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New solutions of QCD as models for hadrons and rings of confined gluons
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Newly found exact, toroidal solutions of QCD are used as confining background chromomagnet-
ic fields to construct confilned-gluon rings and hadrons. A semiclassical treatment indicates stable
confined-gluon-ring and hadron states with large internal quark motions. Similarities and
differences with currently popular bag models are noted.

I. INTRODUCTION

Although it is widely believed that quantum chromo-
dynamics (QCD) is the correct theory to describe strong
interactions, it has been impossible to extract its exact
low-energy consequences because the theory is inherent-
ly nonlinear. The large value of the coupling constant
makes perturbation theory useless at these length scales,
and one has to resort to building models' with the
hope that they will correctly mimic the actual behavior
of the theory.

Recently discovered localized, nonperturbative solu-
tions of pure QCD may help bridge this gap and pro-
vide a natural substrate for the construction of strongly
interacting objects such as mesons, baryons, and glue-
balls. These derived solutions could be seen as actual
realizations of the hypothetical bags ' which have
been extensively used to confine quarks and gluons.
The chromomagnetic fields of these solutions have the
usual desirable features such as finite energy, localiza-
tion, and no net color charge. They also have a toroidal
spatial structure that can confine color currents in a dy-
namic equilibrium (unlike the static confinement of the
color-electric fields). Most importantly, they are exact
consequences of QCD. In this paper we study the quan-
tum fluctuations around these classical solutions, with
the idea of eventually deriving a spectrum of hadrons
based on these toroidal, static, chromomagnetic solu-
tions of the fermion-free SU(3) gauge theory.

We believe that the toroidal nature of our solutions is a
crucial factor needed for confinement. As is well known
for the electromagnetic case, confinement of objects with
(color) charge can occur only if the (color) current is re-
stricted to lie on a nested set of isobaric surfaces traced
out by the confining field. ' For vector fields in three
space dimensions, the topological nature of such surfaces
is uniquely specified by a theorem due to Poincare which
states: "In Euclidean three-space, the surfaces traced out
by the lines of any vector field that is nonzero and finite
everywhere are tori. " Since the color (gluon) field is a
vector field, only a toroidal geometry can assure its utility
as a confining field. Notice that this theorem is true for
any vector field, electromagnetic or chromomagnetic,
linear or nonlinear. Also, the toroidal nature is essential
whether one is confining quarks (mesons and baryons) or
gluons (glueballs), because it is dictated entirely by the

vector nature of the confining field.
Toroidal bags have been studied earlier' ' in the con-

text of glueballs. It was observed' that the spherical bag
cannot support the confined gluons at two poles and
hence collapses to a toroidal shape. However, this impor-
tant observation never received much support. The
difficulty of handling toroidal geometry coupled to the be-
lief that quarks (though not gluons) could be confined in
spherical bags may account for this. However, we see
that if the confinement is due to the vector color fields of
QCD, a toroidal shape is essential. In other words, one
can certainly postulate spherical confining models, but
one cannot derive them from QCD.

Barring the essential difference that our nonperturbative
solutions are derived from pure QCD (and hence are
toroidal) and not stipulated in an ad hoc fashion, they do
resemble conventional bags for all calculational purposes.
Because of the toroidal nature of our solutions, we will
refer to them as "rings, " and the pure glue structures
(glueballs) made from them as gluerings. The classical
field configuration provides the confining bag pressure.
Our program to derive the spectrum of the hadrons will
therefore follow very closely the path charted out with
great care by the bag-model investigators, ' and we will
attempt to make contact with conventional bag models
wherever possible. The phenomenology is not expected to
be very different except in detail. In fact, when the torus
is fat (i.e. , its major radius ro is nearly equal to its minor
radius a), as it turns out to be for the lowest-energy states,
our rings become almost spheres (with the troublesome
poles punched out).

