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Velocity of sound in hadron matter
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The velocity of sound in hadron matter, in both the confined and deconfined phases, is studied.
This velocity of sound appears to be an important tool to distinguish among diA'erent bag-model-
based thermodynamical descriptions of hadronic matter.

I. INTRODUCTION

There has recently been increased interest in the
analysis of the thermodynamical properties of hadron
matter at high density and temperature. In particular,
one expects a transition from the hadronic phase to a
deconfined plasma of quarks and gluons. The eventual
existence of this transition and its properties is crucial in
our understanding of the matter evolution in the early
Universe, neutrons stars, and heavy-ion collisions. The
study of the thermodynamics of hadrons certainly implies
QCD in the nonperturbative regime. Therefore, Monte
Carlo calculations' appear as the most unique way of get-
ting information about this kind of phenomena. Never-
theless, from a phenomenological point of view, there ex-
ist alternative approaches based on statistical baglike mod-
els. ' These models have the clear advantage of provid-
ing definite predictions on the finite-temperature behavior
of the corresponding hadron gas. Among them we note
the existence of a first-order phase transition between had-
rons permanently confined in colorless objects and the
so-called quark-gluon plasma.

Recently, the temperature behavior of the velocity of
sound in hadron matter has been studied by means of
Monte Carlo techniques as a complementary study of the
previous phase-transition analysis. This calculation gives
information not only on a crucial parameter in the solu-
tion of the corresponding hydrodynamical equations, but
also on the differences among alternative descriptions of
the hadronic gas. The main purpose of this work is to re-
port on an analytical study of the thermal behavior of the
velocity of sound in a glueball gas described by means of
different bag-model-based pictures. In this sense, we have
considered three different versions for this glueball gas
that are presented in the next section. Afterwards, we
summarize the results concerning the temperature behav-
ior of the velocity of sound both below and above the
transition temperature. Finally, we comment on the ob-
tained results.

II. MODEL FOR HADRONIC MATTER
AND ITS PHASE STRUCTURE

The aim of this section is to briefly describe the
different versions of the model for the hadronic matter
used in this analysis. All three versions considered con-
ti«h~cic e11v Af g ~as of MIT bag-model glueballs. Two

of them were discussed in detail in Ref. 3, one being a gas
of rigid glueballs and the other consisting of glueballs
whose volumes are allowed to fluctuate. A slight
modification of this last one which includes a new param-
eter, is the third version considered here. All of them
start from the spherical-cavity approximation, where the
energy of each state is given in terms of the volume V of
the bag by

M;(V) =BV+ W; =BV+

Here B is an energy density simulating the confining
forces and 8' are the internal energies of the gluon fields
given in terms of the pure numbers y;, which are deter-
mined by the different modes of these eight (Abelian)
gluonic fields inside the bags, combined in such a way as
to ensure the colorlessness of the glueballs.

A. Standard glueballs

The rigid bags, representing standard glueballs, are ob-
tained by minimization of expansion (1) with respect to V.
In this way one obtains, for their masses and volumes,

M(;) ——4BV(;) (2a)

and

V( j=
3B

3/4

(2b)

respectively. The masses and degeneracies d; of the first
members of the spectrum are summarized in Table I. In
terms of these parameters one can write the level density

p(M)= gd;5(M —M(;)) (3)

needed for the study of the hadron gas. The asymptotic
behavior of this density of states can be evaluated assum-
ing that glueballs consist of a gluon gas contained in a
volume V=M!4B. According to Eqs. (l) and (2), the
internal energy of this gas results in W = —,'M.

On the other hand, for large 8 and large V the number
of gas states ( W, V) d W in the internal energy range
( W, W+d W') is found to be

3 —3/2 (VW )o.(W, V)dW'= const' W '(VW') e ' dW (4)

with
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TABLE I. Masses M; (in GeV) and spin-color degeneracies d;
of the first 22 states of the glueball spectrum for a value B=(0.2
GeV) .

