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Low-energy theorems are proved for the scattering of longitudinally polarized W and Z bosons
that hold at a scale intermediate between My and the characteristic mass scale of the symmetry-
breaking sector. The theorems are proved without assuming a custodial SU(2) symmetry. Three
methods are used: a perturbative power-counting analysis in the unitary gauge, a current-algebra
derivation in renormalizable gauges, and a nonlinear chiral Lagrangian that is relevant in unitary or

renormalizable gauges.

I. INTRODUCTION

Though it is widely believed that the SU(2);, X U(1)y lo-
cal symmetry' of electroweak interactions is spontaneous-
ly broken by asymmetry of the vacuum,’ the details of the
breaking mechanism remain an opaque black box, re-
ferred to generically as the ‘“symmetry-breaking sector.”
We do not know the quanta of the symmetry-breaking
sector or even whether the forces between them are of
weak or strong magnitude. We do know one scale of this
otherwise unknown physics: the vacuum expectation
value that is fixed by the Fermi constant to be

v=(V2Gp)~172~0.25 TeV . (1.1)

We expect, as discussed below, that the typical mass scale
of the symmetry-breaking sector, denoted Msg, and the
strength of the interactions, denoted Asp, are correlated.
For Msg/v =1 we expect Agg to be small and the interac-
tions to be amenable to perturbative analysis. For
Msp/v>>1 we expect the interactions to be strong, so
that, as for QCD, nonperturbative methods of analysis
would be needed to deduce the spectrum from the La-
grangian.

In this paper we derive low-energy theorems for the
scattering of longitudinally polarized W and Z bosons,
W, and Z;, that hold for all strongly interacting
symmetry-breaking sectors, provided they contain no
quanta (other than W, and Z;) that are light compared
to the typical scale MsgR 1 TeV. These low-energy
scattering amplitudes are completely determined by v,
Eq. (1.1), and by the p parameter

p=(Myy /MzcosOw)* . (1.2)

Experimental measurements fix p=1 to within a few per-
cent, which implies universal values of the low-energy
scattering amplitudes for all experimentally viable models
of the symmetry-breaking sector with spectra fully at or
above 1 TeV. If the spectrum contains bosons much
lighter than 1 TeV, e.g., pseudo-Goldstone bosons, they
may cause the low-energy amplitudes to be modified.

The extrapolated low-energy scattering amplitudes are
the basis of a general probe of the symmetry-breaking
sector that could be implemented at a proton-proton col-
lider with the energy and luminosity proposed for the
Superconducting Super Collider** (SSC). The central
qualitative point is that WW fusion provides a
significantly enhanced yield of longitudinally polarized
gauge-boson pairs if and only if the W, and Z scatter-
ing amplitudes are strong. This will in turn be true if
and only if the symmetry-breaking sector is strongly in-
teracting, since W, and Z; are essentially Goldstone bo-
sons associated with the spontaneous breaking of a glo-
bal symmetry of the symmetry-breaking sector—a state-
ment that is made precise by the equivalence theorem
proved to all orders in Ref. 3. The low-energy ampli-
tudes may be extrapolated up to energies at which dy-
namics sets in (most probably in the form of resonant
enhancements), yielding a conservative estimate of the
W, ,Z; pair signal. Given the likely ability to detect
W,Z pairs, it seems that the signal could be detected
over backgrounds (e.g., gg— WW) at a pp collider with
Vs =40 TeV and £ =10 cm~%sec™! as proposed for
the SSC, but not at one with half the energy or one-tenth
the luminosity.*> This implies a “no-lose corollary”* for
a collider with the parameters proposed for the SSC: ei-
ther we see the gauge-boson pairs signaling a strongly in-
teracting symmetry-breaking sector and/or there are
light (compared to 1 TeV) particles from the symmetry-
breaking sector that are copiously produced. These phe-
nomenological aspects are discussed briefly in the con-
cluding section and will be more carefully addressed in
future work. The emphasis in this paper is on the low-
energy theorems themselves.

