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The problem of the interaction of relativistic elementary atoms (Coulomb bound states of ele-

mentary particles such as positronium, pionium, etc.) with matter is studied in the reference frame
where the atom is initially at rest. An atom of matter is treated as a spinless structureless fast par-
ticle. The amplitudes of elementary-atom interaction are derived in the Born approximation under
the assumption that a momentum transfer to the atom does not significantly exceed an inverse
Bohr radius of the atom. The elementary-atom excitation and ionization processes are considered.
The transitions where the spin projection of the atom component is reversed are also studied. In
particular the matrix elements for para-ortho and ortho-para transitions are given. The spin struc-
ture of the amplitudes is discussed in detail. The sum rules, which allow the calculation of the
cross sections summed over atom final states are found. Finally the formulas of the atom interac-
tion cross sections are presented.

I. INTRODUCTION

Elementary atoms are the Coulomb bound states of
two elementary particles. One can enumerate here posi-
tronium, pionium, or the recently discovered' atom of a
pion and a muon. In our previous paper we have stud-
ied the interaction of elementary atoms with atoms of
matter in the nonrelativistic approximation. This paper
is devoted to a relativistic generalization of those calcu-
lations. The general formulas are given here while the
results of numerical calculations are presented in the fol-
lowing paper. To omit repetitions we invite the reader
to read as an introduction the first section of Ref. 2,
where the history of elementary atoms and existing
literature are discussed. Let us consider here only some
"relativistic" aspects of the problem. We first mention
that the relativistic calculations are of practical, not only
academic, interest. The motion of some elementary
atoms, e.g. , 3„,' in laboratory experiments is really rel-
ativistic. (A,b denotes the elementary atom of a posi-
tively charged particle a and a negatively charged parti-
cle 6; Az, denotes the atom composed of a particle c
and an antiparticle c. ) Recently ultrarelativistic posi-
tronia with the Lorentz y factor of 10 —10 have been
registered and the experiment to study the interaction
of such positronia with matter is just in progress.

The relativistic treatment of bound states is faced with
well-known difFiculties which can be partly overcome for
weakly bound states by means of the Bethe-Salpeter ap-
proach. In our description of the elementary-atom in-
teraction we use the less refined formalism where the
atom is treated in a nonrelativistic manner. It is justified
because of two circumstances: (l) In the atom rest
frame the atom component motion is quite nonrelativis-
tic; (2) the characteristic momentum transfer to the ele-
mentary atom in the interaction process is of order of
the inverse Bohr radius of the atom and consequently it
is small when compared to the atom component masses.

Both circumstances, which follow from the smallness of
the electrodynamic coupling constant, allow the nonrela-
tivistic description of the atom in the reference frame
where the atom is initially at rest. On the basis of such
an approach collisions with high momentum transfer
cannot be studied. However, as long as we are interest-
ed in the bulk characteristics of elementary-atom in-
teractions, in particular, in the integrated cross sections,
such collisions are of no importance. Therefore in this
paper we consider the interaction of an elementary atom
with matter in the reference frame, where the atom is in-
itially at rest while the atom of matter is represented by
a fast spinless particle. The effect of electron screening
of the electromagnetic field is taken into account by
modification of a photon propagator.

The analogous problem of the relativistic particle in-
teraction with a hydrogen atom was studied more than
50 years ago by Mufller and Bethe. In the case of the
hydrogen atom the proton can be treated as infinitely
heavy (when compared to an electron) and consequently
only the electron plays an active role in the interaction.
Mufller and Bethe, of course, used this approximation
and it makes their calculations inapplicable to elementa-
ry atoms with components of comparable masses. This
fact has not been noticed by Prasad, who used the
M511er and Bethe formulas to study the interaction of

Although the electron mass has been replaced by
the reduced mass of a pion and a muon, the results of
Ref. 7 have nothing to do with the A„„ interaction.

