," ( ))= G(d tq) ' 5(,y)(5, 5 5 ——,', ), (36a)

and for any t M&

I MN
MN

1 —o' [E'g D v„+ D—rg +21 rII y
—i ( II d

—IIq,d )r ' q, q +2i II( r,z
—27 b ) ]2&2

(36b)

with t:t gpo ', Gap:t(Qb) and t'=e' 't, b. Using
(36a) to compute 5F/5M ' ' and substituting the result-
ing expression for t M~- in (36b), one obtains the first
term in the Poisson brackets (35). The second term is
readily obtained by interchanging f'Mq and f''M~. A
regrouping of terms now shows that the Poisson brack-
ets vanish. Since f '~~ and f ' 'M~ are arbitrary, we
have the result

[+A,~ (x), + 3 M (y)I =0 . (37a)

o '„=(detq)' o'„ (38)

We note first that

Io '~ ( ),xo. "' 's(rx) I =0 . (37b)

Next, using the fact that II, and u M,z are canonica1-
ly conjugate, i.e., satisfy

[Il, "
( x),

o"'
M(vy) =IG5, 5M'"5v '5(x,y), (39)

it immediately follows from (34) that

I
—4, " (x),o sr~(y)I =+ —5, 5M' 5~ 5(x,y) . (37c)

2

Thus, o. ' may be thought of as being "canonically conju-
gate" to +A, . (This is, however, a slight misuse of ter-
minology since o. ' is Hermitian while —A, are not. See
the following. ) The fact that the Poisson brackets (39)
turned out to be a c number is fortunate because, as we
shall see in the next section, the constraints are most
easily expressed in terms of +A, (or A, ) and o. '. Our
basic variables will be therefore either (o. '~, + A, z ) or
(o. '~, A, ~ ). In what follows, we shall keep both
signs; + will always stand for plus or minus

The calculation for A is identical. Note that, had we
used the syminetric part of 11,& in the definition (13') of

2) [as in Sen connections (13)], the relation (35) would
not have held.

The Poisson brackets between + A, ~ (x) and

M (y) are straightforward to compute. However,
the final expression is quite complicated. We shall not
need this expression. We note only that the Poisson
bracket is not a c number; it is a nonconstant function
on I . It turns out, however, that the Poisson brackets
between o'z and A, z are simple. Set

We make the following remarks.
(1) The variables + A, ~ and A, „defined in (34)

provide us a complex chart on I; analogous to the chart
z, z (a=1, . . . , N) on the phase space of a N
dimensional oscillator. That is, (+ 3,„, 3,„) are
completely determined by a pair (tr'„,M, „) and
suffice to determine the pair from which they are con-
structed. The first part of this assertion follows by in-
spection of Eq. (34'). To prove the second, we first note
that since 8, is fixed (i.e., is a c number), the sum and
the difference of + A, z and A, z determines the con-
nection D and the field H, ~, respectively. By construc-
tion of —A, z, we know that D is comparable with some
soldering form. We need to show, however, that the
soldering form is unique. For this, we use the boundary
conditions. Let 'o = o be two elements of C which are
both compatible with the connection. Then
D, ('cr"M o. M )=0. —Since by the boundary condi-
tion (26) the difference must go to zero at infinity, we
have 'o. = o. . Now, using o'M and H,~, we can re-
cover M,M using (1'). Thus, the pair (cr, M) which
determines + A and A can be recovered from + A and

A.
(2) Using the above discussion and the Poisson-

brackets relations (35) and (39) one can show that
I+ 3,„ I and [ 3,„ I each forms a complete set of
commuting (with respect to the Poisson-brackets) vari-
ables. However, the analogy with z and z does not go
further. Whereas z and z are canonically conjugate,
+ A, M and A, M' are not. Furthermore, even if they
were canonically conjugate, we could not have worked
just with (+ A,~', A,M ) as our basic variables in an
effective way since constraints cannot be simply ex-
pressed without recourse to o. 'z . Our choice of
(o '„,+—3,„) is analogous to the choice (q, z ) or
( q, z ) as basic variables. This choice is somewhat un-
conventional because one of the variables is real and the
other complex. However, since any function on I can
be unambiguously expressed as a function of o. and —A,
the strategy is perfectly viable. In particular, the Pois-
son brackets between any two functions can be comput-
ed using only the basic Poisson brackets (35), (37), and
(39), and, modulo standard factor ordering ambiguities,
passage to quantum theory can be carried out by first
promoting o. and —A to operator valued distributions
whose commutators are A/i times their Poisson brackets
and then expressing other observables in terms of them.

(3) Note that the variables (o', M, ) which determine
—A, can be recovered from (o. ', +—A, ) by purely algebra-
ic manipulations; boundary conditions are not involved.
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[See Eq. (34').] The use of (g ', +—A, ) has another techni-
cal advantage over the use of (+ A, , A, ). A pair
(+A, , A, ) arises from some (g', M, ) if and only if
I, =—(G/2)(+A, + A, ) is the spin connection of some
o', which is a nonlocal condition on —3, . On the other
hand, (cr ', —A, ) arises from some (g', M, ) if and only if
(G —A, —I, ) is anti-Hermitian (where I, is constructed
locally from g. ') which is a local condition on
(g. ', —A, ).

