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The signal-to-noise ratios for the detection of gravitational radiation are derived and compared
for resonant bar and laser interferometric detectors. The results presented here apply to the detec-
tion of transient gravitational radiation as would be emitted in particle —black-hole interactions,
stellar collapse events, or the decay of compact binary systems. For the detection of fixed-energy
gravitational-wave bursts, the bar antenna shows its resonant nature with a sensitivity that is
broadly peaked near the bar frequency, while the interferometer response shows a smooth f
dependence. Applied to the detection of the radiation emitted in the decay of a compact binary
system, the ratio of bar to interferometer sensitivities is independent of source parameters. Using
operational antenna parameters (circa 1985), the 4.2-K Stanford bar (Td ——20 mK, M, =4.8&10'
kg, L, =3 m, f, =840 Hz) is shown to be typically three times more sensitive to transient sources
than the 30-m interferometer (h =2&&10 ' /&Hz above 500 Hz) at the Max-Planck-Institut fiir
Quantenoptik in Garching, West Germany. Additionally, the signal-to-noise ratios calculated here
are normalized to represent optimistic Galactic sources (located at 10 kpc, 10 Moc' emitted in
a gravitational burst) and indicate that both antennas are operating near astrophysically interest-
ing sensitivities with signal-to-noise ratios ranging from 1 to 10 for these sources.

I. INTRODUCTION

The development of antennas for the detection of gravi-
tational radiation has lead to two basic antenna designs:
resonant bar antennas' and laser interferometric anten-
nas. Much work has gone into an analysis of the
operation of these detectors; however, a detailed compar-
ison of the sensitivities of these two antenna types has not
been carried out. The goal of this paper is to present a
complete and realistic comparison of bar and interferome-
ter detector sensitivities. The new results of this compar-
ison stem from including explicit wave shapes for the
gravitational radiation, evaluating the bar response for the
given waveform, and using the matched filter signal-to-
noise ratio (SNR) in evaluating the interferometer
response; the seeds of many of these ideas appear in
gneiss. In addition, the SNR's are evaluated for optimis-
tic Galactic sources in order to put the sensitivities of the
current antennas in an astrophysical perspective.

The predicted sources of gravitational radiation can be
divided into two basic categories: continuous and tran-
sient sources. This work deals with the transient sources
which include stellar collapse events, particle —black-hole
events, and the final swept-frequency waveform, or chirp,
expected in decaying compact binary systems, e.g. ,
neutron-star binaries such as PSR1913 + 16 (Ref. 6).

This comparison, then does not consider periodic nor sto-
chastic sources whose waveforms are (humanly) infinite in
duration. Note that some systems can be viewed, during
the course of their lifetime, as sources of both transient
and continuous radiation.

The operation of the antennas can be described in one
theoretical framework in which the gravitational radia-
tion induces time-dependent tidal forces in the detector
mass(es). The results of these forces are motions which
must be detected in the presence of a variety of noise
terms. In practice, however, the present antenna types
respond in different ways to gravitational radiation and
are limited by different noise sources. In particular, the
bar antennas respond to h(t) with a limiting detection
noise energy kTd ideally set by the bar thermal noise,
while the interferometric antennas measure h (t) in the
presence of a white strain noise h due to the laser shot
noise.

In order to realistically compare the sensitivities of the
antennas, suitable models for the response and noise levels
of each antenna type are required. In addition, waveforms
representative of those likely to be detected must be used
in the comparison. These ingredients are presented in
Secs. II and III for the sources, and in Secs. IV and V for
the antennas. Finally, in Secs. VI and VII, a comparison
of two representative antennas, the Stanford bar and the
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Max-Planck-Institut fiir Quantenoptik, Garching, West
Germany (MPQ Garching) interferometer, is made and
the results are discussed.

II. PREDICTED BURST WAVEFORMS

The burst sources, a subset of the transient sources, in-
clude particle —black-hole encounters and stellar collapse
events. Much theoretical work has been devoted to mod-
eling these systems and predicting gravitational-wave
shapes and amplitudes; ' some examples of the results
of the theoretical calculations are shown in Fig. 1. As can
be seen here, both types of systems have predicted gravita-
tional waveforms h (t) consisting of from 1 to perhaps 10
or more half-cycles at a roughly well-defined frequency.
The burst wave shape, its frequency, and its amplitude
are all a function of the parameters of the source.