We begin in Sec. II with a brief review of the static,
nonperturbative solutions of Ref. 5, clarifying the
geometry, and leading to an analytical expression for the
total background field energy @b. This energy increases
linearly with the size ro of the ring (see Fig. 1), and can be
stabilized only when perturbations with internal angular
momentum are added to it. If the perturbations are
gluonic in nature, we obtain gluerings whose total energy
D=6b+ vs (where Ds is the energy of the gluonic pertur-
bation) is minimized with respect to the size parameter to
obtain a stable state. This and other characteristics of the
gluerings are presented in Sec. III, while Sec. IV deals
with the fermionic perturbations which generate mesons
and baryons. The masses of the gluerings and hadrons
are determined completely up to an unknown scale length
e which is the skin width of the minimum-energy torus.
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FIG. 1. Mapping of the toroidal geometry to cylindrical
geometry.

This undetermined length scale is a consequence of the
fact that the underlying theory (QCD) is scale-free. It is
likely that the gluerings, mesons, and baryons are charac-
terized by different length scales. Section V ends the pa-
per with a brief summary and discussion of these prelimi-
nary results. Detailed spectrum calculations will be pro-
vided in a forthcoming paper.

II. CLASSICAL SOLUTIOIVS

The pure (quark-free) SU(N) Yang-Mills equations are

gPFl + ( lmn g PmFn 0

~ p I ll~p2P(r) +klfip3Q(r) )
1

(3)

where 2)l and gl are two fixed vectors in SU(3), reduces
the problem to solving a coupled pair of ordinary
differential equations for the functions P(r) and Q(r):

d 1 d rP=Q P
dr r dr

(4a)

and

1 d dQ
r dr dr

(4b)

Different choices of all and gl lead to solutions that can
be gauge transformed into each other, but there is no
gauge in which either the resulting color-magnetic field to-
tally vanishes or a color-electric field is generated. In Ref.
5, Eqs. (4a) and (4b) are solved exactly for all r, yielding
pure chrom omagnetic fields that are large only in a
toroidal surface region of width e near r=a, where a is
the minor radius of the torus. The location a and the
width e of this large field region are not determined by the

where the color indices l, m, and n go from 1 to 8, the
spacetime indices p and v go from 0 to 3 (t, r, 9, and P),
the field-strength tensor is given by

(2)

g is the strong coupling constant (g /4m=1), and C' "
are the structure constants of SU(N). For a static, cylin-
drically symmetric system (8, =Bll O, B& ro8—, =0),—the
ansatz (only All and A~ are nonzero, Ho=0 implies no
color-electric field)

theory itself, although stability conditions lead to one rela-
tion between them, leaving e as the only undetermined in-
put parameter of the theory, and its value will be deter-
mined by fitting the mass spectrum. The existence of one
undetermined scale length is a natural consequence of the
scale invariance of QCD. We expect that the physics in
the surface region will be governed by the production
mechanisms for qq pairs, leading to a value of t of the or-
der of the universal 200-MeV (1-F) scale. Although the
exact mechanism for the generation of e is not clear yet, it
is interesting to note that its value will control both the
mass spectra as well as the transition rates.

The cylindrical geometry should be viewed as an ap-
proximation to the torodial geometry; the leading-order
terms are obtained by simulating a torus of major radius
ro by a cylinder of length 2~ro, with its ends at z =0 and
z =2rtro identified with each other (see Fig. 1, the toroidal
angle P=ro 'z). The z axis of the cylinder will then be
the minor axis of the torus, while the major axis will be
denoted by Z. Any internal linear momentum p, along
the minor axis z will correspond to the Z component of
an internal angular momentum L, =roy, along the major
axis Z. Note that the torus has its principal symmetry
about the Z axis, which should not be confused with the
approximate cylindrical symmetry around the minor z
axis. This approximation is good for a thin torus
(ro «a ), but corrections have to be added for a fat torus
(ro=a). The geometry also imposes a physical constraint
on the lengths

t &a&ro . (5)

The total energy of the field is the gauge-invariant quan-
tity'

vr aa P
b z o 3 + z2g 6 a

where a and P are numerical constants which depend on
the gauge group and the choice of the SU(3) vectors 2Ii
and gl. For a typical case discussed in Ref. 5, a=1.7 and
P=12. The classical energy increases linearly with ro,
and is not stable to an overall shrinking of the solution.
The fields thus exert an inward pressure which has to be
balanced by an outward pressure coming from any fluc-
tuations confined within this ring. We shall see that the
rotation of the constituents around the Z axis will provide
the appropriate centrifugal force required to achieve an
equilibrium configuration.