V. CONSTRAINTS IN THE YANG-MILLS FORM

In Sec. III, the constraints of Einstein's theory, Eqs.
(30), (5), and (6) were expressed in terms of cr' and M, .
Our purpose now is to reexpress them in terms of the
new variables, cr ' and —3, .

Let us begin with (30). First, we shall carry out a pre-
liminary calculation to expand out —D, O '„z in terms of
o'z& and M,

+ —a —a 1 M- a M- a+a~ AB a~ AB — .—~aA tr MB —+—IlaB~2 v'2

—(detq)' (11 cr cr MB+ 11 g B g AM )v'2

=+&2i (detq)' 11(, lg „cr'MB

=+&2tGM(ab)cr'A cr MB (40)

Hence (30) is completely equivalent to

—X o- ~=o. (30')

6 Trg' F,„= — (11, II „—11„ Il,„) e"'
2 2

+ —D'(IIb, —IIq, )
2

It is useful to know that, since the divergence of a tensor
density of weight 1 is independent of the choice of the
derivative operator, one can expand out (30') knowing
only the action

=+ —D'(k b /cq b)v'2
(17')

where = stands for equality mgdulg constraint (30).
Thus, we can rewrite constraint (5) as

=a.X +G'-A. "X

of —2) on internal indices. We have

(34) 0=C, (g. ,M):——2q, D„P

= + 2&2i Tro™~F, (5')

+~ cra B—g era B+G+A Mg a B G+A Bg

= c3, cr '„+G [
+—A, , cr ']„=0 . (30")

in terms of the new basic variables o. 'z& and —+ 3,
Finally, to reexpress (6), we proceed as follows. Since

G Tro'(7 —F = — —E' ' —F+ G +
b abc

Thus, Eq. (30) has to be reexpressed in terms of the new
variables.

Next, we consider (5) and (6). Here, the calculation is
completely analogous to that with the Sen connections
(Sec. II B). We begin by expressing the spinorial curva-
ture of —2) in terms of a'z and M, z . The spinorial
curvature of 2) is defined via

=,'(R + Ii' —11.„11')+ t e'"'D. 11„

= —,'(R +K E,bK'"), —

Eq. (6) becomes

(18')

G FobM Atv ——2 2)[a 2)b]AM (41) 0=C(g, M) = —2(detq) '~ Trcr 'g +F,b . —(6')

so that

Ab)M" +G [ (41')

G—F,b,
——R,b, — —e,d, II,"IIb'+&2iD(, Hb), ,v'2 (15')

where, as before, R,b, is the spinorial curvature of D.
Hence, it follows that

(The factors of G ensure dimensional consistency. ) Now,
using the expression (13') of —2) in terms of cr and M in
(41), one obtains

To summarize, the set of Einstein constraints can be
recast in terms of the new variables simply as

—a B 0

Trcr' Fb=0
Trcr 'o. —F,b ——0 .

(30")

(5")

(6")

A number of remarks are in order.
(1) Note that these constraints involve only our basic

variables, cr 'z and —A,z, and their 0 derivatives. In
particular, we do not need to raise or lower the tensor
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index on these fields; the inverse of o. 'A never enters
the constraints. In fact, the constraints are at worst
quadratic in each of the basic variables. This is a
significant improvement because the dependence of con-
straints on old variables (q,b,p'") was nonpolynomial.
The simplification may be useful in a number of techni-
cal problems. For example, it may enable one to dispel
the mystery surrounding the structure of conical singu-
larities in the spatially compact case, referred to in the
Introduction. More importantly, it makes the con-
straints more manageable in the quantum theory. In
particular, it is feasible to construct both the o. represen-
tation, in which quantum states are, to begin with, arbi-
trary real-valued functionals of o. 'A, as well as the —3
representation, in which they are holomorphic function-
als of —A, A . By contrast, only the q representation is
manageable in the traditional canonical quantization
scheme because of the nonpolynomial dependence of
constraints on q,b. The —3 representations are, further-
more, more interesting from a number of considerations.
First, because —3 is essentially given by Bo.+i H, wave
packets with minimum uncertainty spread in the three-
metric and the extrinsic curvature arise naturally in
these representations. Second, they enable one to import
qualitatively new ideas into quantum gravity from
QCD. Finally, they seem to lead one to a very interest-
ing picture of quantum geometry in which the metric
takes on its classical properties only on macroscopic
scales and only on sufficiently complicated (excited)
states.

(2) The form of constraints (30"), (5"), and (6") brings
out the reason behind our initial choice of o' as the
configuration variable rather than o, A second reason
for this choice is that, since the connection one-forms

naturally occur as covectors, the conjugate vari-
able should have a contravariant vectorial index.