The calculations of relativistic positronium collisions
with atoms of matter have been performed by Kotzinian
and Dulian. However the general formulas have not
been derived since it has been (correctly) argued that if
the electric transition is allowed the role of the magnetic
part of the interaction is negligible. The magnetic tran-
sitions have been considered only for processes where
the atom spin is changed. For other critical comments
on Ref. 8 see Ref. 2.
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II. ATOMIC WAVE FUNCTIONS

Our first task is to write down the atomic wave func-
tions in the form appropriate for relativistic calculations.
As explained above, in the reference frame where the
atom is initially at rest or its motion is nonrelativistic,
the final-state motion also can be described nonrelativist-
ically. In such a description the center-of-mass motion
and the relative motion of the atom can be separated
from one another; i.e., the wave functions factorize into
the functions describing the center-of-mass motion and
relative motion, respectively. We introduce two sets of
variables: positions and momenta of the atom com-
ponents in the laboratory frame (r„pl) and (rz, pz); the
position and momentum of the center of mass of the
atom (R,P) and the position and momentum of the
atom component in the center-of-mass frame (r, p).
Both sets of variables are connected by the simple rela-
tions

R=grl —z)rz, P=p, +pz,
rl r2 P = 'apl Ppz

where i =1,2 and E=(M +P )', E; =(m; +p; )'
We use the units where c =A = 1. The metric is
(+, —,—,—). The time components of all these four-
vector positions are the same, which is characteristic of
nonrelativistic approach.

The elementary-atom components are spin- —,
' or spin-

less particles. Therefore one has to consider three types
of atoms: (1) atoms of two spinless components, e.g. ,

Az, A ~, (2) atoms of spin-0 and spin- —,
' particles, e.g. ,

A, , A„„; (3) the atoms of two spin- —,
' components, e.g. ,

A2„A,„. Three kinds of elementary atoms are, later
on, called the spin-0-0 atoms, the spin-0- —,

' atoms, and
the spin- —,

'-
—,
' atoms, respectively.

The atomic wave functions are chosen in the following
form.

(1) For the spin-0-0 atoms

(2)

(2) for the spin-0- —,
' atoms

where, as in Ref. 2, g=m, /M, zl= —mz/M with m, ,

m2, and M the masses of the atom components and of
the atom. Because of the small value of the atomic bind-
ing energy g —zl= l.

Let us also introduce for convenience the four-vector
positions and four-momenta:

X=(t,R), P=(E,P),
x, =(t, r, ), p; =(E;,p;),

'C

P, (xl, xz)= —eSz

m2
X p

(2vr ) Ez

(3) for the spin —,'- —,
' atoms

1/2

V'(P )v (s2 Pz)

(3)

m 1m 2

V' V (2m ) E1E2, , (xl, xz)= —e

1/2

e'1"p(p)u (s»p 1 )v(sz, pz),

where V is the normalization volume and 1I)(r) is the
nonrelativistic, spin-independent wave function of rela-
tive motion. P is normalized in the standard way and

P(p)= f d re '~'P(r) .

u(s, p), v(s, p) are the Dirac spinors normalized by the
condition

~ (X, ,X2 ) =Cs, 'gs. s, (X1,X2 ),

(00
Sl$2

1 (pl/zg —1/2 g
—

1/zeal/2)

Sl Sz S
1 Sz

where the spin matrices are easily found by means of the
Clebsch-Gordan coefficients

u (s, p)u (s', p) =v(s, p)v(s', p) =5;
10C... 1

( g 1 /zg —1/2+ g
—1/zg 1/2

)'2 Sl $2

s1,s2 are the atom component spin projections on the
quantization axis. The normalization coefficients of the
wave functions (2)—(4) are chosen to satisfy the equation

I id r2 x i,x2 x i,x2 = 1 (6)

where a dagger denotes Hermitian conjugation and it is
understood that the spin indices of g and lt/ (if any)
coincide.