Although the "ring" has strong color-magnetic fields
near the surface, its net color charge is zero (there are no
long-range color-electric or -magnetic fields) —the mag-
netic field is self-generated by the effective color currents
arising from the nonlinearity. This strong surface field
can confine any color charge current within the ring, in-
cluding that of gluons since they too carry color charge.
Maintaining net color charge neutrality requires that the
stabilizing fluctuations (gluons or quarks) must be in the
singlet state because the introduction of any nonsinglets in
the ring will give rise to deconfining color-electric fields
along which color charges can accelerate and escape.

In the next section, we study pure gluons confined in
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our ring. The exact calculation needs to be done fully
nonlinearly —an almost impossible task. However, in
finding the classical solutions, we have already done much
of the work. We can now consider the time-varying fields
as perturbations and expand around our classical solu-
tions to obtain a good approximation to the spectrum of
low-energy states. Neither the classical solution, nor the
spectrum of states built on it can be reached via perturba-
tion theory around the free vacuum. This is evident from
the appearance of 1/g in the expression for the energy.
A nonperturbative solution as this one cannot be thought
of as a bound state of any finite number of perturbative
"gluons. "

III. GLUERINGS

We now consider small perturbations in the gluon field
around the static equilibrium configuration

0 8
at2

At this point, we neglect the gluon-gluon interaction; it
will be included as a perturbation in later work. Since
our equilibrium solutions depend only on r (in this case,
just a set of boundary conditions at r =a), we expand the
perturbed quantities in poloidal and toroidal harmonics
(where 9 is the poloidal and P=zlro is the toroidal angle,
and both 0 and tt are symmetry directions):

E( )
—itttt+im9+ilt(t

)

B B( )
—icut+im9+t lg'

where co is the frequency and m and I are the poloidal and
toroidal quantum numbers. The z components of both E
and B satisfy the same radial equation

and

I 10Fv-=F.-+f.- (7)
1 d d
r dr dr

m +p' E, (r)=O,
r 2

I 10 I
Ap ——Aq +a„, (8)

where the static classical solution is denoted by a super-
script 0 and the time-dependent perturbing fields a„' and

fz are small. Introducing (7) and (8) into the field equa-
tion (1), and linearizing the system leads to a set of com-
plicated coupled differential equations which can only be
solved numerically. Several analytical approximations are
possible, e.g. , in Ref. 5 the short-wavelength limit (A. «a)
was investigated, and it was shown that the high-energy
gluons acquired a mass due to the background field. In
this paper, however, we are interested in calculating the
low-energy mass spectrum, so we must deal with Auctua-
tions with wavelengths comparable to the size of the ring.
We can do this by making a set of physically motivated
assumptions.

The very large color-magnetic field near the surface of
the ring confines any color current, including the gluons
that carry color charge. Except near the surface, the
color field is small. Therefore, we can approximate the
effect of the ring by studying free gluon fields confined
within a toroidal region by suitable boundary conditions
imposed at the surface. The additional effects of the
finite skin width can later be added as perturbations.
Such a toroidal glueball has been considered earlier by
Robson, ' and we will proceed along similar lines, al-

though with one important difference. He solved the
equations in a cylinder around the major axis of the
torus, necessitating an unphysical rectangular cross sec-
tion. The exclusion of the center region also led to a
spurious TEM mode. Instead, we make use of the ap-
proximate cylindrical symmetry (to order airo) around
the minor (z) axis of the torus.