(3) In the final form of constraints, one needs to know
the action of +2) only on internal indices. In (30") —2)
does act on the vector index of o- 'A . However, as not-
ed above, since o. 'A is a density of weight 1, this action
is independent of which torsion-free connection is
chosen to act on the vector index. In (5") and (6") only
the spinorial curvature of —2) enters. Thus, although in
the original definition (13 ) of —Xl, we specified its action
on both tensor and internal indices in the finished pic-
ture, we only need the action (34') on internal indices; to
operate on tensor indices we can choose any torsion-free
extension of (34') to tensors.

(4) Note that the left-hand side of (6") contains a sin-
gle term. The left-hand side of (6), on the other hand,
contains a "kinetic term" quadratic in mornenta and a
"potential term" independent of momenta. It is only in
the so-called strong-coupling limit, G~ ~, that the po-
tential term disappears and we are left with a single (ki-
netic) term. This limit has been studied in some detail in
the literature. One knows, in particular, that many of
the difficulties of the canonical quantization scheme with
(q,p) variables can be overcome in this limit. Now, if
one regards cr ' as the new "momentum" variable [it is
natural to do so since (5") is linear in o. '], the full con-
straint (6") resembles the strong-coupling limit of (6).

Since it is the electric field E '
A which satisfies the

canonical Poisson-brackets relations with the connection
one-form in the Yang-Mills theory, let us replace the
symbol o. '„by E"„. (Note that, in Yang-Mills
theory, the electric field —i.e., the momentum conjugate
to the vector potential —is also naturally a density. The
density character can be ignored in Minkowski space but
not in Einstein- Yang-Mills theory. ) Then, constraints
(30'), (5'), and (6') become

—S,E"
A

——0,
TrE)& B=0,
TrE.EBB=0 .

(30'")

(5"')

(6'")

The first of these equations is just the Yang-Mills Gauss
law constraint. Thus, every initial datum (o'~, M,„)
for Einstein's theory provides us with initial datum
( &,q, E'~ ) for Yang-Mills theory which satisfies, in

addition to the Gauss law constraint, four constraints
(5"') and (6'") algebraic in Yang-Mills field strengths:
We have an embedding of the Einstein constraint surface
into the Yang-Mills constraint.

We note the following.
(1) Considered as a system of equations on Yang-Mills

fields on a spacelike hypersurface X, Eqs. (30'"), (5"'),
and (6'") have the remarkable property that they do not
require a background structure (such as a metric or
volume element, or a derivative operator) on X. It is
somewhat surprising that one can write such equations
at all. The evolution equations for Yang-Mills theory,
for example, do require a background three-geometry.

(2) The embedding, obtained above, is for initial data
sets only, and not for the entire four-dimensional solu-
tions of Einstein and Yang-Mills equations. Given a
pair (

+—A, , E') satisfying all constraints, we can choose
to evolve it using either the Einstein Hamiltonian, or the
Yang-Mills Hamiltonian. The Einstein evolution
preserves all constraints. The Yang-Mills evolution, on
the other hand, preserves only (30"'); in general, (5"')
and (6'") will not continue to hold if (

—3„E') are
evolved using Yang-Mills equations.

(3) Note that the Yang-Mills data (
—A, ,E') arising

from some Einstein data (o', M, ) must satisfy, in addi-
tion to (5"') and (6"'), two conditions: (i) E'„ is an iso-
morphism between the tangent space of X and second-
rank, trace-free, Hermitian Higgs scalars, and (ii) H, A

defined from —3,„"via (34 ) is Hermitian. These condi-
tions make it awkward to use the embedding directly to
obtain explicit solutions to Einstein constraints from

Hence, one may be able to take over to full theory, for-
mulated with (cr '„,—3,„), some of the techniques
developed to study the strong-coupling limit in terms of
(e.b I ')

Next, we show that the constraints can be cast into
Yang-Mills form. First, the connection one-forms
+ 8 can be thought of as Yang-Mills connection one-
forms on the three-manifold 2, and its curvature,
—F,», as the dual of the magnetic field —B"„

~B rn 8 mob +F 8
A ~ abA
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Yang-Mills theory. If one is interested in complex gen-
eral relativity, on the other hand, the situation is better.
Now, one can drop Hermiticity conditions and aO fields
are SL(2,C) valued. Therefore, in addition to (5'") and
(6"') one has only to ensure that F.'~ is an isomor-
phism between the tangent space of X and second-rank,
trace-free Higgs scalars.

(4) For Euclidean Einstein theory (i.e., with g, b of sig-
nature + + + + ), the situation is as follows. One can
define (cr', M, ) as in Sec. III. The constraints are (30),
(5), and a modified version of (6), where the modification
consists only of changing the sign of terms quadratic in
p'". One can define —Xl and —A, by equations analogous
to (13') and (34'), the only difference being that the fac-
tor of i in front of H,~ is dropped. Then, the Euclide-
an constraints are once again given by (5'"), (6'"), and
(30"'). Thus, in the Euclidean case, cr', M, , 11, ,

—A, are
all Hermitian, whence the condition (ii) mentioned above
in remark (3) is automatically satisfied.