The correlation between the interaction strength Agp
and the mass scale Msp of the symmetry-breaking sector
is exemplified by the minimal Higgs model® and can be
more generally understood from the perspective of the
low-energy theorems. In the Higgs model the scalar in-
teractions are given by the potential

V(w,H):%[(wz—f—Hz)z—vz]z, (1.3)
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where w is a triplet of scalar particles and H is a fourth
scalar field. Assuming the vacuum state is given by the
classical minimum at w=0, H =v, and redefining H to
have vanishing expectation value, the potential becomes

2

V(w,H)=%(W2+H2)2+MH(W2+H2)+ '"T”Hz ,
(1.4)

where the mass of the Higgs boson is
my*=2\0? (1.5)

and the w remain massless, being the Goldstone bosons
associated with the spontaneous symmetry breakdown of
the global SU(2), XSU(R2)gr symmetry to the diagonal
subgroup SUQ). ,r (Ref. 6). Upon including the
SUQ); x U(1) gauge interactions, the triplet w becomes,
by virtue of the Higgs mechanism, the longitudinal modes
of the gauge bosons, W; and Z;, which by the
equivalence theorem® continue to interact at energies large
compared to their masses according to the interactions of
Eq. (1.4). The correlation between Msp and Agp is then
exemplified by Eq. (1.5). More precisely the onset of
strong coupling may be said to begin at my=1 TeV
where the Born approximation amplitudes for s >>mpy?
saturate partial-wave unitarity.” The interpretation of this
fact is not that the parameter my cannot be larger than 1
TeV or that A/4m cannot be larger than ~2/7 but that
for larger my or A the quantum corrections become as big
as the Born terms, i.e., that the theory becomes strongly
interacting. (Of course there is no guarantee in the
strong-coupling regime that mpy corresponds to the mass
of an observable particle.)

It was shown in Ref. 3 for a particular class of strong-
ly interacting models that current algebra, PCAC (par-
tial conservation of axial-vector current), and the
w — W; equivalence theorem together imply low-energy
theorems for W, , Z; scattering that are valid to all or-
ders in the strong coupling Agg. The class of models dis-
cussed there had a global SU(2);, XSU(2); symmetry
that breaks spontaneously to the diagonal SU(2); ,
subgroup, with the triplet w=uw ¥,z identified as the as-
sociated Goldstone bosons. The latter SU(2); , g invari-
ance, known as the custodial SU(2),8 is sufficient (though
not proven necessary) to guarantee that p=1 to all or-
ders in the strong coupling Agg. The minimal Higgs
model is one example of such a model. In another con-
text and at a different mass scale, QCD is another exam-
ple. In fact, if we identify w—m, H—0o, and v=0.25
TeV—F_=93 MeV, then the minimal Higgs model be-
comes precisely the pre-QCD o model that was devised
to illustrate the spontaneously broken chiral symmetry
of hadronic physics.

Just as Weinberg® proved pion-pion scattering low-
energy theorems, such as

Mrtr™ 700 = — (1.6)
F

m

for all models of hadronic physics in which the pions are
Goldstone bosons associated with SU(2); X SUQ)g
—SU@)isospin» S0 for all models of the symmetry-
breaking sector with a custodial SU(2) invariance, we

have, in the Landau gauge,

./I/L(w+w‘—>zz):i2 . (1.7)

v
Equation (1.6) is valid for s much smaller than the masses
of exchange quanta and much smaller than the scale
47F,~1 GeV set by quantum corrections.!® Similarly
Eq. (1.7) holds for s << Agg? where

Asp=min{Mgg,4mv} (1.8)

provided there are no exchange quanta with masses much
lighter than the characteristic scale of the spectrum, Msg.
For energies large compared to My the equivalence
theorem asserts that U-gauge scattering amplitudes for
longitudinally polarized W’s and Z’s are equal to the R-
gauge amplitudes of the corresponding w and z Goldstone
bosons:

c g =Mw(p)wipy), R
My
E;

MWL (p), Wr(p,),

+0 (1.9)

The equivalence theorem was proved to leading order by
Cornwall, Levin, and Tiktopoulos.!! As is essential for
applications to strongly coupled theories, it was proved to
all orders in Ref. 3.

Combining Egs. (1.7) and (1.9) we obtain the low-
energy theorem for the physical amplitude valid in the
energy domain M% <<s << Agg’:

s

1)2

MWW, -Z1Z; )~

g’s

~—52 (1.10)
AMy

where we use the relation My =gv /2 that is valid up
to electroweak corrections and corrections of order
Mu?/Asg® (see the discussion of effective Lagrangians,
Sec. IV). Similarly we find two other independent ampli-
tudes:

2

_ _ g2u
MWW W W )~ — 4MW2 .