F(T,z) = T
2'

3/2

f dM M p(M)
M(p)

1

2
3

4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

' 1/4
4 8n.a ——
3 15

M;

1.80
2.07
2.22
2.32
2.33
2.44
2.47
2.50
2.57
2.57
2.58
2.61
2.69
2.71
2.74
2.77
2.78
2.81
2.81
2.82
2.82
2.86

6
15
9

21
15
11
15
15
27
35
9
6

45
21
25
21
33
45
28
27
15
15

1 z
&& exp —M +T 4B

(9b)

These last expressions are the starting point for the study
of the velocity-of-sound behavior of the first version of the
hadronic model.

B. Glueballs with thermal Auctuations

8B
M(;)( V) =M(;) +

(i)

M(;)
4B

2

(10)

The extra energy, coming from the volume variations
around the minimum, is used to Boltzmann weight the
fluctuations. In this way, the temperature-dependent dis-
tribution of mass and volume is

Xr (M, V) = —,
' o (M BV, V)—

In the previous version of the model, when we con-
sidered glueballs with fixed volumes, we froze their even-
tual vibrational degrees of freedom, which could be im-
portant in the deconfinement mechanism. This constraint
can be relaxed in order to take into account volume fluc-
tuations in a phenornenological way. To this end, one ex-
pands the bag energy around its minimum attained at the
volume given by Eq. (2b) to obtain

For the 8' and V values corresponding to the static bag,
Eq. (4) allows us to write

3M M M /Tpp„(M)= —', o„ const XM e
4 '4B M

with

1 8B M
exp ——— V—T3M 4B

1/2
3nTM

8B

2

1/4
1 256 1/40—

cx 27

Then one ends with the following expression for the level
density:

I
p(M)= g di8(M —M(())+~(M M(I))pcs(M) ~

—(8)

where I indicates the highest discrete level considered.
The final step in the thermodynamical analysis is to cal-

culate the partition function for a free glueball gas from
the knowledge of the density (8) and by treating the finite
size of the glueballs within the van der Waals approxima-
tion. The result can be written as an inverse Laplace
transform in the variable conjugate to the volume 0 con-
taining the gas:

(12)

with the mass spectrum and degeneracies appearing in
Table I. Notice that Eq. (11) is normalized in such a
way as to ensure that its T=O limit gives the standard
glueball distribution (8).

In the present case, the thermodynamics of the hadron
gas is contained in the partition function (9a) but with
F(T,z) now given by

F(T,z) =
3/2

T f dM f dVXr(M, V)

where

I
cr(M BV, V)—=—', g d;|)(M —M(;)(V))+o„(M BV,V)—

zA

Z(T, Q)= f '+'"
dz

7

(9a)
M

)& exp — +zVT
(13)

with instead of (8b).
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C. Glueballs with fluctuation
measured by a new parameter p

This version is a slight modification of the previous one
in the sense that the dispersion of the Gaussian distribu-

tion for the volume fluctuations is not induced by the bag
model itself, but is measured by a new parameter p. In
any case, the dispersion is proportional to the particular
hadron mass, giving rise to the distribution of mass and
volume:

X(M, V) = —,
'o. (M BV—, V)

M
exp — V—

4B
1/2

M
4B

'2

(14)

On the other hand, the partition function, correspond-
ing to this version of the model, has the same form as Eq.
(9a) with F(T,z) given by Eq. (13), where Xr(M, V) is re-
placed by X(M, V) given above.

Certainly, the analysis of the partition function (9a),
specialized to each version, allows one to obtain the corre-
sponding phase diagrams. To this end, one has to study
the leading singularity of the integrand in Eq. (9a). This
expression has, in all cases under consideration, two types
of singularities. One type is poles, defined by

aP
U~ (17)

and

where P is the pressure of the gas and e its energy density.
These magnitudes can be obtained from the partition
function resulting in

I'( T ) = T lnZ = Tz ( T )
a

an

zo(T)=F(T,zo(T)) . e(T)= —T lnZ=T z(T)= T z'(T),, a
0 BT BT

(19)

The other one is a branch point coming from F itself, lo-
cated at z~(T) depending on each version considered.
These singularities will determine different phases which
arise when one singularity takes over the other one.

A detailed analysis of the thermodynamical properties
of the model under consideration was carried out in Ref.
3. Here, we summarize these conclusions when applied to
the three different versions under consideration.