(5) In general, i.e. , independently of whether g,b is Eu-
clidean, or Lorentzian, or complex, the inverse o., of o'
never features either in the constraints or (as we shall
see) in the evolution equations, whence the equations
continue to be meaningful even when o' is degenerate.
Thus, this set of equations represents a generalization of
Einstein's equations, reducing them when o-' is nonde-
generate. There are indications that this fact will play a
significant role in quantum gravity. In particular, it may
enable us to analyze the possibility of topology change
while working in a canonical framework.

(6) For simplicity, let us consider complex general re-
lativity and SL(2,C) Yang-Mills theory and count the
number of degrees of freedom. Since SL(2,C) is three di-
mensional and since the zero rest-mass vector field has
two degrees of freedom per internal degree, SL(2,C)
Yang-Mills theory has six degrees of freedom. The im-
position of the four additional conditions, (5"') and (6"'),
reduce the freedom to two. These are the degrees of
freedom of (complex) general relativity. Thus, it is not
surprising that four additional constraints are needed in
the passage from Yang-Mills theory to Einstein's theory.

(7) Note that our boundary conditions on cr ' and —A,
are different from those imposed on E' and A, in the
Yang-Mills theory. While o. ' approaches a constant
value o. ' as 1/r and —3, fall off as 1/r, the Yang-
Mills electric field is normally assumed to fall as 1/r,
and the Yang-Mills potential, as 1/r. This difference has
physical consequence. For instance, while the (internal)
color change is well defined in the Yang-Mills theory, it
is not well-defined on the gravitational phase space.

VI. CONSTRAINT ALGEBRA

We shall carry out the calculation of Poisson brackets
between the constraint functionals using only the basic
Poisson brackets (35), (37), and (39) between cr '„and

and the identities

[ A, B +AC] = [ A, B ] +A [ A, C], [ A, B ] = —[B,A ]

and

[AB,C]=A [B,C]+[A,C]B
satisfied by any Poisson brackets.

Let us begin with (30"). Given a test field N~ —a (c-
number) Hermitian, trace-free field tending to zero as
( I/r ) at spatial infinity, we define a constraint function-
al C —Qcr, A) as

C —Qcr, —A) =—+ . f (N~ )(
—2), o. '~ ),+ +

Gi
(42)

where the overall numerical factor has been introduced
for later convenience. Let us begin with the canonical
transformation generated by this functional. Using (34)
and integrating by parts, we have

C Qcr, +—A)=+ f (c)Ng +6[ A, , N]g )cr 'g
G

(42')

Using this expression and the Poisson brackets (35) and
(37), we have

and

[C—~, cr ~}=[N, o ]~~ (43a)

(43b)

The second of these equations in turn implies

[C ~, F „p~] =[N, F„]~~—. (43c)

Thus, the infinitesimal canonical transformation generat-
ed by C~ is precisely the infinitesimal SU(2) rotation
generated by N„. [This explains the choice of the
overall numerical factor in Eq. (42).] Consequently, we
have the following Poisson-brackets relations:

[C—~, C +—

bc) =+ f [M, N]~ (
—2), cr '~"), (44a)

Gi r

[ C —~, Trcr ' F,b j =0, —

and

(44b)

[ C —~,Tro. cr F,b j =0 . — (44c)

These relations are not surprising; one could have antici-
pated them from the role of the Gauss law constraint in
the Yang-Mills theory.

To compute the remaining Poisson brackets, it is con-
venient to obtain first the brackets between cr '(x) and
F „(y). Using the definition (41') of F„and the-

basic Poisson brackets between o. ' and —3, , one has

[o '„~(x), F„(y)]= + (V2i )(d( 5„)'—5(x,y)6„™5~' —G5(x,y)6 ' +—A ™5' —G5(x,y)6( ' —A ™$ ')

(45)
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The computation of the remaining Poisson brackets is
now straightforward since constraints (5') and (6') in-
volve only algebraic combinations of o. ' and —F „. Set

C —~(cr, —3)=+ Tr f N'o "+F,b— (46)
I

and

+ +C —+z(a. ,
—3 ) =+ Tr f ¹

'o " F,b—,
I X

(47)

where N' is a vector field and X a scalar density of
weight minus one, both (c numbers and) tending to zero
as ( I/r) at spatial infinity. (Here, and in what follows,
Tr stands for the integral of trace of . Then, using
the basic properties of Poisson brackets, relations (35),
(37), and (45), suitable integrations by part, the falloff'
rate of fields involved, and the Bianchi identities satisfied
by —F,b, one obtains

IC'-~, C--MI =+ . Tr f (rMN)'o ' 'F.b-
+ (N'M" ' F,b )(

—2)—cr ), (48)

+MN'[o, F,b ](2) o.. )—, (49)

and

[C-Z, C —',&I=+ . Tr f —(Na M —Mg N)
1

X(Trcr 'cr )o F.b . —

C -g(o, —3)=+ Tr G N —2) o. 'v'2 +
l

(51)

Then,

IC —
g, CM ]

=C—

where

= [M»]g +GN'M" —F

(50)

These results can be succinctly expressed as follows.
Let N stand for the triplet (N„,N, and N ) and set

P'= —(X&M') 2—(Nc) M M—d N )Tro. 'o.