In the case of the spin- —,
'-

—,
' atoms it is more adequate

to use other spin variables which describe the total
atomic spin o. and the atomic spin projection o.3. New
functions are expressed as

C 1+1
Sls2

g+1/2g+ 1/2
Sl S2

III. TRANSITION MATRIX ELEMENTS

The transition matrix element in the Born approxima-
tion reads

where j„' is the transition four-current related to the

Sf———1 f d xl j„' (xl)Alf(x 1 )+1 f d xzj„' (xz)Atf(xz),
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atom component motion and A". is the transition elec-if
tromagnetic four-potential of the projectile.

If the projectile is a spinless particle of Ze charge, one
finds in the Lorentz gauge the potential

where the current operator equals

ie
1,2Zm] 2

k,("+kg
Atf(x ) =Ze e '~"b, (q ),

2(e;ef )' V
(9)

for spin-0 atom components and

J 1,2 y0y

jp (x, )= f d "21t/f(x11)x2)J pgj(x1)x2),

j„' (x2)= f d r1&f(x1,x2)J„1)/;(x, ,x2),

(10)

where q =kf —k; and k, , (kf ) is the initial (final) four-
momentum of the projectile, k; f ——(e; f,k; f ); b, (q ) is the
photon propagator in the Lorentz gauge, which should
be modified to take into account the screening effect.

The transition currents are

for spin- —,
' atom components.

Substituting the wave functions (2)—(4) in Eqs. (10)
and (11) one finds the explicit expressions for the
currents. Then, substituting them and the four-potential
(9) in Eq. (8) we get after simple manipulations the for-
mulas for 5-matrix transition elements for three kinds of
elementary atoms.

(1) The spin-0-0 atoms

(2~) 5 '(Pf +kf —P; —k;)b(q ) e;+
V2( )1/2

k; (P;+Pf )

[Ff ( riq ) Ff ( gq —) ]

1 G f (iraq )+
m1

1
G,f (gq ) (12)

(2) the spin-0- —,
' atoms

S,f—. . .(21r)'61 '(Pf+kf P, —k;)—
1/2( )

1/2

k;.(Pf +P; )
X&(q) &,

' &;+ Ff(iraq)+
' G f(rlq)'2 2M 2m 1

(3) the spin- —,
'-

—,
' atoms

I

(21r ) 5' '(Pf +kf P, —k; )A(q )C, , 'C—
~

1/2( )1/2 l I
1 2 Si5

—iZe

3P m2
U(s 2 P2+q)1 k,"~(s2 P2)0 f (P 0q)4 (P )

(21r)' (E,E,')' ' (13)

s,' d 3p m
u (s', , p, +q)y kt'u(s, , p, )p f(p —ilq)p;(p)

(2~)' (E,E', )'"
d3p m2

, „,U(s2 P2+q))' k,"U(s2 P2)ef(p —Pq)4, (p)
(2~) (E2E2 )'

(14)

be written in the form

E1,2 =[m1,2 +(p1 2+q) ]'

Ff (q)= f d re' 'pf(r)p;(r),

G;f (q) =i f d r e'q'pf (r)V'p;(r) .

The final-state variables are denoted by the index f or by
prime, and the initial-state variables are denoted by the
index i.

Because the currents (10) and (11) depend on x, 2 as

lpga

1e ' the conservation current condition 0"j„(x) =0 can

q "j„'f(x,2) =0 . (15)

The amplitudes A and B are related to the interaction of

The condition (15) has been used in the derivation of for-
mulas (12)—(14), i.e., the expression (kt'+kfI') from Eq.
(9) has been replaced by 2kt'.

Let us now discuss the spin structure of the amplitude
(14), which can be written down as

I

gf —C, , 'C, ', [5, A (s'1,s1)+5, 'B(s2, sz )] .
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TABLE I. The spin structure of the interaction amplitude.