Particle —black-hole systems are parametrized by the
test-particle mass p and its orbital angular momentum,
and by the black-hole mass M and its Kerr parameter.
Calculations show that gravitational radiation is emitted
at a frequency of order 10 kHz &Mo/M, and the total en-
ergy emitted in gravity waves is given by a constant times

2pc plM, where this constant can vary from 10 (or less)
to 1 (Ref. 8). The number of half-cycles in the emitted
waveform is of order 1 for the case of radial infall, but can
be as many as 10 if the particle is scattered around and
from the, possibly rotating, black hole. Because of the
wide mass range over which black holes might exist, grav-
itational radiation from these sources is expected any-
where below 10 kHz. A typical event detectable by an-
tennas operating in the 100 Hz —10 kHz range might have

p = 1M~, M = 10M~, and emit a total energy of
10 Moc at 1 kHz.

Stellar collapse events, in particular type-II supernovas,

are somewhat more constrained in their emission frequen-
cy, as progenitors span a less wild parameter space, with
masses typically 10—20MO. However, the dynamics of
the core provide for a variety of possible waveforms with
shapes ranging from a single half-cycle, as in Fig. 1(f), to
many cycles as in the case of the oscillating core of Fig.
1(e). As in the particle —black-hole case, the frequency
scale is roughly 10 kHz )& Mg /M and emission

9ei«csencies can be of order 10 . An optimistic source
may have M =10MO, producing a waveform with a fre-
quency at about 1 kHz and an emitted energy of
E —10 2Moc ~.

For analytic simplicity, most of the waveforms for stel-
lar collapse and particle —black-hole events can be approx-
imated by a canonical set of finite-length sinusoidal
waveforms. The parameters of these waveforms are the
frequency cus =2rrf~, the length of the burst measured in
half-cycles N~„and the amplitude ho of the waveform.
These parameters are explicitly defined in Fig. 2, where a
canonical burst waveform h (t) is shown as well as its
second time derivative h(t). Analytically these waveforms
are given by

Ng, ~
h ( t ) = h o sin( res t ) 8' 0, , t

COg

and

h ( t ) = —A prus sin( res t ) W 0,2 Nhc~

(2)

where the window function W is defined as

(b) 0 otherwise .

Note that the differentiation of h (t) has produced two 6-
function terms in h(t) which arise from the slope discon-

(c) (d
(a) h(t)

h
0

(e)
(b) h(~) bc

FIG.G. 1. Wave shapes representative of the gravitational radia-
tion expected from burst sources. The wave shapes shown here
are digitized versions of published theoretical predictions for a
variety of systems: (a) a test particle falling radially into a
Schwarzschild black hole (Ref. 8); (b) rotating stellar collapse
(Ref. 9); (c) a test particle scattered from a Kerr black hole (Ref.
10); (d) a test particle from a Schwarzschild black hole (Ref. 11);
(e) damped ellipsoidal stellar collapse (Ref. 12); and (f) cold ro-
tating stellar collapse (Ref. 13).

h
g 0

FIG. 2. Canonical h(t) burst waveform and its second time
derivative. These waveforms are parametrized by the burst fre-

quency co~ =2trfg, the number of half-cycles in the burst Nq„
and the burst amplitude ho. They are used to analytically evalu-
ate the response of the antennas to burst sources of gravitational
radiation.
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3

=4~R co h tdt .
16~G

(3)

Here E„„]is also expressed as an efficiency e times an en-
ergy characteristic of the system Mc . Values of Etptg]
and R, chosen for optimistic sources in the Galaxy, are
Egpta]: 0.01Moc and R =R G& —10 kpc. Substituting
Eq. (1) into Eq. (3), the corresponding value of ho for the
canonical waveform is given by

1/2

ho ———eM
1 8G

(Nh, ru8 )
R c

=8~10—" eM
10 2Mo

' 1/2 ' 1/2
1 kHz

N &/2 (4)f hc

For this choice of ho, the signal-to-noise ratios calculated
in Sec. VI below are not only useful in comparing bar and
interferometer sensitivities, but they also give an indica-
tion of the absolute sensitivity of the current detectors to
(optimistic) galactic gravitational burst sources.