Inside the ring we assume the gluon field to be free, i.e.,
each color gluon component separately obeys the free
Maxwell's equations

2

P =~Imn
ro

(13)

E, (r) =EOJ (pr) (14)

and

B,(r)=BOX (pr), (15)

where J (pr) are ordinary Bessel functions. Note that
the Neumann functions have been rejected by demanding
that the solutions be finite at the origin. All other field
components can be calculated from E, and B, by using

and

V'x E= B1 CO

C

VXB=- lM

C
(17)

to give

E„= ik,
mt' BZr

(18)

BB km
Eg —— &m + E,

Br r

serves as the effective eigenvalue. Note that we have
suppressed the color indices totally because each color
component satisfies the same equation. Equation (12) is
easily solved to obtain the radial dependence of the z com-
ponents of E and B:

() E
Bt

(3E, k, m
Bg = — —Lcd +9r r

(21)

and where k, =I/ro is the momentum in the toroidal direction
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so that I becomes the internal angular momentum along
the major axis (Z) of the torus. The boundary conditions
at r =a are 2

n E=O,
n&& B=O,

(22)

J (pa)=0, (23)

leading to the dispersion relation
2 2

I &mn
Imn

r a
(24)

0

where a „ is the nth zero of the mth Bessel function.
Similarly, for the TM mode, the boundary condition

where n is the outward unit normal to the ring surface.
Just as in the electromagnetic waveguide, the eigen-

modes separate into transverse (chromo)electric (TE,
E, =0 everywhere) and transverse (chromo)magnetic
(TM, B,=O everywhere) modes. The TEM mode is not
allowed by the boundary condition at the origin. For
the TE mode, the boundary conditions (22) are satisfied
if

where the Z component of the total internal angular
momentum is given by

Lz=

The total spin S of the gluons has to be added to L to ob-
tain the total spin J of the gluering. ' A nonspherical ob-
ject such as the gluering must be treated like a distorted
nucleus, giving rise to a tower of rotating states based on
each internal Lz. These states correspond to an addition
of the internal and the body angular momenta, and are
constructed by a suitable Clebsch-Gordan combination.
We will restrict our attention to the lowest state (corre-
sponding to zero angular momentum for the rotation of
the body axis). In that case, the total orbital angular
momentum is equal to the internal orbital angular
momentum (L =Lz ), the spin is S, and the total angular
momentum is J=L+S. The parity is ( —1) for the TM
modes and —( —1) for the TE modes.

The stable N-gluon state is obtained by minimizing the
total energy as a function of a and rp (while holding the
input parameter e constant) to obtain the simultaneous
equations

2
Imn

l2 P
a2

rp

J' (pa)=0

leads to the dispersion relation

(25)

(26)

a =aO, r=rO

7TFp a 2P

2g e ap
—1/2

mni mni+ =0
where p „ is the nth zero of the derivative of the mth
Bessel function. If we denote both a „and p „by the
generic symbol A. „=X „, the total energy of the per-
turbation is given by and

(32)

~lmn ~lmn
2 g 2 1/2

I mn+
rp a

(27)
0 a =ao, r =roAr 2g

aap p+
e ao

Notice that the m =0 TM mode has the same dispersion
relation as the m =1 TE mode. The lowest mode is the
m = 1 TM mode with

.2 ~ .2
-1/2

omni
2+

rp ap
=0,

l (1.841)
~Ii, i = +2

Q
2

0

followed by the m =0 TE mode with

2 l (2 405)
~I 0 i = +2 a2

(28)

(29)

The energy of the Auctuations has to be added to the
background ring energy to obtain the total energy of the
gluering. However, any arbitrary addition of fluctuations
will not lead to physically meaningful objects —the final
state must be colorless. Since the net color charge of the
background ring is zero in any gauge, only color-singlet
combinations of gluons can lead to observable states. The
lowest-energy gluering will, naturally, have two gluons.
The total energy of a gluering state with N gluons is given
by a sum of the ring and gluon energies:

I 2 g 2 1/2

&t.t=&a+ g, + (30)
~ ] rp a

which must be solved to obtain the optimum minor (ap)
and major (rp) radii. For a=1.7, P=12, and any given
values of g and A. „;, the geometrical constraint rp)ap
puts restrictions on the values of