0,0

1,0

0,0

A„+B„

—(Ay —Bf)
1

v'2

1—(Ay —By)v'2

(Ay —By )
1

v'2

A„+B„

( Ay+By )
1

1,0

1—(Af +By)v'2

A„+B„

—( Ay+Bf )
1

v'2

(Ay —By )
1

V2

—( Ay+By)
1

&2
An+Be

the first and the second atom component, respectively.
The following relations are assumed:

A(s„s, )= 3( —s, , —si )

—:A„(spin nonfiip),

W( —s, ,s, )=W(s, , —s, )

= Af (spin flip),

and analogous relations for the B amplitude which fol-
low from the invariance of the electrodynamics under P
and T transformations. Sixteen amplitudes describing all
possible transitions o.0.3~o.'v3 collected in Table I have
been found using the explicit form of the spin matrices
(7). It is seen that the transition is forbidden (in Born
approximation) if (1) o &o ' and o.

3 =o.3, (2)
cr3 o 3 ~

) 1 . One also sees that the amplitudes Af
and Bf contribute to the complete amplitude with the
same sign for the processes with cr =o.' and with oppo-
site sign for o &o '.

When the atom is composed of a particle and antipar-
ticle there occurs the selection rule for transitions in the
Born approximation. The transition is allowed if the
charge parity of the atom changes in the course of in-
teraction, i.e., when

(16)

Otherwise the transition is forbidden. The selection rule
(16) can be found in two ways.

(1) The atom of particles and antiparticles is an eigen-
state of the charge-parity operator C with the eigenvalue
( —1) + the photon is also an eigenstate of C and the ei-
genvalue is —1. Keeping in mind that charge parity is
conserved in electrodynamic interactions one finds the
selection rule (16) since the Born approximation relates
to the one-photon-exchange process.

(2) The selection rule (16) directly follows from the
amplitudes (12) and (14). In the case of the atom of
spinless particles it is enough to observe that

Ff( —q)=( —1)' 'Ff(q)

and

G;f ( —q) = ( —1)' ' 'G,f (q) .

The above relations follow from the well-known parity
properties of nonrelativistic Coulomb wave functions.

For the spin- —,
'-

—,
' atoms, let us write down the ampli-

tude (14) in the form

S;f ——
, (2m. ) 5' '(Pf+kf —P; —k;)

V (e; f)'
I

1 1

I I

X[5, u(s~, p, +q)y„k, u(s„p, ) —( —1)' '(3, 'v(s,', p, +q)y„k, v(s„p, )] .

To obtain the above formula we have changed p into
—p in the second term of (14) and we have taken into
account the parity properties of the Coulomb wave func-
tions. Then, keeping in mind that

u (s', p')y„k "u (s, p) =v(s', p')y~k "v (s, p)

and using the results from Table I one finds the selection
rule (16).

If one considers the hypothetical atom of the equal- l' —l =0,+2, +4, . . . . (17)

mass particles with spin- —, and spin-0, respectively, the
selection rule (16) does not hold, because such an atom is
not an eigenstate of the charge-conjugation operator.

The changes of the atomic spin are due to the magnet-
ic transitions which are much less effective than the elec-
tric one. Therefore the simpler selection rule is realized
in practice. Namely, the transitions for atoms of equal-
mass components are strongly damped if
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For the atoms of the components of close but not equal
mass, as A „,the transitions (17) are also significantly
damped.

IV. THK AMPI. ITUDKS IN THE ATOMIC REST FRAME

S,f i ——'2 (2~)46(4)(Pf+kf P—, k—, )

VXb(q) Ff(q) — .Gf(q)
2m'

(2O)

In this section we consider the amplitudes (12)—(14) in
the rest frame of the initial atom, where important
simplifications of the formulas (12)—(14) occur.

The transition matrix element of the spin-0-0 atoms in
the atomic rest frame reads

Z 2

Sf —— i — (2vr) 5' '(Pf+kf —P; k; )b—(q)

1+ [Ff(riq) —Ff(gq)]

where the term from Eq. (18) which is proportional to
q v/2M has been omitted because the characteristic
momentum transfer (of an order of the inverse Bohr ra-
dius of the atom) is much smaller than M for m»&mi.