III. THEORETICAL CHIRP WA VEFORMS

This source has received much attention bemuse of the
existence of PSR1913 + 16 and the source's clean analytic
behavior; two works are particularly illuminating in the
context of the emission and detection of gravitational radi-
ation from this system. One by Forward and Berrnan'
was written before neutron-star binaries were discovered;
and the second, by Clark and Eardley, ' covers these sys-
tems in more astrophysical depth than is possible here.
The presentation below summarizes the equations govern-
ing the gravitational radiation emitted by this system.

Assuming a source orientation which has its orbital
plane perpendicular to the line of sight, the waveform
emitted by the binary system is sinusoidal with a frequen-
cy and amplitude increasing in time; this sweep in fre-
quency is responsible for the "chirp" appellation. ' In
finite time the system will decay to coalescence, and, thus,
the system state can be parametrized by the time to coales-
cence ~; note that d~/dt = —1. Using this parametriza-
tion, the frequency of gravitational radiation, twice the or-
bital frequency, is given by

tinuities in the canonical waveform. In "real" waveforms
"wings" or "tails" will be present; approximating these by
the 5 functions will introduce negligible errors in the
response calculations of Sec. V.

The parameter ho, above, sets the amplitude of the
gravitational wave, and, as such, does not affect the com-
parison of the detector types. However, to put the anten-
na responses into a realistic astrophysical context, we can
normalize the amplitude of the waveform so that it
represents the emission of a constant amount of
gravitational-wave energy. The energy Aux of a gravita-
tional wave is proportional to fh (t) (Ref. 7); assuming
that the same Aux is radiated in all directions the total en-
ergy radiated is

3

E„„i=@Me =4nR h (t)dt
16~G

3/8

( )=2 256 G F 3/8 —3/8
c'

and, evaluating the quadrupole formula' for masses in a
circular orbit, the corresponding amplitude of the emitted
gravitational radiation is

1/4

h (r)= — F (6)amp
C

where

m1m2 2/3 2/3F=, =p(mi+m2) =pmT
(mi+m2)'

Thus, both the waveshape and the amplitude are deter-
mined by two parameters: one a function of the system
masses F(mi, m2) and the other the separation of the
source and antenna R. Note that unlike the burst
sources, no assumptions about efficiency are required.
(This unique property has led to the interesting proposal
that observation of these sources could be used to deter-
mine the Hubble constant. '

)

Equation (5) for co8 can be integrated to yield an ex-
pression for the amount of phase remaining until coales-
cence

5/3
( ) i& 256 G F 3/8 5/8

c'

Note that even though co~ approaches infinity as ~ goes to
zero, the total phase is finite due to the gentle ~
dependence of ci38. Using this phase the h(t) waveform
can be readily approximated by

h(w)=h, ~(w) sin[/(w)+iti„b],

where P„b is an arbitrary initial phase. Because h, ~(r)
varies slowly compared to the sin term, h(t) is well ap-
proximated by

h (r) = h, z(w)A@8 —(r ) sin[/(r) +p,„b] .

With these expressions for the waveforms, the response of
the antennas can be calculated and compared.

Before leaving this summary of the chirp source, it is
important to note that at some point the real physical sys-
tem will deviate from the approximate waveforms given
above, particularly at small values of r and large values of
cog. Even before additional general-relativistic corrections
are required, deviations from the assumption of ideal,
pointlike masses can become important. In particular, for
the case of neutron-star binaries, Roche lobe overAow
with possible "immediate tidal disruption" due to runa-
way mass transfer can halt the decay at high orbital fre-
quencies. ' These e6'ects are predicted to be important
when the separation a of the components is less than
several neutron star radii. Using the'Newtonian relation
for the orbital frequency

G(mi+m2)
~prb =

a

the separation of the objects as a function of co~ is given
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by

a (cog)=[46(m, +m2)]'~'cog (12)

(a) I = 0. 35 ni
5/3 (t)'ear

/

80 ns

[Note that this depends on the masses in a form different
from Eqs. (5) and (6) above, and, thus, the observation of
a complete chirp waveform provides more information
than that needed for the determination of F and R only. ]
Choosing values of m ~

——m q
——1.4MO and a =30 km,

leads to a maximum frequency of 1200 Hz at which point
the total remaining phase to coalescence is only about 5

cycles.
Finally, in addition to the astrophysical restrictions on

the validity of the chirp equations near coalescence, there
are restrictions imposed by the detector analysis schemes.
Anticipating the results of Secs. IV and V, the simple ana-
lytic detection analyses become inaccurate when there are
less than several cycles remaining in the waveform. The
frequency at which N cycles remain in the waveform ~~,y

can be calculated by setting Eq. (8) equal to 2trN and
solving for r~, ~, then, using Eq. (5), co&,~ can be calculat-
ed from 7~cy with