~
l; ~. For the special

case of the two-gluon ring with
~
I,

~

=
~
lz

~

=
~

l ~, this
restriction requires that

~

l
~

must exceed a critical value
l„ i.e. , the internal gluon angular momentum (about the
major Z axis) must be large enough for the centrifugal
force to prevent the collapse of the major radius. The two
gluons in the lowest-energy stable state are in n

&

——n2 ——1,
~

m&
~

=
~
m2

~

=1 TM modes (A, „=A.» ——1.84). This
state is stable for

~

l
~

) l, =4 for g /4m=1. The exac.t
value of the lower limit I, is somewhat sensitive to the
strength of g. For a larger value of g, the background en-
ergy and hence the minimum value of I required for sta-
bilization is decreased. Also, if the number of gluons is
increased, each one of them can be in a lower I state, but
the total state will have a higher energy. It is clear that
the total energy of the minimum configuration obtained
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by the above procedure is inversely proportional to the
only length parameter in the theory, i.e., e. Since ro gets
related to e in the minimization procedure, it turns out to
be more convenient to express the minimum energy as

H =a.(p —g A)+/3m

l=cx p —cx g +P —l 0,' „r ae " Br
(37)

min
ro

(34) In cylindrical geometry, the operators

where 5=3.15 (F GeV) for the above case (with 6 in GeV
and ro in F). The energy is inversely proportional to e.
For a state with two gluons having opposite angular mo-
menta, with @=1 fm and g /4m=1, we find the total en-
ergy 6= 1.05 GeV, the energy in the background ring
6b ——0.47 GeV, the major radius ro ——3.0 F, and the
minor radius ao ——2.7 F. The lowest state thus obtained
has two gluons in l; = +4 giving total L =0, and
J =0++ or 2++. If we wish to identify this gluering
with the 1, (1440) (Ref. 21), we need an e=0.73 F, which is
quite a reasonable value. Unlike earlier bag models, how-
ever, our theory demands that the constituent gluons
must have high internal angular momenta even when the
total angular momentum of the ring is zero. Since the
internal angular momentum stabilizes the linear increase
in the background ring energy, this is an essential predic-
tion of our model.

The next excited states arise from I&
——5 and 12 ———4,

with L =1, and are at a higher energy. Some of these
states are spurious in the sense described in Ref. 17. The
details of the resulting gluering spectrum and possible
identifications of the predicted states are currently under
investigation.

(38)

and

1
k = —i + —o-,'

00 2
(39)

commute with each other and with the Hamiltonian, so
that we may construct simultaneous eigenfunctions of H,
p„and k.

In the Appendix we show how to reduce this problem
to a Schrodinger-type equation

r

d2
+p —V(x) A =0,

dx
(40)

2&vI
1 —x

2(1+x)
1 —x

(41)

with

where x=r/a is the normalized radial variable and the
potential V(x) is given by

(k+ —,
'

) ——,
'

V+ (x) =
x (I —x)'

IV. THE HADRON SECTOR
@=a 8 —m2 2 2 2

12

2 7

ro
(42)

P(r)
0 (35)

where P(r) given in Ref. 5 can be approximated for all r
by

P(r) =
a —r

(36)

The Dirac Hamiltonian in this potential is given by

To construct hadrons we have to insert quarks instead
of gluons in the ring. The large chromomagnetic field at
the edge confines quarks, while inside the ring they are al-
most free. We could therefore employ an approximation
similar to Sec. III, solving for free quarks with confining
boundary conditions at the edge. However, we do not
need to make this approximation, because the Dirac equa-
tion in the desired color field of the ring can, in fact, be
solved. The resulting equation exhibits some striking
symmetries which are due to the structure of the back-
ground field, and leads to exact solutions for some cases.

Although the background ring field has two com-
ponents (in the 6 and P directions), it is easier to demon-
strate the essential features of the calculation by choos-
ing only one component to be nonzero:

where I takes integral and k takes half-integral values.
The upper (lower) sign of V corresponds to the positive-
(negative-) helicity state of the quark. Note that k is relat-
ed to the local z axis (the minor axis of the torus), and not
the body Z axis (the major axis of the torus).