(1.11)

MZLZ, —~Z,Z;)~0 . (1.12)

The other four scattering amplitudes, elastic scattering of
WEZ,, Wit Wi, and Wi W, follow from Egs. (1.10)
and (1.11) by crossing symmetry:

2
+ + 8t
MWirZ, —>WiZp)~ 4MW2 s (1.13)
MWW W WE_)‘:./M(WL_ Wi —->Wg Wr)
2
~——52 (1.14)
4My

In this paper we will not assume that the symmetry-
breaking sector has a custodial SU(2) invariance, since
there is no proof that it is necessary to obtain p=1. We
will show that the low-energy theorems (1.10) and (1.11)
are, in general (again for M2 <<s << Asg?),
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MWWy -2, 7))~ 85 L (1.15)
LWL LLr Myt p .
MWW Wi W) e B4 |43 (1.16)
LWL LWL )= AM 2 o |’ .

while Eq. (1.12) is not modified. Of course, for p=1,
Egs. (1.15) and (1.16) agree with the low-energy ampli-
tudes that were obtained assuming a custodial SU(2)
symmetry. The experimentally established constraint
that p=1, accurate to a few percent, therefore implies
that the low-energy theorems are essentially given by
Egs. (1.10)—(1.14) whether or not the symmetry-breaking
sector has a custodial SU(2) invariance. In essence the
arguments given below show that the condition p=1 im-
plies that the Goldstone-boson triplet sector must
respect an effective custodial SU(2) symmetry at low en-
ergies.

We have used three different methods to establish
these results: a power-counting analysis carried out in
the unitary gauge, a current-algebra derivation in the
Landau gauge that uses the equivalence theorem, and a
derivation by effective chiral Lagrangian which can be
applied to U or R gauges. In a previous Letter'? we
presented the U-gauge power-counting analysis. In this
paper we will emphasize the current-algebra and
effective-Lagrangian approaches, which are more natural
languages for the discussion of dynamical-symmetry-
breaking models such as technicolor!'® and ultracolor.'*
The many successes of current algebra and effective La-
grangians in hadronic physics give us confidence that
they are appropriate tools as we look toward the possible
discovery of a new spectrum of strongly coupled parti-
cles. The effective-Lagrangian technique has the addi-
tional advantage that we can use it to study the devia-
tions from the low-energy theorems that could be in-
duced by pseudo-Goldstone bosons.

The plan of the paper is as follows. In Sec. II we
sketch the U-gauge power-counting analysis, previously
presented in Ref. 12. This derivation shows directly that
the low-energy amplitudes, Egs. (1.12), (1.15), and (1.16),
are dictated by SU(2)p X U(l) gauge invariance alone.
The perturbative framework of the analysis is more natu-
rally applied to elementary Higgs models than to dynami-
cal theories.

Section III contains the current algebra derivation,
which is similar to Weinberg’s derivation® of the pion-
pion scattering lengths. Where Weinberg’s derivation
uses PCAC and the SU(2); X SU(2)g algebra of charges,
our derivation uses PCLC (partially conserved left-handed
current) and just the SU(2), algebra of charges that must
exist because of the SU(2), gauge invariance.

In Sec. IV we show that the most general effective La-
grangian also implies the amplitudes, Egs. (1.12), (1.15),
and (1.16). This is perhaps the most elegant means to
the low-energy theorems. The chiral Lagrangian is
gauge invariant. In an R gauge its tree amplitudes
reproduce the current-algebra results, while in the U
gauge it provides a justification of the U-gauge power-
counting analysis.

Section V contains some concluding remarks. We
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give an incomplete discussion of the effect of light
pseudo-Goldstone bosons: for amplitudes involving only
W* bosons the sign of their effect is easily deduced but
for mixed amplitudes of W and Z bosons the question is
under study. The section concludes with a very brief
description of the phenomenological implications of the
low-energy theorems.