We make the following remarks.
(1) In the new Hamiltonian formulation, the lapse nat-

urally arises as a density of weight —1 (Ref. 17) because
the scalar constraint is a density of weight 2. The in-
tegrands in the expressions (42), (46), (47), and (52) of
constraint functionals are all densities of weight 1, so
that the integration can be carried out without reference
to a specific volume element.

(2) If one gives the lapse and the shift dimensions of
length and regards the SU(2) generators Nz as dimen-
sionless, the constraint functionals C —+~ have dimension
of action. Hence, the Poisson brackets of these function-
als with any observable on the phase space —which
represents the infinitesimal change in the observable-
has the same dimension as the observable.

(3) Equation (52) implies that the constraints are of
first class: the Poisson brackets of constraint functionals
vanish weakly. Note, however, that in the language of
Becchi-Rouet-Stora-Tyutin (BRST) transformations, the
system of constraints is open: the Poisson brackets in-
volve structure functionals rather than structure con-
stants. This situation occurs also in the usual Hamil-
tonian formulation of general relativity based on
(q,b,p' ) where the expression of Poisson brackets of
two scalar constraint functionals contains a vector field
constructed from the two lapses and the three-metric
q,b. In the present formulation, there are further com-
plications: structure functionals involve both o. ' and A,
and arise also in other Poisson brackets [(48) and (49)].
The BRST structure of (52) has not been explored. In
particular, we do not know if the "second-order struc-
ture functions" vanish for this algebra.

(4) Note, however, that there is a technical improve-
ment over the Poisson-brackets algebra based on
(q,b,p' ) variables. In the present case, structure func-
tionals depend at most quadratically on the basic vari-
ables o. ' and —3, : they involve only o ' and —F,I, . In
the usual Hamiltonian formulation, on the other hand,
structure functionals have a nonpolynomial dependence
on the basic variables through q'".

(5) It may come as a surprise that the Poisson brackets
of two vector constraints, for example, involve the Gauss
law constraint (30"). This comes about because the
present vector and scalar constraints (5") and (6") are
equivalent to the traditional vector and scalar con-
straints (5) and (6) modulo (30"). So, in fact, what is
surprising is that just the right cancellations occur for
the Poisson brackets (50) between new scalar constraints
not containing (30").

VII. DYNAMICS

and

G(MN' NM')[o—b -F ] —'
I' = —L~M+LMN, (52)

We can now discuss dynamics. For reasons given in
Sec. III, constraint functionals C —z and C —

& [of Eqs.
(46) and (47)] are differentiable on I only if N' and N
tend to zero at infinity as 1/r. To obtain dynamical evo-
lution, on the other hand, we need the shift and the
lapse to go to constant values at infinity, corresponding
to space and time translations. Consequently, to obtain
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the Hamiltonians generating dynamics, one must add
suitable surface terms to the constraint functionals.

Let T' be a translational Killing field of the Aat metric
q' = —Troo' o that we initially fixed outside a com-

pact set of X and let T be a scalar density that equals

(detq)
' outside the compact set. Then, the pair

(T', T) defines a space-time translation. The Hamiltoni-
an, Hr[T—= (T~ ——O, T', T)], generating the correspond-

ing canonical transformation on the phase space is given

by

H r(cr—,
+—A, ):= lim +Tr J Tcr 'cr F,b

——iT'o F,b—+ lim 2Tr Ic) ss( To—'cr +—Ab+iT 'cr +—Ab)dS, (53)S~& S S~X

=+Tr2 f —(B,To'cr ') Ab+GTcr 'cr A Ab+i (B,T 'cr ) Ab iGT '—o1'A A

(53')

where the integrals in (53) are first evaluated on a finite
portion S of X and the limit of the result is then taken as
S expands out to fill all of X [to see how this subtlety
arises, see discussion following Eq. (11)]. The form (53)
of the Hamiltonian brings out its relation with con-
straints while the form (53') brings out the fact that it is
a well-defined quantity; since the integrand of (53') falls
off as 1/r, the integral is manifestly convergent. Note
that the Hamiltonian is polynomial in o. ' and —3, . The
numerical coefficients in (53) have been chosen to simpli-
fy the evolution equations for new variables. Conse-
quently, there are relative numerical factors between (53)
and (11), (12) and T and T' in (53) have to be suitably
rescaled to obtain geometrical lapse and shift fields: the
geometrical lapse equals (detq)'~ T and the geometrical
shift equals (1/V 2)T'.