Equation (40) is readily solved on a computer with the
boundary conditions that the solution be finite both at the
origin (x =0) and at the surface of the torus (x =1) to
yield the eigenspectrum

2= 2 2 2
Pmn ~jmn 2ro

(43)

P=e "x"(1—x)

with the eigenvalue p =0. Note that each of these wave
functions has exactly one maximum that moves closer to
the edge of the torus for higher values of k. This degen-
eracy will be lifted when toroidal effects are taken into ac-
count, yet the k= —,

' will still be the lowest mode. Com-
paring with other values in Table I, it is clear that the

where n is the radial mode number of the solution. A list
of eigenvalues is given in Table I, and a few representative
eigenfunctions are displayed in Fig. 2. For positive values
of k, the above equation with the potential V (x) has an
exact well-behaved solution
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TABLE I. Eigenvalues (p ) of Eq. (41).

Negative sign in Eq. (42)
n=0 n=1

Positive sign in Eq. (41)
n=0 n=l

7
2
5
2
3
2

1

2

90.82

61.48

36.20

15.43

0.0
0.0

0.0

0.0

160.36

120.65

84.76

52.88

25.19

36.05

48.18

61.62

90.82

61.48

36.20

15.43

25.19

36.05

48.18

61.62

160.36

120.65

84.76

52.88

71.59

92.06

114.29

138.30

combination of positive k and V (x) lead to the lowest-
energy solutions with p =0.

Having solved the Dirac equation to find the orbitals,
we can introduce quark-antiquark pairs or three quarks
(in color-singlet states) into them and construct mesons
and baryons. For a state with N quarks in angular mo-
menta l;, the total energy is given by an equation similar
to (30):

)2 2

D„,=@b+g m, 2+
rp a

(45)

where m; is the mass of the ith quark, I; is its internal an-
gular momentum, and p, is the eigenvalue of Eq. (40) for
that orbital. Again the total angular momentum J is
given by L +5, where L is total internal angular mornen-
tum given by Eq. (31). The charge conjugation is
C=( —1) +, and parity is P=( —1) +'. For given
values of e and g, this energy has to be minimized to ob-
tain 6;„,rp, and ap. Using the parameters given in the
preceding section, we find that for a qq system with the
quarks set in the opposite l states, a minimum value

(
~

I
~

=3) of internal angular momentum is needed to
achieve stabilization consistent with the constraint ap (rp.
The high internal angular momentum for the quarks is
also a new prediction of our model.

If we set q and q in (I. =0, I;=+3) states with their
spins opposite to each other, we get the 0 mesons. For
baryons, we can set the three quarks in (I. =0, I, =1,2,
and 3) states to obtain the spin- —,

' and spin- —,
' baryons de-

pending on their spin alignments. Since we have not yet
included the spin-spin interactions of the quarks, the N'
and 6 wil1 turn out to be degenerate. It is interesting
to note that, after minimization, half of the total energy is
in the background ring (6'b ), and the other half is carried
by all the "valence" quarks together. This seems to agree
with the current observations, if we could identify the ring
with the "sea." These details of the mass spectrum in-
cluding the spin-spin interaction will be presented in a
forthcoming paper.

V. SUMMARY AND CONCLUSIONS

Using recently found nonperturbative, spatially local-
ized, classical solutions of pure QCD as a confining
background, we can construct physically observable,
strongly interacting objects: the gluerings and the had-
rons. Constraints implied by Poincare's theorem impose
a toroidal geometry on the confining vector color field
leading to the first major prediction of our theory: the
gluerings and hadrons are tori and not spheres. The sta-
bility requirements of these systems lead to the second
major prediction: the constituent ffuctuations (which are
gluons for the gluerings and quarks for the hadrons)
must be characterized by higher internal angular mo-
menta about the major axis of the torus. A unified pic-
ture of hadrons and gluerings emerges, where both are
toroidal states of dynamic equilibrium created by non-
linear QCD fields with and without quarks. Further
consequences of the theory including calculation of the
detailed mass spectrum (incorporating spin-spin eff'ects)
are under investigation.