II. PERTURBATIVE ANALYSIS

In this section we sketch a derivation of the low-energy
theorems using a power-counting analysis carried out in a
perturbative framework. This argument has been present-
ed elsewhere'? and the discussion here will be very brief.
The essence of the argument is to divide the U-gauge
scattering amplitude into a gauge sector term, involving
only vertices and exchange quanta from the gauge sector,
and a symmetry-breaking sector term, including exchange
quanta from the symmetry-breaking sector. The first
term has “‘bad” high-energy behavior that is canceled by
the second term. However, at low energy the second term
is negligible if all exchange quanta from the symmetry-
breaking sector are heavy. Then the low-energy ampli-
tude is just given by the gauge sector terms, which are
precisely the low-energy theorem amplitudes Eqgs. (1.12),
(1.15), and (1.16). This derivation shows that the low-
energy theorems in the form of Egs. (1.12), (1.15), and
(1.16) are determined by gauge invariance alone. As dis-
cussed in the previous section, the perturbative framework
of the analysis may be less appropriate than the current-
algebra and effective-Lagrangian approaches for dynami-
cal models in which the observable spectrum of the
symmetry-breaking sector are composites of the quanta
that appear in the Lagrangian.

Consider first the minimal Higgs model. Though we
will deduce the low-energy amplitudes to all orders in the
strong coupling A=mpy2/2v?%, we begin by computing the
U-gauge tree approximation amplitude for
WL WL ""ZLZL ats >>MW21

MW Wi —Z1Z1)=Mgange+Mss , (2.1)
where
2
gs 1
Mgauge: 4MW2 ; (22)

is given by u- and t-channel W exchange and by the four-
point gauge-boson coupling and
g2 s
MSB 4MW2 S —1"11-[2
is just the s-channel Higgs pole. Since at the tree level in
this model we have p=1, the terms linear in s cancel for
s>>mpy?, as they must to ensure renormalizability. But
for s <<mp? the amplitude is dominated by M 45, alone.
The power-counting analysis that is sketched below shows
that the decoupling of Msp at low energy is a general re-
sult provided all exchange quanta from the symmetry-
breaking sector are heavy. Then the only strong correc-
tions that do not decouple at low-energy are incorporated
into the renormalized physical values of My and p that
appear in Eq. (2.2).

(2.3)
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We illustrate this conclusion by considering a general
Higgs model, in which all physical scalars are assumed
heavy, of order MsgR 1 TeV. One-loop corrections from
the scalar sector are shown in Fig. 1. Figures 1(a)-1(c)
are quadratically divergent contributions to the vacuum-
polarization tensor. For instance, after minimal subtrac-
tion of the divergences, the finite contribution of Fig. 1(a)
is

2p—q ¥ (2p—q)”
ngd4p : (qu)(_l’ 2‘1_) -
(p*—Msp*)[(p—q)"—Msp”]

subtracted

=g"(g? AMsp’ +g*Bg*+ -+ )

(2.4)

2
+g"q” g’ C+g DI — 1+ - |,
Msp

where 4,B,C,D are dimensionless numbers and logarith-
mic dependence on Mgg is neglected here and elsewhere.
The g2 AMy? term contributes to the gauge-boson self-
energy. As a fraction of the tree-level mass it is just an
O(Agp) correction:

SMy? g Msp®

M2 ~ g2 ~Asp

[for instance, see Eq. (1.5)]. The g2Bg? term gives an
O(ay /m) contribution to the wave-function renormal-
ization. Adding internal scalar lines to the loops of Figs.
1(a)-1(c) modifies these one-loop results by additional
powers of Agg. Thus the gauge-boson masses are strong-
ly renormalized while the corrections to the wave-
function renormalization are screened (modulo loga-
rithms) by one power of ay /m=g?2 /4.

Like the wave-function renormalization, the one-loop
scalar corrections to the three-gauge-boson vertex [Fig.
1(d) and other diagrams with one or two internal scalars
replaced by gauge bosons] are only logarithmically diver-
gent and on dimensional grounds the leading finite con-
tribution to the gauge coupling constant renormalization
is at most O((ay /m)InMgg). Again, to higher orders in
the strong scalar interactions this correction is multi-
plied by additional powers of Agg. Finite-momentum

(c) /\/\/\QW\/ (d)

FIG. 1. Quantum corrections from symmetry-breaking sector.
Curly lines represent gauge bosons and straight lines represent
physical scalar or pseudoscalar bosons from the symmetry-
breaking sector.
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form-factor effects are suppressed by powers of Q2/Mgg?
where Q is the external momentum scale.

