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Nonlinear saturation of the longitudinal modes of the coasting beam in a storage ring
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A simple nonlinear model of a coasting beam coupled to a sharp storage-ring impedance is for-

mulated in the framework of the quasilinear Vlasov equation. Nonperturbative analytic treatment
of the Vlasov equation allows us to study time evolution of a single coherent mode (an azimuthal

harmonic of the density driven by the impedance) and the overall uniform-density distribution

function. In the case of a Gaussian beam, this formalism simplifies to a pair of equations of
motion which together with the dispersion relation fully describe the dynamics of the beam. Fur-
ther numerical treatment reveals saturation of the mode growth which simultaneously provides a

stabilizing mechanism (via Landau damping) for the overall distribution function. Some predic-
tions about the energy overshoot and coherent-instability lifetime are made on the basis of the

presented formalism.

INTRODUCTION

Various form alisms based on the linearized Vlasov
equation are very useful in studying the stability of
coherent modes arising in the beam due to its interaction
with the self-field induced by the beam environment.
Furthermore, the linear approach gives the correct analyt-
ic description of short-time evolution of coherent instabili-
ties, e.g. , in terms of the initial growth rate. However,
this quantity fails to characterize longer time scales, i.e.,
when the growing instability can no longer be considered
as a small fluctuation of the overall particle distribution in
the beam. In order to go beyond short-time-evolution
studies of collective modes, one has to develop a nonlinear
description of the beam dynamics.

Following the arguments of Chin and Yokoya, ' when
the initial amplitude of the coherent mode is small and
the instability does not develop too rapidly, one can as-
sume that the nonlinearity modifies the particle distribu-
tion at a rate much smaller than the linear response of the
system. Under this adiabaticity assumption one can for-
mulate an instantaneous dispersion relation, similar to
the one employed in the linear theories.

Here we apply a nonperturbati ve approach to the
Vlasov equation, describing an initially uniform Gaussian
beam coupled to a sharp model impedance. The resulting
formalism allows us to study the long-time behavior of
driven coherent modes, their saturation due to the in-
creasing Landau damping mechanism, and, finally, how
they modify the uniform part of the density distribution.
Some predictions about the energy-overshoot law and
coherent-instability lifetime are made on the basis of
analytically derived equations of motion.

where 0 is the azimuthal angle around the ring circumfer-
ence and e represents the energy deviation from its syn-
chronous value E0. Fourier series representation of the
nonuniform part guarantees periodicity of the distribution,
while the condition

(3)

Here co =coo+ koe and ko —— rtP coo/Fo—(revolution fre-
quency dispersion, r) & 0 below the transition).

The beam environment is modeled by the wake-field
impedance of the storage ring represented in frequency
domain by Z(co). In turn, impedance coupling through
the nonuniform current induces an additional potential,
changing the energy of the beam by

e.= —ecoo g Z„P„(t)e' ",
n&0

where

and

P„(t)=ego f" dEh„(e, t)2' Qo

(4)

Z„=Z(nero) .

h „(e,t) =h„*(e,t),
assures that our distribution function defined by Eq. ( I) is
a real quantity. The Vlasov kinetic equation which
governs f (e, 8, t) can be written as

THEORETICAL APPROACH

Consider an initially uniform distribution of particles
inside a storage ring modeled by the following statistical
density distribution function defined in the classical phase
space as

We notice in passing that Z„*=Z „, since the wake
function is real. This, together with Eq. (2), assures that i
is also a real quantity. Substituting Eqs. (l) and (4) into
Eq. (3) and using orthogonality of azimuthal plane waves,
one can rewrite the Vlasov equation as a set of coupled
equations of motion for individual azimuthal harmonics
of the distribution function. The resulting equations fully
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describing the dynamics of the beam —storage-ring system
are given by

—iQ„(t)(t —t')
h„(e, t') =e " h„(e, t), (8)

and

af (e, t) ecoo—g Z„*P„'(t) h„(e,t)=0, (5)
We also require that f (e, t) is a slowly varying function
of time compared to rapidly oscillating coherent modes,
h„(e,t). Therefore a simple adiabatic approximation is
made