1.00

0.75
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0.25

In the chromomagnetic field given by

P(r)
(9

0.25 0.50 0.75 1.00

the Dirac Hamiltonian is

H =a (p —g A)+Pm

FIR. 2. Eigenfunctions P=x ' % of Eq. (41) for four cases:
k = —' and ——' for the positive and the negative sign in Eq. (40).
The eigenvalues are given in Table I.

l a=o.',p, —a~ — +P —i a„r BO Br

In cylindrical geometry, the operators

(A2)
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aIlcl

l
Pz= —l

Bz ro

. ak= —i + —0,'
BO 2

(A3)

(A4)

i(k —1/2)()

i ( k + 1/2)()~27" e

( )
i(k —1/2)gIre

( )
i(k+ (/2)()

T e

(A8)

commute with each other and the Hamiltonian, so that
we can write

which, when substituted into Eq. (A9) yields the radial
equation

k 1~,H=a, p, +a@ ——P ——
T 2 T

a—ia„"c)r
d 1 d Pk+ +2
dr2 r dr r +p —P

k . 8 1=a,p, +a~ ——P —ia„+
7 Br 2r

(A5)
dP
d7

(k+ —,
' )'

4),2=0
r2

(A9)

and look for simultaneous eigenfunctions of K, p„and k.
If we write the wave function 1t/ as p=($), where p and

7 are two-component spinors, and note that a&.0.,'=ia„,
the Dirac equation becomes

ancl

0., =0. COSO+0.~SinO (A 10)

where p( obeys (A9) with the upper sign, (t2 with the
lower sign, and p = 6 —p, —rn . Remembering that

k . d 1(E m)P= —cr,p, +o() — P io—„—.
dr 2r 0 g = —0 ~ slnO+ 0 y cosO, (Al 1)

(A6)
X1 2 can be calculated from p, 2 byk ~ d 1(E+m)X= o,p, +o() — P io„——

r dr 2r k+ —,
'

~ d(E+m )g((r) =p, it))(r) i —P+-
dTSince we are constructing simultaneous eigenfunctions of

K and k, we also have (A 12)

i + ——o.,' g =k 1t),
BO 2

(A7)
k —

—,
'

(t)(r) .
d(E+m )X2(r ) = p, $2(r ) i — P— —
dT

where k is now the eigenvalue of the operator in (A4).
Equation (A7) is solved to obtain

Two independent sets of positive-energy solutions are ob-
tained by choosing either $2(r) =0 or i'((r) =0:

, (r)

0

a+m (t )(r)
or

0

2(r)

l —P+6+m dr

k+ —,
'

(t 2(r)

(A13)

l d —P—6'+I dr

k ——,
'

(t ((r) pz
$2(r)e+m

d 1 d+
dr r dr

(k+ —,') ——,
'

+ P+p'
T 7'

We write the eigenvalue equation as d2
+

dT

2 4 2k 2 2 dP2 P2
r2 r d7'

A) ——0

(A16)

dP
dr

(()( 2=0 . (A14) and

It is useful to convert the above equation to a one-
dimensional Schrodinger-type equation by setting

d2
d2+

("+l)' —l + P+p — P +
T 7" dr

A2 ——0.

y = r (/2W, —
(A15) (A17)

yielding It is clear that the short-distance (r~0) behavior is dom-
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inated by terms proportional to I/r and I/r, and the be-
havior for r~a is controlled by terms containing P. Us-
ing the explicit form for I' given in Eq. (36) and defining
the normalized distance x=r/a, Eqs. (A16) and (A17)
can be jointly expressed in the Schrodinger-type form

(k + —,
' )' ——,

'

V (x)=
X

and

2+ &2 2&2k 2(1+x)
(1 —x)~ 1 —x 1 —x

(A19)

+p —V (x) Ai 2
——0,

dx
(A18)

. p =a 6 —m2 2 2 2
$2

2
rp

(A20)

where x=r/a is the normalized radial variable and the
potential V+(x) is given by

Notice that I takes integral and k takes half-integral
values.
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