The one-particle-irreducible (1PI) scalar loop contribu-
tions to the W, W, scattering amplitude [Fig. 1(e) and
other diagrams with one, two, or three scalar propaga-
tors replaced by gauge bosons] make an at most
logarithmically-divergent contribution to terms in the
amplitudes that are linear in s, ¢, or u. Dimensionally
the dependence on Mgg of this contribution to the low-
energy amplitudes is at most logarithmic, so that Fig.
1(e) also makes no O(Agg) correction to the tree approxi-
mation. Relative to the tree amplitudes, Egs. (1.15) and
(1.16), it contributes corrections of O(ay /7m) or
O((aw /m)(s /My?)), multiplied by factors (s/Mgp*)"
for integer n>0. The O((a/7)s/My?) terms corre-
spond to the O(s/(4mv)?) terms expected from loop
corrections in the phenomenological Lagrangian ap-
proach.'®

Finally there are strong renormalizations of the scalar-
boson self-energies, indicated generically in Fig. 1(f).
These could affect the leading threshold behavior of the
W W scattering amplitudes if they were to induce a pole
in the complex energy plane with real and imaginary parts
small compared to Msg. This possibility is excluded by
the assumption that there be no physical particles in the
spectrum of the symmetry-breaking sector that are light
compared to the typical scale Mgg. If light scalars do ex-
ist, they can in different cases increase, decrease or leave
unaffected the low-energy amplitudes Egs. (1.15) and
(1.16).

The conclusion is that My and Mz are strongly renor-
malized by order Asp effects while all other corrections to
the low-energy W, W, amplitudes from a strongly in-
teracting Higgs sector are screened by a power of ay /7
or suppressed by powers of s /Agg?. This establishes the
validity of the low-energy amplitudes [(1.12), (1.15), and
(1.16)] where p and My are the physical values, incor-
porating the strong quantum corrections from the Higgs
sector.

The same power-counting analysis applies if the
symmetry-breaking sector also contains heavy fermions.
The one-fermion-loop contributions to the vacuum-
polarization tensor induce O(Agg) renormalizations of
My, and M, [where now Asg~ (gMr/2My )? ~(Mgg /v )?
with Mg~ Msp the heavy-fermion mass], while the one-
fermion-loop contributions to the three- and four-point
gauge-boson amplitudes are screened by ay /m or by
s/Mgg? (Ref. 15). These conclusions also hold if the fer-
mions carry the charge of a strong unbroken non-Abelian
gauge symmetry as in technicolor models. Higher-order
corrections due to the strong gauge interaction then modi-
fy the one-loop corrections by powers of the strong gauge
coupling constant. However, for theories of this kind,
which are probably confining, we prefer the current-
algebra and effective-Lagrangian methods that we turn to
next.

III. CURRENT-ALGEBRA DERIVATION

In this section we present a current-algebra derivation
of the low-energy theorems. As in Ref. 3 we work in a
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renormalizable gauge and use the equivalence theorem,
discussed in the Introduction, to obtain the W;,Z; am-
plitudes. The present derivation differs from Ref. 3 in
that it does not make use of the full SU(2); X SU2)x glo-
bal symmetry

[La!Lb]:ieabch s 3.1
[Ra ’Rb]:ieabcRc ’ (3.2)
[Ls,R,]=0, (3.3)

used by Weinberg® to obtain the pion-pion scattering
lengths. Instead we use only the SU(2); charge algebra,
Eq. (3.1), which is necessarily satisfied in the symmetry-
breaking sector in order to satisfy electroweak SU(2),
gauge invariance. Consequently our derivation is valid
whether or not there is a custodial SU(2) symmetry and
applies for all values of the p parameter.
The currents L} can in general be expanded as

L#:—%‘faa#wa +%‘raeabcwba#wc+ T, (3.4)

where f, and r, are constants (no sum on a) and the
omitted terms involve the non-Goldstone fields and/or
carry higher operator dimension and are suppressed by
powers of the large parameter Asg. The w, are just the
three Goldstone bosons which mix with the W and Z
gauge bosons. Signs and factors of two are chosen to
make contact with the usual L =(V — A4)/2 current. The
charges appearing in Eq. (3.1) are

Le= [ d*xL%x,0) . (3.5)
The unbroken U(1) of electromagnetism requires
fi=ra (3.6)
and
Fi=r; . (3.7)