—h (e, t)+in ( coo+k oe)h„( et) e—cooZ„P„(t) f (e, t)n Be

f'(e, t) = fo(e, t'), t =t' .
ae '

Be
(9)

—ecoo g Z„P„(t) h (e, t)=0 .a
Bem~p

(6)
Including both assumptions, Eqs. (8) and (9), one can
rewrite Eq. (6) as

The simplest nontrivial storage-ring impedance can be
modeled by a harmonic resonator described analytically
by the formula

R
Z(co) =

1+iQ (co/co, —co, /co)
(7)

1.0
Cd/ Cd

Here, R is the so-called shunt resistance and Q denotes
the quality factor of the resonator. The resonant frequen-
cy co, is tuned to the nth storage-ring mode so that
co =neap. Graphical illustration of our model impedanceC

is given in Fig. 1.
One can notice that for a sharply centered impedance,

Q ~&1, the real part of Z(co) is peaked around a single
harmonic, n —10, with the imaginary part extending
over several neighboring amplitudes, n, . . . , n +m;
m —10 [even in the Q~ oo limit, the imaginary part of
Z(co) still retains a hyperbolic, I/co, tail]. This implies
that the last term in Eq. (6) would couple pairs of modes
h„+k and h k, where k = 1,2, . . . , m. However, we see
from Fig. 1 that Zk is vanishingly small. Therefore
modes with low k will not be driven by the impedance
which justifies why the coupling term in Eq. (6) can be
neglected for our particular impedance choice.

As we mentioned before, one can introduce an instan-
taneous coherent frequency, Q„(t), describing evolution of
the nth mode within a small time interval (t, t') according
to the formula

d 'h (', t).h (t)=(ecoo) f (& t)n Be n Q) —0 '7Tl

(10)

As was pointed out by Landau, an appropriate integra-
tion of Eq. (10) over the entire range of e (including a de-
tour contour extending into the complex e plane) leads to
the following dispersion relationship defining the coherent
frequency Q„(t):

p

z +Zn Be g (e, t)
1=(ecoo) de

2vrnko 2vri c e —g„

Here, g„=(Q„/n —coo)/ko defines a pole in the complex
e plane, while C is the Landau contour of integration
chosen so that 0„ is continuous while crossing the real
axis. We also replaced f (e, t) with a normalized to unity
distribution function

g (e,t): f (e—, t (12)

(13)

where N is the number of particles in the ring.
From here on in, we will confine our discussion to a

single harmonic mode h„driven by the model im-
pedance, Eq. (7), and therefore ' the index n will be
suppressed throughout the rest of the paper (Z=—Z„,
h —=h„, g=g„). Furthermore, the summation over all
modes in Eq. (5) reduces to two terms only (n and n). —
This, combined with the symmetry condition given by
Eq. (3), yields

g(e, t) — e—cgo2 Re Z*P'(t) h (e, t) =0 .
Bt ' N Be

05

0.0

—0.5

EJJ
C3z
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LIJ

O

We can easily generalize the above result to the case
of the coupling impedance extending over several AN az-
imuthal harmonics. Simply replacing the summation
over n in Eq. (5) by integration, carrying it out and re-
taining only the leading order in AN/N, one obtains Eq.
(13) with Z replaced by Z b,X. The last expression is ob-
viously proportional to the area under the coupling im-
pedance peak which assures the correct scaling of our
result.

Now, we make use of the fact that the distribution
function g (e, t) is uniquely defined by an infinite set of its
moments with respect to e. Introducing

Gk(t)= f deg (e, t)e"

FICJ. 1. Model impedance of a harmonic Q cavity (Q=10)
normalized to unity (R= 1). The dirnensionless frequency is
defined by co/co, .

and

Hk(t)= f deb(e, t)e",
(14)
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one can rewrite Eq (.13) as the following set of equations
of motion for e moments, Gk(r):

—Gp(t) =0, Gp ——1 (normalization),
Bt

(15)—G (r) — (ecpp) 2Re[Z*Hp (t)H i(t)]=0, m ) 1 .
dt

The dispersion relationship, Eq. (11), applied to the above
expression, Eq. (16), after simple algebra and integration
by parts yields

gm i
( )2

2&nko 2&l

We observe that integrating Eq. (10) along the Landau
contour C leads to the desired recursion formula for H kgPt —k —2G

k=1
(17)

NZ 1 c)H i
——(ecpo) . I dec ' Hp .