To obtain the evolution equations, we take the Poisson
brackets of the basic variables with the Hamiltonian.
One obtains

o' '= [Hr-, cr '] =v 2 2)b(iTcr cr ' +T o' ), (54)

—A, —:[Hr, +—A, I
= —([iTo ", F,b] —T"~F—,b) . (55)v'2

Using the definition of the three-metric q, b and the ex-
trinsic curvature k, b [Eqs. (25) and (34); recall also that
II,b ——k, b when the constraint (30) is satisfied] in terms
of o. ' and —A„one can now obtain the evolution equa-
tions for q, b and k,b. One has, modulo constraints,

1
q, b

—+2Tk, b + —Xrq, b (56)

and

(57)

k, b
——+D, Db T+TR,b + 2Tk, k b+ Tkk, b + —Xrk,b,T ab

integrals is, in fact, real Substitu. ting (34') in (53) and
using the boundary conditions, one obtains

Hr- +(o ', +— A—, )= + f T(Bbq„—B,q,b) q' dS'
2G

+ ' yT;.,ds",v'2 (58)

where = stands for "equals on the constraint surface"
and where 0 is the derivative operator of the Bat metric
q, b. Thus, except for overall factors, the numerical
value of the Hamiltonian on physical states yields pre-
cisely the ADM energy and the ADM three-momentum.
Note that, if one regards the phase space as a complex
manifold, coordinatized by —A, , the surface (as well as
volume) integrals in (53) are holomorphic functionals.
However, they take on real values on the constraint sur-
face and these coincide precisely with the ADM four-
momentum.

We note the following.
(1) On the entire phase space, the Hamiltonian (53) is

a holomorphic function. Therefore, on a generic point
off the constraint surface, its numerical value is complex.
Consequently, even on the constraint surface, the time
evolution generated by H —

~ does not respect Hermitici-

ty; the expression (54) for o. ', for example, has an anti-
Hermitian piece (even when evaluated at a point of the
phase space at which o. ' and lI, are both Hermitian).
However, the anti-Hermitian piece is pure gauge,
whence the evolution of q, b and k, b preserves reality
[Eqs. (56) and (57)]. To obtain a Hermiticity-preserving
evolution, therefore, we have only to add to the Hamil-
tonian a suitably weighted Gauss-law constraint func-
tional (30'). Thus, for example, if the shift T' is set to
zero, the Hamiltonian

H —(o, —A):= +Tr J TTro 'o F,b

where T=(detq)'r T. These are the standard evolution
equations for Cauchy data.

On the constraint surface the numerical value of the
Hamiltonian is given just by the surface terms. Even
though the integrand of these terms contains both, Her-
mitian and anti-Hermitian pieces through —3, , it turns
out that, due to the particular algebraic combinations in-
volved and the boundary conditions satisfied by o. and
+—A„on the constraint surface the value of the surface

(D, T)o '( 2)bcr —)

+ 2 Tr f sg To ['cr 1—A b dSa

—:+ T detq R —II,bH '+H1

+ f sr T(B.qb. Bbq., )q "dS'—
26

(59)

(59')
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o''=&2i[ 2)b(Tcr cr ) —,'[(—DbT)o,o ']) (54')

and

is real everywhere on the phase space and generates the
Hermiticity-preserving evolution:

What is the interpretation of these variables? Let us
consider an initial datum (cr, M, ) satisfying all con
straints and compute the curvature two-forms —F,b in
terms of the corresponding Cauchy pair (q,b, k,b). As
noted in Sec. V, we have

A, =
I [To,+F,b

—]+(I /G) —2), [(Db T )o. ] ]
2

(55')

—G Tr Fabc = G Fabc

1 „1 m n

2~ 2
~ab ~cmn i ~cmn ~a ~b~2

(2) Note that asymptotic translations (generated by T
and T' above) leave the background cr'~ invariant and
preserve the boundary conditions on the phase-space
variables (o', —A, ). This property is not shared by an
internal rotation Tz which asymptotically approaches a
constant nonzero value. That is, "global internal rota-
tions" are incompatible with our boundary conditions.
Hence, in contrast with the Yang-Mills theory, we do
not have internal (color) charges on our phase space.
This is to be expected on physical grounds since such
charges, unlike energy momentum have no role in gen-

eral relativity.
(3) Lee has pointed out (private communication) that

the form of the Hamiltonian simplifies substantially if we
set T =(detq) ' and T'=0. [Note incidently that (58)
equals (59) for this choice since D, (detq)=0. ] Using
Eqs. (13'), (34), and (34') of Sec. IV, one obtains

H r(o, —A )
—= +Tr J To 'cr F,b—

X

+2Tr f sTzo ('cr ) AbdS,

=+ f T[(—A' )*(—
Ab, )

—(
+—A )*(—A )](detq),

where A, b
———Tr —A, o.

b and —A = —A,bq' . If one
could show that it is always possible to go to a gauge in
which —A, b is symmetric and traceless, one would ob-
tain a new proof of positivity of energy. This form of
the Hamiltonian is useful especially in the weak-field and
strong-coupling limits.