In the nonrelativistic limit (U «1) the formula (18)
gives the result known from Ref. 2:

z 2

Sf — i '~ (277) 5 (Pf +kf —P; —k; )

Xh(q)[Ff(riq) —Ff(gq)] . (21)

+ .[( 'G;f (riq ) —ri 'G;f (gq )], (18)
2M

where v:—k; /e; is the projectile initial velocity. To
derive Eq. (18) we have assumed that

The structure of the amplitudes (13) and (14) is much
more complicated than that of (12) and for further study
of these amplitudes one has to calculate the spinor prod-
ucts present in Eqs. (13) and (14). Using the standard
representation of Dirac matrices one finds

(19)
u(s', p')y„k"u(s, p) = W (s'):-(p', k, p) W(s), (22)

which means that the projectile is heavy when compared
to the atomic mass (projectile can be treated as an exter-
nal field) or/and the projectile is initially sufficiently fast.
In fact, condition (19) coincides with that of applicability
of the Born approximation.

If m
& ~&mz as for a hydrogen atom one finds, for in-

elastic transitions,

where W(s ) is the two-dimensional spinor normalized as

W (s ) W(s '
) = 5',

W(s) describes the particle spin projection on a quanti-
zation axis in the particle rest frame; the operator =
reads

:-(p', k, p)= ( [[(E+m )(E'+m )]'~ +[(E—m )(E' —m )]' [1+io.(n'Xn)]]e
2m

—[(E' m)(E+m—)]'~ [n k+icr (n'Xk)] —[(E'+m )(E—m )]' [n k —io (nXk)]),

k (p+p') . o.(qXk)
(23)

where q=—p' —p. If the spin projections s and s' are
equal, the first and the second terms of (23) contribute
while for s&s there is the contribution of the third term
only. So one can write

W (+s ):-(p',k, p) W(+s ) =o- k (p+p')
2m

(24)
W (+s):-(p', k, p) W(+s) =i. QIkI sina

(sinp+i cosp),
2m

where Q:—
I q I, a and p are the polar and azimuthal an-

gles of the vector k in the coordinate system where the z

where k"=(e,k), E=(m +p )', E'=(m +p' )'

n:p/I p I
n —=p /I p I

and o. denotes the vector of Pauli matrices. For the
nonrelativistic rnomenta p and p' the above formula
essentially simplifies to

axis, which is the spin quantization axis, coincides with
the vector q.

As seen in Table I the atomic interaction process is
described by two spin-fiip (Af and Bf ) or by two non-
spin-Qip amplitudes (A„and B„). There is no mixture
of the spin-flip and non-spin-flip amplitudes. Therefore
the processes where the atomic spin is conserved, or the
atomic spin or spin projection is changed, can be con-
sidered separately. Let us now consider the spin-flip
processes for the spin-0- —,

' and spin- —,
'-

—,
' atoms. It is seen

from Eqs. (24) that the spinor product depends on p
and p' only through q in the case of the spin-flip process.
Then the spinor products can be placed in front of the
integrals (13) and (14). The normalization coefficients
are replaced by unity in the atomic rest frame since

VM/E =1+0(p /m ) .

As it easily can be shown our calculations are valid up
to the linear terms of the dimensionless parameter
(ma )

' where a is the Bohr atom radius. Therefore the
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quantities 0(p /m ) can be neglected.
Finally the spin-Hip amplitude for the spin-0- —, atom

in the atomic rest frame reads

and

d3
, p f p —q; p = —,

' G;f q + qF,f q

Z 2

S;I——— (2n. ) 5' '(Pi+kI —P; —k;)b, (q )

(sinP+i cosP)FI(gq) .
m2

(25)

In this case the amplitude of the spinless particle in-
teraction does not contribute to the transition matrix
element. The double sign in Eq. (25) is of no physical
meaning because the P dependence disappears in the
respective cross section (

l
sinP+i cosP

l
=1).