27rrik p 2'nfl c E'—
(16)

Final substitution of Eq. (17) into the equations of
motion, Eqs. (15), allows us to rewrite them in a form
particularly convenient for further discussion:

Bt
Gi(r)+2rcecppIp

I
Ho/N

~

2Re(Z)=0,

G2(t)—+4~ecopIp
~
Hp/N

~

2Re(gZ*)=0,

G3(t)—+6mecopIo
i
Ip/N

i
2Re(g Z")=0,8

c) le~do I
Z I'

G, (r)+8~e~oIo ~H, /N
~

'2Re g'Z*-
Bt 2~«o

(18)

~~do iZ I'
G (t)+2mvrecppIp ), Ho/N

~

2Re g 'Z* — [g +2/ Gi(t)+3( G2(t)+ ] =0 .
2~nko

Here Io ——Xe~o/2m represents the current in the storage
ring and g—:g„ is defined implicitly by the dispersion rela-
tion, Eq. (11). We also notice that the time evolution of a
dimensionless quantity A (t)—:

~

H(to)/ N~ is governed
by the coherent frequency Q(t) through the equation

The above assumption will be further justified by study-
ing the skewness of the distribution. The vanishing of this
characteristic and all its higher analogs (to be defined
shortly) guarantees that the beam, indeed, retains its ini-
tial shape. The obvious identification

—A (r) —2 Im[Q(r)] A (r) =0,
Bt

(19}
and (21)

which is the immediate consequence of Eq. (8).
One can summarize our scheme by realizing that an

infinite system of coupled equations, Eqs. (18), together
with Eq. (19) and the dispersion relation, Eq. (11), form a
closed set of equations which will be used as a starting
point for the detailed discussion of the Gaussian beam dy-
namics in the next section.

G, /E, '=S'+M',
allow us to use the second and third equations of motion,
Eqs. (18), to fully describe the evolution of the Gaussian
beam. Introducing the convenient dimensionless quanti-
ties

GAUSSIAN BEAM DYNAMICS

For the purpose of our model calculation, we will start
with a Gaussian beam coasting in a storage ring of im-
pedance given by Eq. (7). We assume that the distribu-
tion maintains its initial Gaussian shape with the time-
dependent dimensionless parameters M =M(t) and
S =S(r):

Z =eIpZ/Ep

x:g/Eo, —

these equations can be rewritten as

M(t}+2~cop A (r)2—Re(Z) =0
at

(22)

g (u, t) =(a/m. )'~ exp[ —a(u —M)i],
where a = 1/2S and u =e/Ep

(20)

S(t)+4mcpoA (t)—2 Re[(x —M)Z*]=0 .
Bt

(23)
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FIG. 4. Saturation of the longitudina1 momentum spread
and the energy shift caused by nonlinear Landau damping.
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FIG. 2. Stability diagram for a Gaussian beam. The re-

duced growth rate is defined by a =Im(x /S)&2.

defined implicitly by the integral dispersion formula, E .
(11'. This system of nonlinear differential-integral equa-

u a, q.

tions is no longer tractable analytically; nevertheless, its
time evolution can be easily iterated numerically assuming
the initial condition of our system, M (t =0)=0,
S(t=0)=So, and the appropriate time step.

ENERGY OVERSHOOT

The skewness of the distribution is defined
3 2 2

ne as
Q:63 /Eo —M (M +3S ), where Q obeys the equation
of motion

a—Q (t)+ 6mcoo A (t)2 Re [ [(x —M) —S ]Z' I =0 (24)

obtained directly from Eqs. (18). Obviously for the
Gaussian distribution, Q(t) should vanish, which will set
the validity probe of our assumption. Similarly, one can
introduce the so-called squareness of the distribution

K=G4 /E p
—3S —6M S —M

and the analogous higher-order measures of Gaussian sta-
bility to formulate a more refined justification.