(f(r) )( 650 Eiz )

56. 6 ms 11.0 ms

' 0i b) I =- 1.39
I'

j a,

ni ;(, )

.n gunn. . . .ntI ILtttitIJUMRtIhhlj tjtjnlj htjtj hliRtItV'lf'y'VjjI iII . III, jjl/II. IIIUg
I' Vl,nJ v ~ $1vnJQ/ V

" " v IJ~1l'v ~ . ' " » v v y l y y v v v ~ ~
y ilI jj g jl lIl v

t I t jj I

i

h(t) ssn
a

. . ~ r ii IjlitIMJitjl'll tyyISillllliti i.i l,''gjiII
~Q nJ) it v )Jjtv v ~

Ij)

Ixhj, h(t)
nnnnnnnnnnRIIhhhlll fhlj

iJ v MJ v v v v v v v v v v v v y I y 'J Ij y y Ij iI

~IIIJ
( 840 Iiz ) ( 1OOliz

G s/3

~Nc =2 327TN
&

FNcy
C

—3/5

For the case of N = 5 this frequency is ' VIP''g

h(t) sin
a

&J

Fo
fs y:1525 Hz F

3/5

(14)

where Fo =Mo . The antenna analyses will require
that fs,„ for the source be comparable to or larger than a
threshold frequency characteristic of the detector in order
for the SNR's calculated here to be accurate. This re-
quirement is comparable to the astrophysical one given
above for the case of a neutron-star binary with
m[ ——m2 ——1.4Mo,. for neutron-star binaries with smaller
masses tidal disruption will occur before the system
reaches the five-cycle frequency. However, because the
five-cycle limit is independent of source models it alone
will be used to limit the range of F over which analytic
chirp detection results are presented.

( 600 )iz

17. 7 ms

) I = 3. 65 5 '3

( 840 IIz ) ( 2000 iiz

0. 72

840 m I
L1

l

t .' c.is -' t
a

sin ' t
a

IV. INTERFEROMETER: MODEL
AND RESPONSE

2
(S /N)t =

hz
(15)

Note that here and throughout this work an amplitude
SNR is used; that is to say, if the amplitude of h (t) were
doubled then the SNR of a detection would increase by a
factor of 2. Equation (15) is valid for a general waveform,
and through numerical integration the optimal SNR for

The output of an interferometric system is a measure of
h (t) and the dominant noise term for present-day anten-
nas is a white-noise source h determined principally by
the shot noise of the laser light illuminating the inter-
ferometer. ' The maximum signal-to-noise ratio obtain-
able by a data analysis system searching for this h (t) sig-
nal is'

500 Eiz )

11.0 ms

( f (r) )
g

T

( 840 Iiz ) ( 3000 liz )

0. 1 ms

FIG. 3. Numerical simulations of a bar antenna's response to
a chirp waveform emitted by a compact binary system, shown
for three values of the source parameter F=pmy- '. Plotted as
a function of ~, the time to coalescence, are the h(t) waveform,
the integrands of Eq. (21), and the temperature equivalent of the
energy deposited in the bar as of time ~. Note that as F in-
creases, the chirp moves to lower frequencies and the number of
cycles of the waveform above the bar frequency is reduced. The
time At indicated is calculated from Eq. (26) and the asymptotic
temperatures indicated have been calculated from Eqs. (29) and
(18). Other parameters are as given in Table II.
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(S /N)r, b

the detection of a theoretically predicted waveform can be
calculated.

For the canonical burst waveform, Eq. (1), direct evalu-
ation of Eq. (15) is possible with the result that

1/2
ho Nhc~

(16)
COg

trum at low frequencies as seismic noise sources overtake
the laser shot noise. ' If this colored noise has an f
or steeper dependence (in fact f is typical), then little
improvement in the SNR for a detection can be made by
observing the chirp at frequencies lower than this noise
corner frequency.

and the SNR for detecting a waveform with fixed ho in-
creases as the square root of the observation time, as set
by the burst.