If there were a custodial SU(2) we would also have
f1=f3 and r;=r;. In general f,/f; is related to p by
considering the contribution of the Goldstone bosons to
the vacuum-polarization tensor (L#L}). Up to correc-
tions of order a and/or (My /Agg)?* the gauge-boson

masses are
Mw=%gf1 , (383)
|
. . Te€ace€bde 4 4 —ip,
lim M, p.cq=2is + pipl | d'x e
PgsPc—0 @oe fafc fafc ane f

“*(d | TLMOLY(x)|b) ,

Mz =1gf3/cosOy , (3.8b)
from which we deduce

f1=0~0.25 TeV (3.9)
and

p=f1/f3)*. (3.10)

The r, are determined by the SU(2), charge algebra,
Eq. (3.1). In particular, they are determined by the com-
mutator of the f3%w term in LY with the rw X 3% term in
L§ to yield the f3°w term in L2 on the right-hand side of
Eq. (3.1).

The result is

Fi=r;=—= (3.11a)

1

r3 =2——".
P

These results establish the claim made in Sec. I that
p=1 implies an effective low-energy custodial SU(2) for
the Goldstone-boson triplet. For p=1 we have
fi=f,=f; and r;=r,=r;=1, so that the purely
Goldstone-boson components of the current LY can be
decomposed into vector and axial-vector terms, L*
=1(V¥—Al)+ ..., where the vector component
Vi = 1€ W,0“w, generates the custodial SU(2) for the
Goldstone sector under which the axial-vector com-
ponent A}=1f0d*w, forms an isotriplet.

Next we use the standard current-algebra soft-pion
method, similar to Weinberg’s derivation of the 77 low-
energy theorems, except that we work in the Goldstone
limit with d,L4 =0. The fundamental equation is then

(3.11b)

[ d*xaty e P (d | TOL,(»BL(x) [b) =0 .
(3.12)

Integrating twice by parts and taking p,,p.—0 we find a
term proportional to M, p.q4, the amplitude for
w, W, — W, Wy scattering, that arises from pole diagrams in
which the currents L} and L/ create w, and w. bosons.
Using the form of the current in Eq. (3.4), we find

(3.13)

where s=(p, +ps)*. The first term arises from the commutator Eq. (3.1) and the second contributes in leading order
only if there are s-, ¢-, or u-channel pole contributions from massless particle exchanges.

In Weinberg’s derivation there are no pole terms because the J4 7w vertex is forbidden by G parity, but in our case
there is an Lww vertex and pole terms do contribute. Assuming w and z are the only light particles we evaluate ex-
plicitly their contribution to the pole terms. The result for the sum of the equal-time commutator term and the pole
term is

lim '/na,b;c,d=_£— 2re —Falc)€ace €bde - (3.14)

(
PaPc—0 fafc

Bose symmetry, U(1) invariance, and crossing symmetry constrain the low-energy expansion of the off-shell scattering
amplitude to have the form
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My p.cqa=(873823838%)(A4,)4 (873853 A +83893A%) A, + B, (t +u)+C,s]
+ (89383 A 1 §93893AC) Ay + By (s +u )+ Cayt ]+ (87383 A% 4 89384 A%)[ A, +By(s +1)+Cyu )
+(AAN[ A3+ By(t +u)+Cys ]+ (A“A")[ A3 +Bs(s +u)+Cst ]

+(A“AP) A3+ By(s+1)+Caul+ -,

(3.15)

where s = (pg +pp )%, t =(ps +pc ), u={(p, +ps)% and A;,B;,C; are constants. The tensor A% is defined by

Aob_ 1 if i=j5£3,

— |0 otherwise

and 8% is the usual Kronecker 8.
From Eq. (3.14) we see that

A1=A,=A43=0.

(3.16)

(3.17)

Since on mass shell s +¢ +u =0 the leading low-energy behavior of the amplitude is determined by just two constants

D[EC,'—B[, l=2,3

ma’b;cvd2(8“38b3A0d+SCSBdSAab)DZS+(8a3803Abd+8b38d3A06)D2t

+(8b3803Aad+8a38d3AbC)D2u+AabAcdD3s+AacAbdD3t+AadAbcD3u .