The spin-change amplitude for the spin- —,
'-

—,
' atom is

Z 2

SI—— (2m ) 5' '(P~+ ki —P; —k; )b (q )
2 2V

one easily finds the amplitudes for the spin-conserved
processes of the spin-0- —,

' and of the spin- —,
'-

—,
' atoms

which are equal to the amplitude of the spin-0-0 atom
(18). One may wonder whether this result is correct
since it is we11 known that the cross sections of spin-0
and spin- —,

' particle scattering differ from one another.
However the difference is significant for the high-
momentum-transfer interactions which have been
neglected in our calculations.

V. THE SUM RULES

It is well known that

)&g
l

v
l

sina
sinP+iXi cosP

F,g( r/q )
m)

, sinP+ i+2 cosP—( —1) F~I (gq)
m2

S;I——0 for o3=o.3 or
l
o3 cr3 —

l
& 1,

where 7& 2
——+1 and the sign depends on the initial value

of the spin projection of the atomic components. Keep-
ing in mind that the spin projection of only one atomic
component can be changed in the course of the interac-
tion (because of the one-photon-exchange approxima-
tion) one finds that X& ——X2. Therefore one can write

Z 2

S,I —
( 2~) 5' '(PI +ki P, —k; )b, ( q )—

2 2V

&& g l

v
l

sina(sin/3+i cosP)

1 1F~(r/q) —( —1) F~(gq) . (26)
m& m2

The respective cross section is P independent.
Let us now consider the process where the atomic spin

and the atomic spin projection are conserved. Observing
that

where the summation is performed over the complete set
of (nonrelativistic) wave functions describing final states.
In Ref. 2 we have found that

g l
FI(r/q) F&(gq) l

=—2 —2ReF, , (q) .
f

(27)

Because the parity of the Coulomb wave functions is
well defined, i.e.,

& l 0 'F y(nq)+n
f

P( —r) =+/(r),
the form factor F;; is real. The sum rule (27) has been
used in Ref. 2 to obtain the total cross section of the
elementary-atom interaction.

In the relativistic calculations considered here, there
are three kinds of amplitudes (18), (25), and (26). To get
the respective cross sections summarized over final states
new sum rules have to be derived. With no difficulties
one finds

d3
3 f p —q; p =F;f q

(2ir )

+i) +2(gi)) 'F;;(q)=A,—(q) .

Simple but lengthy calculations provide the sum rule

(28)

g lFI(nq) —FI(kq)+x [0 '6;i(nq) —n '&I(kq)] l'
f

=(1—g 'q. x) +(1+ii 'q. x) +4(g +r/ )E;( qx=O)+2[( 1 —g 'q. x)g '+(1+i) 'q. x)ii ']x.G;;(q=O)
—2(1 —g 'q x)(1+ii 'q. x)F;;(q)—4(1 —g 'q. x)r/ 'x.ReD;;(q) —4(1+i) 'q x)g 'x ReD;;( —q)

—8g 'il 'It;(x, q)=X;(x,q), (29)

where x is a real vector. We have introduced two form
factors:

and

DI(q)=i f d r 'eqP (Ir)VQ;(r) (30) It;(x, q) = f d r e'q'
l
xV&;(r)

l
(31)
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Because the Coulomb wave functions vanish at space
infinities one finds the relation connecting the form fac-
tors G, D, and F:

G f(q ) ='2D;f ( q ) qF;—f ( q ) (32)

VI. THE CROSS SECTIONS

In this section we give the cross sections of the
elementary-atom interactions with atoms of matter
which have been derived from the amplitudes (18), (25),
and (26).