VIII. DISCUSSION

On the gravitational phase space I we performed a
"canonical transformation" to pass from (o', M, ) as the
basic variables to (o ', —A, ). This transformation is
analogous to the one which sends the variables (q,p) on
the phase space of a harmonic oscillator to the variables
[q,z =(mes)' q +i (mes) ' p] [or, alternatively, to
(q, z)]. Because the variables —A, contain information
about both (the connection compatible with) cr' and M, ,

the constraints and the Hamiltonian of general relativity
simplify considerably in terms of o ' and —A, : while
they depend nonpolynomially on (cr', M, ), their depen-
dence on o. ' and —A, is at worst quadratic. This
simplification is expected to play an important role in a
number of problems in both classical and quantum grav-
ity.

The key step in this simplification is the introduction
of connections —+%, or, connection one-forms

+&2iD(, kbl, (15")

Hence, taking the dual on a and b, one obtains

W', d .——G F,b, e'—
d ———&2(R,d —k, 'kd, +kk, d )

+&2i e'"d (D, kb, )

= —&2(E,d +iB,d ), (19')

(54")

on a triad V'„where [, ] denotes Lie derivatives.
These equations are remarkably simple. Their resem-
blance to Euler's equations for rigid bodies supports the
conjecture of exact integrability of the half-flat equation.
This issue is being investigated in collaboration with
Mazur.

The new variables and their properties raise a number
of other issues in classical gravity. We shall end by list-
ing a few. Since the constraints are at worst quadratic

where we have used the constraint (30) to set II,b
——k, b

and where E,d and B,d are the electric and the magnetic
parts of the Weyl tensor of the vacuum solution obtained
from the initial datum. Thus, +F,b and F,b are essen-
tially the anti-self-dual and the self-dual parts of the
Weyl tensor and, consequently, —A, is a potential for
the (anti-)self-dual curvature. This property becomes
transparent by noting that —+2) are the restrictions to a
three-surface X of the action of the space-time covariant
derivative on (un)primed SL(2,C) spinors. (For details,
see Ref. 9.)

This interpretation enables one to obtain a new char-
acterization of half-fiat (i.e., self-dual or anti-self-dual)
solutions to Einstein's equation. ' Since these solutions
are either of Euclidean signature, (+ + + + ), or com-
plex, one begins by either requiring that (cr ', A, ) be
both SU(2), Hermitian fields [i.e., by dropping the factor
i in front of II, in Eq. (34')] or by letting them both be
in the SL(2,C) Lie algebra. Then, self-duality is ensured
by setting +F,b ——0. Now, if one uses + variables, two
of the three constraints, (5') and (6'), as well as one of
the evolution equations (55), are automatically satisfied
and the entire content of Einstein's equations is captured
in the first-order equations (30') and (54). These equa-
tions can be further simplified by choosing the lapse ap-
propriately and by introducing a suitable triad to expand
To. ' in terms of Pauli matrices. The final result is the
following. ' In the half-flat case, Einstein's equation is
equivalent to the set of equations

(30"")
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in each of the new variables, one should be able to use
them to "explain" why the conical singularities of the
space of solutions to Einstein's equation (in the spatially
compact case) are as simple as they turned out to be. '

Is this indeed the case? Is the standard analysis of solu-
tions with one or two Killing fields simplified by the use
of new variables? Can one find new solutions to
Einstein s and/or Yang-Mills equations by exploiting the
embedding given in Sec. V? Are there freely specifiable
"York-data" for new variables? Can the fact that +—A,
are natural potentials for Weyl curvature be used to sim-
plify perturbation analysis in general relativity? Are
there convenient Lagrangian formulations of general re-
lativity in terms of new variables?

The application of this framework to nonperturbative
canonical quantum gravity will be discussed in a series
of papers by Jacobson, Lee, Mazur, Renteln, Smolin,
Torre, and the author.

Note added in proof. (1) J. Samuel [Pramana - J. Phys.
28, L429 (1987)] and T. Jacobson and L. Smolin [Phys.
Lett. B (to be published)] have obtained Lagrangian for-
mulations of general relativity in terms of the new vari-
ables introduced here. Many of our results are easier to
obtain in these Lagrangian treatments. (2) A. Ashtekar,
P. Mazur, and C. Torre [University of Utah report, 1987
(unpublished)] have completed the BRST analysis of gen-
eral relativity in terms of the new variables. Of particu-
lar interest to the present paper is their result that the
constraint algebra simplifies considerably if the vector
constraint (5") is replaced by Tr(o F,b

—+—3,——Xlbo )

=0. The new vector constraint generates "pure
difFeomorphisms" thereby making it transparent that the
second-order BRST structure functions can be made to
vanish.
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APPENDIX: SU(2) SPINORS

AB cB A AB B&AC=UC~ P =& PB PA =9 &BA . (Al)

Second, associated with every spinor kA is its Hermitian
conjugate, A, A, such that