By comparing Eq. (3.18) with Eq. (3.14) we extract the
full content of the current-algebra result. In the limit
Pa,c —0, Eq. (3.18) becomes

lim ‘/n‘a,b'c y =(5a36b3Acd+8c38d3Aab
pa,pCﬁO T

_8b36c3Aad~8a35d3AbC)D2S
+(A%AD _A%A)D,s . (3.19)

Comparing Eqs. (3.19) and (3.14) for various values of
a,b,c,d we determine D, and Dj; to be

]

D2=7;}:(2f1—7’17‘3) s (3.20a)

Dy=—2r,—r?), (3.200)
fi

or, using (3.9)-(3.11),

p,=LtL, (3.21a)
vip

Dy=-Lt |42 (3.21b)
v P

Substituting these values of D, and D; into Eq. (3.18)
and using the equivalence theorem it is easy to verify
that we have recovered (up to an overall phase conven-
tion) precisely the low-energy theorems Egs. (1.12),
(1.15), and (1.16). Since the equivalence theorem re-
quires Ey >>My,, the W;,Z; scattering theorems de-
rived in this way hold for the intermediate domain be-
tween My, and Agg, just as was found in the U-gauge
derivation of Sec. II.

IV. EFFECTIVE LAGRANGIAN

An effective field theory analysis of the physics below
Mg begins with a specification of the symmetry structure

(3.18)

[

of the symmetry-breaking sector. The physics of
SU(2) X U(1) breaking in the absence of the electroweak
gauge interactions, whatever it is, has some initial global
symmetry G that is spontaneously broken by the
symmetry-breaking dynamics to a global-symmetry group
H that describes the symmetry of the vacuum state. As-
sociated with this spontaneous breakdown is a
Goldstone-boson manifold G/H. When the electroweak
interactions are gauged, some or all of these Goldstone
bosons are absorbed by the Higgs mechanism. The prop-
erties of the absorbed Goldstone bosons determine the
properties of the longitudinal-polarization states of the
massive gauge bosons. The reason that the effective field
theory language is useful is that the properties of the
Goldstone bosons at energies small compared to Msg are
almost completely determined by the structure of the
symmetries.

The global-symmetry group G must contain electro-
weak SU(2) X U(1), generated by T, for a=1 to 3 and S.
Furthermore, the unbroken-symmetry group H must con-
tain the combination 73+S, in order to preserve elec-
tromagnetic gauge invariance, but must not contain the
other SU(2) generators. If we also demand that the only
Goldstone bosons associated with the symmetry breaking
are the three that are eaten by the W< and Z in the Higgs
mechanism, then, as shown at the end of this section,
there are precisely two possibilities for the symmetries.
Either G is SUQ2)XSU((2) and H is SUQR), or G is
SUQ2)XxU(1) and H is U(1). The first is the usual scheme
in which there is a custodial SU(2) symmetry that ensures
p=1. We will discuss only the SU(2)x U(1)/U(1) case,
because SU(2)xSU(2)/SU(2) has been discussed exten-
sively elsewhere.'®

To construct the effective Lagrangian, we follow the
instructions of Coleman, Wess, Zumino, and Callan!’
(CWZC). Because the global-symmetry group G and
gauge group are the same, we will not distinguish their
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generators. Thus we let 7,, a =1 to 3 [for the SU(Q)],
and S [for the U(1)] be the generators of G, and T3+ be
the generator of H. We can let these generators act on a
two-dimensional space in which

T,=lo,, S=11, @.1)

where the o are Pauli matrices. We can take the broken
generators to be the T,. Then we construct the effective
Lagrangian in terms of fields obtained by exponentiating
the broken generators

g=e'Tavala 4.2)
Note that we cannot assume that the decay constants of
Goldstone-boson fields are all equal, because we are not
imposing any custodial SU(2) symmetry. Under an
SU(2) X U(1) transformation, £ transforms as

E—~&=géh',

where g is an

(4.3)

: SU@2)xU(1)  transformation,

=e'% T"&“‘“, and A is a transformation in the unbroken
uQ), h=e™T3"5 chosen to make the £ field an ex-
ponential of broken generators, as in Eq. (4.2). In gen-
eral, u is a nonlinear function of the €'s and the
Goldstone-boson fields, but in this instance, it is easy to
see that we must choose u =€4. Thus we can write the
transformation simply as a linear transformation on the &
field as

E—&=g'ch'",

ie, T, . .
where g'=e ° ¢ and h'=e It is convenient to use

Eq. (4.4) and build our effective Lagrangian out of &’s.
Consider first, the effective action as a function of £ and
the gauge fields:

S(&,Wk,B") .