Similarly, the signal-to-noise ratio for the detection of
the chirp waveform defined by Eq. (9) can be evaluated.
Because the waveform has no (practical) beginning the ob-
servation is assumed to start when the source is emitting
radiation at the frequency f;„, and continues until
coalescence. The integral in Eq. (15) is straightforward
after averaging over the high-frequency behavior of Eq. (9)
by replacing h (r) with —,'h,

p (r) and

1 1 &5~-'"G'"
(S/»lchir p , g x 3/2 + fmin

h R 2&2c

As can be seen here, it is desirable to choose the lowest
possible value for f;„to obtain a high SNR for detection.
In practice the value of f;„will be set by the noise spec-
trum of the interferometer. Present-day interferometers
invariably show a deviation from the flat white-noise spec-

V. BAR: MODEL AND RESPONSE

T.
Td

(S/N)tt = (18)

Much research effort has gone into modeling and reduc-
ing the value of Td', ' ' however, here Td is taken as a
given instrumental parameter in the same way that h is
for the interferometer analysis of Sec. IV. Thus, the eval-

The detection of transient gravitational waves by a bar
antenna is conceptually a two-step process. The gravita-
tional wave interacts with the bar to deposit energy in the
bar on a time scale short compared to the natural decay
time of bar oscillations. Then, a transducer system moni-
tors the bar's oscillations and data analysis operations are
performed to search for changes in the bar's state of oscil-
lation. The sensitivity of the transducer system is
specified by the rms value of bar energy fluctuations that
can be detected; kTd. If an energy kT, is deposited by the
gravitational signal into the bar, then the amplitude SNR
for its detection is given by

1/2

TABLE I. Summary of SNR results.

(a) Response to a general waveform h(t):
1 M ' L,

(S /N)g ——

Td Vr k

2 2 1/2f h(t) since, t dt + f h(t) c sr', t dt

(S/N)t ———2 f h'(t)dt
h

1/2

(b) Response to a burst paratnetrized by @Me, Nh„and f~, and R:
1/2

d 7T C

1/2

(S/N)I b t = 1 1 2mMG

h AC

(S/N)g b„„,
(S/N)I b„„,

1/2I N 1/2f 3/2C
v'2

a a hc g
d

,Nhc

(c) Response to a chirp parametrized by F=pmT and R:
2+5G 5/6

Td' R /6k 77

—2/3G 5/6

2&2c'"

(S/N)B, chirp h 4
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m, x+m, co, x =Fg(t) = —,
' m, l, h(t) (19)

with

m, =M, /2,

I, =L, 4
'~2 '

uation of the SNR for a given h (t) waveform requires a
determination of T, for that waveform. In this section the
equivalent T, for energy deposited in the bar is calculated
for the burst and chirp waveforms.

The response of a bar antenna to a gravitational
waveform is modeled using a harmonic-oscillator
equivalent ' which has an equation of motion given by

with

y=

~a s111x slny
r hc --y

cos
4+ X '

~Nh,
sin

~Nh, 1—
2

~Nhc CO,1+
2 COg

~Nhc

cog 2

co, wNhc

cog 2

(23)

where m, and I, are the eA'ective mass and length of the
bar antenna, M, and L, are the actual mass and length of
the cylindrical antenna, and f, is its resonant frequency.
Note that a damping term has not been included because
the duration of the signal is assumed to be much shorter
than the ring-down time of the bar. It is straightforward
to show that the energy deposited in the harmonic oscilla-
tor by the gravitationally induced force is

and

upper of first and third choices for N„,. odd,

upper of second choice for Nh, ——1,2, 5, 6, . . . .

Note that C (1,Ãh, ) is equal to unity and thus the
"tuned, " i.e., co, =cog, response of the bar is a simple ex-
pression. Because the energy Aux of the incoming gravita-

E, =kT, = 1

2ma

2
Fg(t) since, t dt

TABLE II. SNR results for specific parameters.

(a) Detector parameters (circa 1985)
Interferometer (30 m) Bar (4.2 K)

fFg(t) costs, t dt
2

(20)

m '"z.
(S /N) p ——

Td ~k
2f h(t) si nett dt

2 ~/2

+ h t cosco, t dt

Substituting for F„ from Eq. (19) and using Eq. (18), the
SNR for a detection is given in terms of h(t) by

h =2X10 "/&Hz
f;„=500 Hz

Td ——20 mK
f, =840 Hz
L, =3.0 m

M, =4.8X 10' kg

(S/N) g b„f8) 2.9Nh,. ' fg
840 Hz

1/2
840 Hz

t bc

(S/E) 1
840 Hz

(b) SNR's for burst sources with parameters
@Me =0.01Mgc

R =3X10 m=10 kpc

(21) (S/E),B,b r t ust ~~ fg 840 Hz
(S/N)1 b«st 840 Hz fg

where the bracketed term is just the Fourier amplitude of
h(t) at co, .