Let X be a three-manifold and q, b a positive-definite
metric thereon. SU(2) spinors are two component ob-
jects, k, p A, . . . equipped with the usual operations of
tensor algebra: addition, multiplication by functions, in-
dex substitution, and outer product. ' ' Furthermore,
we have the following additional structure. First, there
exist second-rank, skew, nondegenerate spinors, e" and
eAB, with which we can raise and lower spinor indices:

and

(kA+cpA ) =k A+c p 3 (X A ) XA

(A, )"A,„)0,
(A2)

where c is any complex number, c ' its complex conju-
gate, and where the equality in the last property holds if
and only if A. =0. Finally, there exists an isomorphism
cr'A between the space of complex tangent vectors v' at
any point of X and spinors v B at that point which are
trace-free (-- -. satisfy ez(cu "e)——0): u'= —o'"eu
= —Tro'v. This isomorphism satisfies the following two
properties: (i) it maps Hermitian spinors to real vectors
and vice versa and (ii) the metric q, b on X can be ex-
pressed as

AB CD
q b Tro Ob Ob ~AC~BD (A3)

[all vector indices are raised and lowered by the metric
(q' and q,b) and all spinor indices by the alternating
spinor (e" and e„e )]. o. solders the spinor indices to
the tangent space at each point and is therefore called a
soldering form. Because of (A3), the soldering form may
be regarded as the "square root of the metric. "

Finally, any spinor field A B which is nondegenerate
(i.e., satisfies A ea =0 iff' a =0), Hermitian, and
which satisfies e AB A ~A & ——e~&, defines an isomor-
phism of the spin system to itself. More precisely, we
have the following. A defines a 1-1 linear mapping from
the complex, two-dimensional spin space to itself,a"~a' =A"ea, such that (i) (a ")'=(a' ") and (ii)
o, =A MA zo, is also a soldering form for the
metric q,b, Tro.,'o.

b
——Tro. ,o.

b ———q,b.
Now, if (X,q,b) is embedded in a four-dimensional

space-time (M, g,b), at points of X, one has both the
SU(2) as well as the SL(2,C) spinors. Recall' that the
SL(2,C) spinors are of two types, unprimed and primed,
e.g. , kA and A, A. The soldering form, cr, , now has
both types of indices and can be thought of as a square
rOOt Of g,b.

4 AA' BB'
gab ~a ~b ~AB ~A 'B' (A4)

tA +2gAA'— (A5)

Finally, note that in the literature in general relativity, '

one often suppresses the soldering forms o. and simply
writes g,b

——
@ABACA B or v'=v . While this conven-

tion is convenient if one is dealing with only a fixed con-
formal class of metrics, it is impractical if one has to
deal simultaneously with a wider class of metrics: For a
given conformal class, one can fix a fiducial o., and
code the information of any one metric in the choice of

[As in the main text, g,b has signature ( —+ + + ),
whence the o., "" here is i times that used in Ref. 15.]
Unprimed spinors, e.g., pA, can be regarded either as
SU(2) or as SL(2,C) spinors. The primed spinors, e.g.,
P z, on the other hand, belong only to the SL(2,C)
category. However, together with g'=g"" o'z„., the
unit timelike normal (with respect to g,„) to X, they
define an Hermitian-conjugation operation on the SU(2)
(or unprimed) spinors:
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eAB, while in the case of a more general class, the free-
dom in the choice of eAB is simply not large enough to
characterize a metric. [The situation is identical in the
SU(2) case.] We will not follow this convention since we
have to deal with all possible metrics on X. Thus, in our
convention, eAB is fixed once and for all, without refer-
ence to a metric. The soldering form 0. changes with the
choice of the metric.

Finally, in the component notation, the structure
developed above can be recast as follows. Let n denote
any spinor such that (a ) a „=1. Then e M, M = 1,2
with e "& ——a and e "z—(a") is a normalized spin dyad.
Given any spinor k, we can write it as a linear com-
bination of these basis vectors:

gA A g1 A +g2 AA= (A6)

Since 2O ~ u+ =g it follows that the components
eMN e~&e Me N of e~~ ate (

&
o). The Hermitian

conjugate of k is given by

(gA)t (gM)s( 2 )t (gl)s 3 (g2)s

trace-free matrix. (Note that the dual basis e„ is given

by e „'= —ct q and e z
——a z .) Next, given a positive-

definite metric q,b, one can introduce a soldering form
0.,B compatible with it as follows. Fix an orthonormal
triad e' (m =1,2, 3) on X and set

A ~ M m A N
ORB =10m N a M

where 0.
N are the Pauli matrices:

(A8)

0 1

1 0 02=
0

0
1 0

03—
0

It is easy to check that 0., B is trace-free and Hermitian
in spinor indices. Furthermore, the vector k'=0'AB A.

is real (i.e. , its components A, = io— N. R M are real) if
is trace-free and Hermitian, in accordance with our

requirements on the soldering forms. Finally consider
isomorphisms A B from the spin system to itself. Using
the fact that A B is nondegenerate, Hermitian and e
preserving, one can show that its components

where an asterisk denotes the operation of complex con-

jugation. Given a second-rank, trace-free, Hermitian

spinor X" (e.g. , X =ik' k+ ), the components
e Be Ne A provide us a 2 & 2 anti-Hermitian,

gA A gA BB=e A Be

constitute a SU(2) matrix Conversely, every SU(2) ma
trix A B defines an isomorphism of the spin system.
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