The initial elementary-atom state is defined by the
quantum numbers (n, l, m, o, o 3) while the final one is
defined by (n', 1', m', o', cr3). Since we consider the tran-
sitions with definite values of the projections of the

atomic orbital momentum and/or of the atomic spin
projections on the quantization axis, the cross sections

do„i depend on the azimuthal angle P. In the
case of initially unpolarized atoms the cross sections of
physical meaning have to be independent of the choice
of the quantization axis and P independent. One finds

these cross sections from do. „I by averaging themn moo3
over m and o.

3 and by summation over m' and o.3.
Namely,

n'I'a ' 1

(21+ 1)(2o..+ 1)
3' 3

It is explicitly demonstrated in Ref. 3 that the cross sec-
tions do"„~' are indeed (t independent.

The cross section of the elementary spin-0-0 atom ex-
citation is

z2 4 2

1+ IF."I-' (nq) —F."i-' (kq)] — .lk 'G."i' (nq) —n 'G".i™(0q)]Q dQ dP
277 V

(33)

Keeping in mind condition (19) one finds the minimal
momentum transfer

2= 2 2=qo —q

where

min
n n

(34)
qo=q /2M —e„+e„

where e„and e„are the atomic binding energies of ini-
tial and final states. The maximal value of the momen-
tum transfer which follows from energy-momentum con-
servation is of no importance here because, as explained
in Sec. I, the processes of high momentum transfer give
negligible contribution to the integrated (over momen-
tum transfer) cross sections. On the other hand, these
processes cannot be studied on the basis of the formal-
ism presented in this paper.

The angle cz between q and k; vectors is determined
due to energy-momentum conservation and this angle
can be expressed through

~
k; ~, ~

kf ~, and the scatter-
ing angle e. Let us remember that

q =kf +k' 2
~
k;~~kf

~

cose

If k, 2=kf that is the case because of condition (19)

Q=2~k;
~

sin —,'e .

Then one easily finds that

cosa = sin —,'e=

Keeping in mind that the characteristic momentum
transfer is of order of the inverse Bohr radius of the
atom one finds that

qo /q -e &&1 .

Therefore q = —q and, as in the nonrelativistic case,
the interaction can be treated as instantaneous.

For the atom of equal-mass components the cross sec-
tion (33) reads

Z2 4

d "' =[I—( —1)' ']
i
&(q) i'

n1m 2&2V2

2

M.& i' (-,'q) Q dQ dP .

In practical calculations one can assume that q is per-
pendicular to v because the characteristic momentum
transfer is much less than the initial momentum for the
relativistic elementary atoms studied here.

The photon propagator b, (q) depends on the four-
momentum squared

Formula (33) holds for the spin-0- —,
' and spin- —,

'-
—,
' atoms

when the interaction process does not lead to the change
of the atomic spin or spin projection.

The cross section of the spin-Aip transition of the
spin-0--' atom is

2
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Z2 4
do."' '=

~

b( )
~

8m

3 2

~

F„"'~(gq)
~

~dQ,
Ul 2

(35)

where the trivial integration over azimuthal angle P has
been performed.

The cross section of the spin- —,
'-

—,
' atomic interaction

with change of the atomic spin and/or atomic spin pro-
jection reads

do t, ——0 for (1) o&o' and cr3 cr——3 (2)
l
o3 —o3

l
& 1 .

(36)

The integration over p has been performed. For the atom of the particle and antiparticle, e.g. , positronium, the cross
section (36) changes to the form

[1 ( 1)'+ —' —
]

~

b(q)
~

'Q ~Fn ™(—,'q) ~'dQ,

gati

do„~™~~ '=0 for (1) o&a' and o3 ——o3, (2)
~

o 3
—o 3 ~

& 1, (3) I'+o ' —l —cr =0,2, 4, . . . .
(37)

XX„~ (x, q)Q dQ dP,
z2 4 3 2

8-'
g I z2 4 3 2

16m.v

(38)

(39)

(40)

where X„& and 0„*& are determined by Eqs. (28), (29),
and

2M +q.v

The cross sections of elementary-atom ionization are
quite analogous to those of (33)—(37); however the right-
hand side of Eqs. (33)—(37) should be multiplied by the
phase-space element d p/(2'), the form factors F„"&

+n/m™ s ou d be rep ace by n/m ~ +n/m, and the kine-
matics should be, respectively, modified. Let us
remember that p denotes the atomic component momen-
tum in the atomic center-of-mass frame.