Using the formalism above, the signal-to-noise ratio for
the detection of the canonical burst waveform of Sec. II
can be calculated by substituting the h(t) of Eq. (2) into
Eq. (21) above, yielding

(c) SNR's for chirp sources with parameters

R =3 X 10 m=10 kpc

Fc) =M(3' '=(2X 10' kg )' '

1 /2

)a, ;htrl, = F
Fg

(S/N)lg b«st ——
~&Z &&&

M, L„Xh,Cugha.
Td 1/2 2~g 1/2

(S/N)I, hi p 1 ~ 1X F
Fg

1/2

where

CO a
XC,Nhc

6)g
(22)

= 3.2
(S /N) I,.h„p
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tional wave is proportional to cog hp, C ( ) can be inter-
preted as the change in cross section of the bar as a func-
tion of the gravity-wave parameters.

For the chirp waveform the SNR is again given by Eq.
(21); however, an exact analytic treatment is difficult be-
cause of the form of p3g(t) and h(t). The integrations can,
however, be performed numerically and the process
viewed graphically. The numerical results are shown in
Fig. 3, where the waveform h(t), the integrands of Eq.
(21), and the partial evaluation of Eq. (21) (expressed as a
temperature Th„) are plotted as a function of r for several
values of the source parameter F. The bar frequency f, is
840 Hz in all cases and other source and bar parameters
are as in Sec. VI. As is expected from Eq. (14) the num-
ber of cycles in the h(t) waveform above the bar frequen-
cy decreases with increasing F. Also noticeable here is
the finite period during which energy is deposited into the
bar, given roughly by that section of the waveform which
has a fixed phase relation to a sine wave at the bar fre-
quency.

As these numerical results suggest, especially Fig. 3(a),
a simplified analytic treatment is possible; the treatment
here follows that presented by Clark and Eardley. ' The
waveform of Eq. (10) is expanded about the time rp lead-
ing to the analytically more attractive form

comes

(S/N)B, chirp 1/2 2 1/2 hamp(p3a )gapa

Td ~k

1 +oo 1 de
X — cos — t dt

2 — 2 dt

2

sin — t dt . (27)
1 + oo . 1 de
2 —~ 2

dt

—1/2

(28)

Further algebraic manipulations using Eqs. (5) and (6) al-
low us to express der/dt and A p as functions of cog and
finally give

and the resulting integrations are the familiar Corn u
spiral integrals. These can be evaluated and result in a
bar SNR for chirp detection of

1 Ma I a
(S/N)B, chirp =

1/2 2 1/2
Td 2~ k

~ ~

2 dc' 2h(t)=h, p(rp)cilp sin tempt+
— t
2 dt

(24)

M ''L..(S /N)B, chirp =
1/2 1/2

Td k

where cop=co~(rp). The phase of the waveform will have
deviated appreciably from empt when the t term in Eq.
(24) contributes tt!2 to the phase. This allows the
definition of

7T
q =—radians until a —phase shift

2
1/2

Mp

(dt's/dt )
(25)

At:—time until a —phase shift
2

Thus, the time scale over which energy is deposited into
the bar is given by

1 /5&&2' G'
F 1/2 s/6

3/2 3/2 (29)

The results of this simple formula, converted to tempera-
ture, are shown by the labeled horizontal lines in Fig. 3 ~

Because this formula assumes an observation from the
infinite past to the infinite future, the numerical results
"Cornu oscillate" about this analytic asymptotic value.
(Note that the final amount of energy deposited in the bar
is very sensitive to the exact wave shape at the end of the
chirp waveform. ) However, agreement for F values where

q is large is very good, and even at the extremes, where
many of the assumptions are poorly met, Eq. (29) pro-
vides useful order-of-magnitude estimates.

q
COp

1/2

2]/3 5~ c
24 G5/3 (26)

where des/dt has been obtained from differentiation of
Eq. (5) and Eq. (5) has been used to express the results as
a function of cop. Values of At from this equation are in-
dicated in Fig. 3 and show good agreement with the nu-
merical results.