(i) In this first version the model presents either the ha-
dronic phase for any temperature or two first-order transi-
tions, one at T, and the other at T, . In this last case,
after an intermediate region, the model returns to the ha-
dronic phase. For that reason, this version loses
effectiveness above T, .

(ii) and (iii) In these two versions, the model has a
first-order phase transition. In both cases, the corre-
sponding transition temperature is a little larger than To
given in Eq. (7). In the low-temperature phase, one has
the hadronic phase in which in the phase above T, the
bags explode and all the features of the system correspond
to a deconfined gas of gluons. In fact, for very high tem-

peratures, the number of bags decreases to a single one,
occupying all of the volume available and allowing the gas
of free gluons contained therein to manifest. It is also
worth mentioning that the Stefan law P —T is also
asymptotically obeyed and one can easily find that, in ver-
sion (iii), for example,

8 T
T 15

as one should expect for an ideal SU(3) gluon gas.

where the function z(T) stands for zo or z~, depending on
which singularity dominates the integrand in Eq. (9a)
when the thermodynamical limit is considered. Coming
back to Eq. (17), for the velocity of sound one obtains

2 z(T)+ Tz'(T)
2Tz'(T)+ T'z "(T)

giving rise to the following results for the three different
versions of the hadronic matter.

T& T, . In this low-temperature phase, as was already
mentioned, the partition function is dominated in all the
three cases by the corresponding pole zo(T). The general
properties of the pressure and the energy density of the
three versions of the model are entirely similar. The cor-
responding curves are very smooth and as an example we

present in Fig. 1 the quantitative behavior of these magni-

0.5

III. VELOCITY OF SOUND 0.9

The velocity of sound in our gas of hadronic matter can
be evaluated from the general expression

FIG. 1. Pressure and energy density behavior of version (ii)

below T, .
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tudes in the case of version (ii). The limit T~O can be
analytically analyzed (see the Appendix). In this way, for
the pressure one finds the behavior

P(T)=Tzo(T) —T e
T~O

which for the energy density e(T)-T oT e
Then, for the versions considered one obtains

T/mG )
2

T~P
(21)

corresponding to the velocity of sound in a gas of glueballs
of mass mG, where mG stands for the lowest mass of the
glueball spectrum which for B=(0.2 GeV) is mG ——1.8
GeV. The behavior of v, , linear with T as given by Eq.
(21), persists up to T-0.8T, . In the cases with volume
fluctuations, versions (ii) and (iii), U, reaches a maximum
near T-0.9T, and then decreases to a nonvanishing
value at the transition temperature T, . The quantitative
results for the three versions considered are summarized
in Fig. 2. There we have included the values correspond-
ing to a particular electron of p=0. 1 because the results
are quite insensitive to it. Notice once more that the value
of v, is finite at T, when this point is reached from below.

T & T, . This high-temperature regime is dominated by
the singularity given by z1(T). We consider now each
version of the model for hadronic matter separately. In
version (i) after a frustrated deconfining transition, the
system returns to a hadron phase at high temperature.
The intermediate phase is dominated by the singularity

OD6"
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FIG. 2. Velocity of sound vs temperature below the critical
temperature for the three versions.

z1(T)=4B 1 1

T TQ
(22)

clearly showing that the pressure of the gas grows linearly
with T, whereas the energy density remains constant. As
a consequence the velocity of sound becomes infinite in
this phase. This result can also be understood by noticing
that for standard glueballs the radiation pressure of

gluons is exactly compensated by the bag pressure B.
Standard glueballs behave then as rigid objects avoiding a
real deconfined gluons phase.