If the values of Q,„and Q,„are shifted to zero and
infinity, respectively, the initial energy dependence of the
cross sections is the same (1/v ) for all final states.
Then we can use the sum rules discussed in the previous
section to calculate the cross sections summarized over
the complete set of "nonrelativistic" atomic final states.
The word nonrelativistic means that we consider the set
of states which is complete in the Hilbert space spanned
by the solutions of the nonrelativistic Schrodinger equa-
tion. In other words, we consider the final states where
the spin quantum numbers are fixed, and the radiation
and particle creation processes are not taken into ac-
count. The cross sections (33), (35), and (36) summa-
rized over the final states are

2

der„r ——
I

b, (q )
~

1+
(2m. ) v 2M

As stressed several times the cross sections given in
this paper are correct for the processes with q «m

& 2 .
Therefore, sin a can be replaced by unity in Eqs. (38)
and (39). Then, the cross sections [(38) and (39)] in-
tegrated over momentum transfer are, in contrast with
all other integrated cross sections, divergent at high
momentum transfer. It is not surprising since the spin-
Aip processes are usually effective at high momentum
transfer; however, it shows the limitations of our ap-
proach. Anyway formulas (38) and (39) integrated over
the momentum-transfer interval where the formulas are
correct provide the reasonable estimation of the respec-
tive cross sections due to the logarithmic character of
the divergence.

VII. SUMMARY AND CONCI. USIQNS

The problem of the interaction of relativistic elemen-
tary atoms with atoms of matter has been studied in the
reference frame where the initial and final atomic motion
is nonrelativistic. The most proper would be the Breit
system, i.e., the system where the atomic momentum is
reversed in the course of the interaction (p;= —pf ).
The value of the atomic momentum is minimal in this
frame and the nonrelativistic description of the atom is
better justified here than in any other frame. Because of
the smallness of the characteristic momentum transfer to
the atom we have used the reference frame where the
atom is initially at rest. In this frame the interaction
process description is simpler than in the Breit system.

An atom of matter has been treated as a structureless
spinless relativistic particle of the electric charge Ze.
The effect of electron screening of the nucleus field has
been taken into account by modification of the photon
propagator. Since the atom of matter is treated as struc-
tureless it is implicitly assumed that the initial and final
states of the atom of matter coincide. Therefore we take
into account the coherent interactions only. For the
atoms of matter with Z &~1 the incoherent interactions,
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i.e., the processes of the atom of matter excitations, are
much less effective because the coherent interaction
cross sections are roughly proportional to Z while the
incoherent ones are proportional to Z. The incoherent
interactions have been discussed in the context of ele-
mentary atoms in Ref. 10.

Because the elementary-atom components are spin-0
or spin- —,

' particles we have considered three kinds of
atoms: the spin-0-0 atoms, the spin-0- —,

' atoms, and the
spin- —,

'-
—,
' atoms. For these three kinds of elementary

atoms we have derived the transition amplitudes in the
Born approximation. The atomic excitation and ioniza-
tion processes have been considered. Particular atten-
tion has been paid to the spin structure of the amplitude
of spin- —,

'-
—,
' atom interactions. It has been shown that

the atom composed of a particle and antiparticle can in-
teract if the charge parity of the atom changes in the
course of the interaction.

We have derived the sum rules which allow the calcu-
lation of the cross sections summed over elementary-
atom final states. Finally we have given formulas of
elementary-atom interaction cross sections. In the fol-
lowing paper we present the results of numerical calcu-
lations of the cross sections of some elementary atoms
interacting with typical targets.
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