If q is large, as in Fig. 3(a), the integrals of Eq. (21) can
be well approximated using the waveform of Eq. (24) and
expanding around the bar frequency cop ——co, . The result-
ing integrands of Eq. (21) are of the form
si tnsticin(tp, t+at ) and coscp, t si ( nt+cpat ). Using
trigonometric identities and averaging over the high-
frequency terms at 2cog, the SNR for a chirp detection be-

VI. COMPARISON

The SNR results of the previous sections are in Table I
according to the type of source and antenna. The SNR
equations for detecting the constant energy bursts have
been obtained by combining Eq. (4) with Eq. (16) or Eq.
(22) as appropriate. The ratio of bar SNR to interferome-
ter SNR has also been calculated and presented here. The
expressions of Table I are evaluated for the operating pa-
rameters of the 4.2-K Stanford bar ' and the MPQ
Garching 30-m interferometer' with the results shown in
Table II along with the parameters used. These two an-
tennas have been chosen for comparison because they
each represent the best performance of their respective an-
tenna types (as of 1985) and their operation and perfor-
mance are well documented. The SNR estimates for other
detectors can be obtained by evaluating the equations of
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T bl I directly or by scaling the results of Table II.a e
E . (23)Because of the frequency dependence of C( ), Eq. ( ),

the comparison of burst SNR values in Table II is valid
onyw enl h n the gravitational burst frequency g is equal to
the bar antenna frequency f, and represents a favora e
case for the bar antenna. To compare the antennas for
bursts at arbitrary frequency, the SNR's of Table I are
plotted in Fig. 4 for several values of Nh, and a continu-
ous range o g~. s cf~ A can be seen here, larger values of Xh,
produce a argerl SNR for bar detection but over a smaller
range of burst frequency. The interferometer SNR or
detecting constant gravitational energy bursts is indepen-
dent of Xh, and shows a simple f ' frequency epen-
d . Th terferometer curve is discontinued below
f;„=500 Hz, where h increases from its shot-noise eve

as seismic noise sources become dominant.
The comparison of SNR sensitivities for the chirp

sources produces the interesting result that the ratio of
bar to interferometer SNR's of Table I are independent o

However, the actualthe source parameter F=pmT . Ho
valueso t e s of h SNR's for the antennas are a function o F

s 10k c. Theand are plotted in Fig. 5, with R taken as 10 pc. e
curves have been discontinued at large values of Fbecause
of the calculational requirement that at f, (or f;„)at
least of order 5 cycles of the chirp waveform remain as

b E . (14). Thus, the subset of binary systems to
b thiswhich an antenna is (calculably) sensitive is hmited y is

requirement. or sourct. F sources with F larger than the limiting
value, t e wave orm, ah f as far as the antennas are concerned,
is not a chirp and its detection would be better analyzed as
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' 0 k d the total emitted gravitational w ave ener y is heldgn b the dashed lines. Tht: source is locate

N . is a arent. These results were co pm uted
is given y e as

d " f the bar response for increasing h„. is apparconstant at 10 M . c The "narrow-banding o e
and source parameters summarized in Tablefrom the equations in Table I using the antenna and source parame e
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that of a burst. To indicate what systems are accessible to
present-day antennas, Fig. 6 shows lines of constant I'
plotted in m &, m2 space and indicates the region in which
the detectors are sensitive; in particular, the prototype
system PSR1913+16 with m

&
——m 2

——1.4MC) can be
detected by either antenna.

Finally, we note that the near equality (within 20%) of
the numerical values of (S/N)z l(SIN)1 for chirp and
burst source detection could have been expected in order
of magnitude but is otherwise due to evaluating the
SNR's for fg =f, and the instrumental coincidence that

f;„is of the order of f, .

VII. DISCUSSION

R
I0
I

Q

10.0

1 0

ycle limits

The results presented here allow a realistic comparison
to be made of the sensitivities of the bar and inter-
ferometric antennas applied to the detection of transient
sources. For the detection of burst sources, the canonical
waveform of Fig. 2 provides a useful input for comparison
of the frequency responses of the antennas. The response
curves of Fig. 4 are representative of the tuned nature of
the bar and the predicted gravity-wave sources. It is in-
teresting that the bar response is as broad as it is, and the
use of only a few bars tuned at different frequencies will
ensure the detection of most burst events.