N ow our problem is reduced to a self-consistent solu-
tion of Eqs. (19) and (23) with the coherent frequency x

6. 0'10
INITIAL RMS ENERGY SPREAO

As a simple application of our formalism, one can
study nonlinear saturation effects contributing to the
overshoot of the energy spread. The initial state of the
beam is defined so that at t=0 the intrinsic nonuniform
nth mode is unstable, Im(Q„) &0. To visualize it one can
represent the dispersion relation, Eq. (11), in the form of
the so-called stability diagram by mapping the coherent
frequency into a complex plane of reduced impedance
defined by "=Z/2mnS Fig. ure .2 illustrates a family of
dispersion curves of constant growth rate, calculated nu-
merically for a Gaussian beam from Eq. (11). The drop-
like curve corresponding to ~=0 divides the complex =
plane into stable (inside the curve) and unstable (outside
the curve) regions. The initial condition is chosen for our
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FIG. 3. NNonlinear Landau damping mechanism, single-
mode coupling. The growth rate is defined as G:—Im(Q/coo).

FIG. 5. Nonlinear-Vlasov-equation approach to the energy-
overshoot phenomenon. Comparison with the existing results.
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calculation as a point on the positive part of the real axis
and within the unstable region.

Assumed beam —storage-ring parameters are collected
in the table below.

Ip

10 A

Ep

100 GeV

Z/n

10' n 10'

The above values fix the instability threshold at
S,h ——3.33)& 10 . Obviously, in order to start with an in-
itially growing nonuniform mode, one has to select Sp
below S,h. The intrinsic amplitude of the nth mode, Ap,
is assigned an arbitrary small value of 10 ' which sets
the level of nonuniform Schottky noise in the system.
The time step is equal to one revolution period and there-
fore our treatment is equivalent to beam tracking. The re-
sult for Sp ——10 is illustrated in Figs. 3 and 4. One can
see that the coherent mode of an arbitrarily small ampli-
tude Ap is growing initially very fast, according to Eq.
(19). Its growth, in turn, causes an increase of the energy
spread S and a negative shift of the distribution mean
value M (energy losses due to the resistive storage-ring
impedance) governed by Eqs. (23). This aff'ects the
coherent frequency through the dispersion relation, Eq.
(11); the new values of S and M correspond to stronger
Landau damping which results in a successive decrease of
the growth rate Im(II). Finally, the coherent frequency
crosses into the stable region Im(II) &0, which triggers
rapid decay of the driving nonuniform coherent mode.
This eventually stabilizes all characteristics S, M, and G
since the amplitude 3 goes exponentially back to zero.
After saturation, both Eqs. (23) approach asymptotically
their stationary solutions S and M . We notice in pass-
ing that the choice of intrinsic small amplitude Ap has
very little influence on the curves presented in Figs. 3 and
4 (as long as Ao «A, „). Going to smaller values of Ao
does not change the shape of presented beam characteris-
tics, S, M, G, and A; it only shifts them in time (it takes

2500

INITIAL RMS ENERGY SPREAO

2000

1500—

1000—

cn

o

I Ii

0
W

500—

0. 5 10 1.5.10-' 2. 5 10-' 3 c 1 0—

FIG. 6. Coherent-instability lifetime as a function of initial
width of the beam.

longer for the instability to develop).
The correlation between Sp and S has been studied

before, first by Dory by computer simulations and later
by Chin and Yokoya' by approximated analytic treatment
of the Vlasov equation. Applying our formalism, the sta-
tionary values S were calculated numerically for several
values of Sp. The resulting energy-overshoot law is com-
pared with the ones previously formulated by Dory and
Chin (Fig. 5). Using the least-squares-fit criterion we real-
ize that by replacing the "square" exponent in the formu-
la by Chin and Yokoya (S +So ——2S,q ) by the ex-
ponent a=1.36, one achieves a good fit to our numerical
result.

Finally, the lifetime of coherent instability measured by
the width of the 3 peak is plotted as a function of Sp.
The resulting curve, Fig. 6, obviously diverges at Sp ——S,h
since the mode is no longer unstable above the threshold.
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