In version (ii) the leading singularity of F(T,z ), given in

Eq. (13), comes from the asymptotic contribution
cr„(M BV, V) to th—e distribution XT(M, V), Eq. (11).
This singular part of F(T,z) is

F(T ) T d V V c dg g(g (
)
—11/2 (4Bv/T}s(X, T,z1—

0 M22(, U)/48V 4 (23)

where

S(X,T,z)=A, + Tz
4B

3/4
T 4A. —1 (A, —1)

Tp 3 6A,
(24)

—1/4
4B 4A, —1 (7/(, —1)(A, —1)
Tp 3 3(7A. —1)

(27a)

and

M
4BV

(25)

S(X, T,z) =0, (26a)

Then, z, ( T ), the rightmost singularity, defining the high-
temperature phase is determined from the conditions

4A, —1
0

3

1/4
7k —1

6A,
(27b)

From these expressions, the thermodynamical properties
of the system can be immediately computed. In particu-
lar, the pressure of the gluon gas and its energy density
behave as shown in Fig. 3. Thus, the velocity of sound
reads

S(A, , T,z) =0a

in the parametric form

(26b)
1 2 4A, —1

Vs — +
3 A(7A. —1)

This expression takes the value —', at the transition temper-
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0.6

1.5

FIG. 3. Pressure and energy density behavior of versions (ii)

and (iii) above T, .

T/
0

2

ature T, . In Fig. 4 we show the entire behavior of this v,
as a function of T. Notice that only at asymptotic tem-
peratures, v, takes the free gluons gas value of 3.

The calculation corresponding to version (iii) can be
carried out in a similar way as in version (ii) to obtain

4
T

TQ

Bzi(T)=-
T

(29)

IV. FINAL COMMENTS

We have evaluated the velocity of sound in hadron
matter modeled as a simple gas of MIT bags. The results
obtained in the hadronic phase, the low-temperature
phase, corresponding to version (i) of the model grow
monotonically up to the critical temperature T, . On the
other hand, the values for the velocity of sound, corre-
sponding to versions (ii) and (iii), present a maximum near
T, showing a behavior entirely compatible with previous
Monte Carlo estimations. The quantitative discrepancies
depend essentially upon the mass of the lightest glueball
predicted by both calculations whereas our smallest glue-
ball for 8=(200 MeV)' corresponds to mG =1.8 GeV,
the value appearing in Ref. 4 is mg ——0.9 GeV. At the
critical temperature the velocity of sound presents a
discontinuity due to the fact that the transition is a first-
order one. Above this transition all three versions of the

From this expression the pressure and the energy density
can be immediately obtained (see Fig. 3). For the velocity
of sound, v, , it results in the constant value —,

' which is

just the expected value for a deconfined phase immediate-
ly after T = T, . We remark that this result is independent
of the specific value of the parameter p that measures the
volume fluctuations of the glueballs.

FIG. 4. Velocity of sound vs temperature above the critical
temperature for versions (ii) and (iii).
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APPENDIX

Here we study the limit T~O of the function zp( T ).
We present only the calculation corresponding to version
(i) of the model because for the other two versions the
procedure is entirely similar.

For T & T„ the partition function is dominated by the
pole zp( T ) defined through

zp(T)=F(T, zp(T)) .

The function F(T,zp) can be split as

F(T,z) =Fd;„(T,z)+F„(T,z),
where

(A 1)

(A2)

model considered behave differently. The first version
gives an infinite value for the velocity of sound as it was
discussed previously. The behavior of the other two ver-
sions are shown in Fig. 4. Only version (iii), where the
glueballs have volume fluctuations measured by a parame-
ter p, gives a constant value of v, = —,

' corresponding to
the case of a completely free gluon gas. Then, in this case
T= T, is certainly the deconfining transition temperature.

Finally, we can conclude that our calculations indicate
that the velocity of sound is a very interesting parameter
in the analysis of the thermodynamical description of had-
ron matter.
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l

' ' T 4Bd;M(;) exp —M(;) (A3a)

and
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3/2

F (Tz)= K j" dMM " exp —M
277 M(r) T

1 z

Tp 4B

This last expression provides, for T &&M{1],the result is

F„(T,z)=, M(l} T e exp M—(1}
—11/2 5/2 ™(r)/T z

4B
1—11

2
+0 + 0 ~ ~ (A4)

while for T «M(~ }, (A4) is negligible and from (A3a) one obtains
3/2

F(T,z) = T 1 z
2' d 1M~ 1] exP —M(1) —+T 4B (A5)

M(1)
zp(T) =di

27T
e (1) T3/2

that, when used in (Al), gives, for zp(T),
3/2

(A6)
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