For the detection of chirp sources the results here have
some clear implications for interferometer detection and
indicate that more thought and perhaps some trade-offs
are needed in the case of bar detection. For the inter-
ferometer a reduction of the seismic-shot-noise crossover
frequency f;„both increases the SNR for the detection
of the events and expands the region of detectable systems
in m&, rn2 space. For the bar, taking the SNR equation at
face value indicates that improving the SNR for detection
through increasing the bar resonant frequency f, is at
odds with covering a larger range of systems by decreas-
ing f, . However, the bar antenna is a complicated system
and changing f, cannot be done without changes in other
parameters, in particular, the bar length L, and the
effective noise temperature Td. Thus, the optimization of
bar parameters for chirp detection will require further in-
vestigation.

The absolute values of the calculated SNR's of Sec. VI
show that the Stanford bar and MPQ Garching inter-
ferometer are operating at comparable sensitivity levels
and, furthermore, that these levels are promising for
galactic astrophysics. In a coincidence experiment involv-

ing these two detectors, the Garching interferometer could
provide a useful veto on the several-degree events seen oc-
casionally by the Stanford bar.

If information beyond source existence is desired or if
sources as distant as the Virgo cluster are to be detected,
SNR's ten to ten thousand times greater than those of
these antennas are required. Thus, effort is going into re-
ducing the values of h and Td of the antennas. For the

interferometers, h is given by the ratio 6l,pt/Xl where
5l,~, is the noise in measuring the optical phase shift (dis-
placement) of the laser beam, N is the number of traver-
sals of the interferometer arm made by the light, and l is
the interferometer baseline. Extension of the baseline

0. 1

0. 1

I I I I I I

1.0

! I I I I I

10.0

F = P ~ (

FIG. 5. Signal-to-noise ratios (SNR's) for detection of the
chirp waveform emitted by a binary compact object system as
a function of the source parameter F, with the source located
at a distance of 10 kpc. The 4.2-K Stanford bar SNR is given

by the solid line; the MPQ Garching 30-m interferometer SNR
is given by the dashed line. The curves are discontinued at
large F where too few cycles ( &5) of the chirp waveform
remain for the analytic calculations to be accurate. The equa-
tions of Table I and the parameters of Table II have been used
for these calculations.

from the current 30 m (with N =110) to several kilome-

ters ' (with N —30) will allow an "immediate" improve-
ment in SNR by a factor of 30. Additional improvements
will come with increased laser power, reducing 6l,pt by
the square root of the power increase, and, for chirp

1000.0

100.0

10.0

1.0

0. 1

0. 1 1.0 10.0 100.0 1000.0

FIG. 6. Contours of constant F in ml, m~ space. The con-
tours for F=2.7 and F=6.4 indicate the maximum F values for
systems detectable by a bar with f, =840 Hz and an interferom-
eter with f;„=500Hz, respectively. The shaded region is that
range of m l, m~ parameters accessible to the interferometer.
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detection, through improved seismic isolation aimed at re-
ducing f;„to 100 Hz or less.

For the bar antennas SNR improvements will go as the
square root of reduction in the effective noise temperature
Td', Td is proportional to the physical temperature of the
bar T, , inversely proportional to the g of the bar, and de-
pends on the bandwidth of the bar-transducer system. In
addition to cooling next generation bars to a fraction of a
degree and increasing Q values from 5&&10 to the 10
range, advances leading to bar-transducer systems with
larger bandwidths will provide the desired increases in the
bar SNR. With these transducer improvements 4.2-K bar
antennas with Td less than 1 m K are already feasible. '

Finally, it should be pointed out that the primary desire
here has been to understand the sensitivities of current an-
tennas in several well-defined cases in which waveforms
and antenna parameters can be explicitly given. Thus,
geometric details and eff'ects (such as averaging over
source parameters and taking into account the antenna lo-

cations and orientations) have been left out for the sake of
a clean comparison. These details are, however, impor-
tant when considering a complete gravitational-wave
detector system. For such a system, with multiple anten-
nas at a variety of locations, these details must be includ-
ed in making estimates of the expected astrophysical event
rate, of the degree of sky coverage, and of the ability of
the system to determine source locations and polarization
properties.
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