(4.4)

LIV

(4.5)

The action S is invariant under a gauge transformation of
the form of Eq. (4.4) on £ and transformation of the gauge
fields of the form

Wio,—g Whoag' —i

BH_BH_ cosf

8#64.

Now consider a gauge transformation of this form with
g'=§+ and h'=1. This gives

S W BH)=SI, Wy, ,B*) , 4.7)
where
i - WH F i W
wu— S0 o etDre), w;_z—L_—% , (4.8
V2
with the covariant derivative D # defined by
D HE=HE+i— o WH-T 4.9
DHFE=0FE+i Py £ . (4.9)

The derivative D is covariant with respect to SU(2)
gauge transformations. Thus the W’s in Eq. (4.8) are
nonlinear functions of the Goldstone-boson fields that
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transform as SU(2) singlets, so that the SU(2) gauge in-
variance imposes no further constraints on the action of
Eq. (4.7). Under the SU(2)XU(1) transformation, Eq.
(4.4), only the U(1) factor is relevant and the W’s trans-
form as

sin@
e

*ie,
otes, WH—e  *WH |

WE— WY —

(4.10)

If we now define

A" =BFcosO+ WHsinh, Z'=W%4cos@—B*sin6 , (4.11)

then we can write the SU(2) X U(1) transformations as

A A — ey, TP ZH, Whse CWE L 412)
This has the form of ordinary electromagnetic gauge in-
variance. Thus we have reduced the problem to the sim-
ple one of finding a U(1)-invariant action of the nonlinear
functions A, Z, and W.

The most straightforward use of the effective Lagrang-
ian, in this context, is to justify and make precise the
unitary gauge argument of Ref. 12. The above argument
shows that the manipulations we do in the unitary gauge
argument have exact analogs in the effective Lagrangian
in an arbitrary gauge. All we have to do to construct
the effective Lagrangian is to build a theory of A4’s, W’s,
and Z’s consistent with electromagnetic gauge invariance
and then make the replacements 4 —A, etc. If we then
g0 to unitary gauge by requiring the Goldstone boson
fields to vanish, so that £=1, the nonlinear fields reduce
back to their linear counterparts, A — A4, etc. Thus we
have merely constructed the most general theory of pho-
tons, W’s, and Z’s. The advantage of the effective La-
grangian is twofold. We can work in any gauge and,
even more important, we can use the general properties
of effective Lagrangian to estimate the corrections to
lowest-order relations.

To estimate the size of terms in the effective Lagrang-
ian, we briefly review standard power-counting rules.'®
A typical term in the action of Eq. (4.5) involves the di-
mensionless field § and derivatives and the external (that
is, not directly involved in the strong interactions that
produce the effective Lagrangian) fields (e/sin6)W{ and
(e/cos@)B*. The power-counting rules state that if each
of these dimensional quantities is divided by Mg, then
the coefficient of the term is of order

v:Mgg? where v =Mgg /41 . (4.13)

It follows from these power-counting rules that the quan-
tity v in Eq. (4.13) is roughly equal to the decay constants
of the Goldstone bosons produced by the symmetry
breaking, the f; of Eq. (4.2). In this case, of course, f is
the v =250 GeV of SU(2) x U(1) breaking.

It follows that we expect the terms in the effective ac-
tion as a function of W and B to have the form of
coefficients of order 1 times

"I eWH /sind
Msp

ny ny

v
Msp

eB" /cosf
Msp

1)21‘45132 |

(4.14)
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The only terms that will not obey this power-counting
rule are the kinetic energy terms of the gauge bosons.
The conventional contribution

Lgg=—sWE'Wou—+B" By, (4.15)

comes directly from the electroweak gauge theory. It is
not produced by the strong symmetry-breaking interac-
tions and thus does not obey the counting rules. Note,
however, that W/'W,,,=WiW,,, so that Eq. (4.7) is
still valid. Similar terms are produced by the effective
Lagrangian, but they are much smaller.

We can now systematically analyze the terms produced
by the strong symmetry-breaking interactions, using Eq.
(4.14). The leading terms are those with ¥n;=2. The
only possibilities are the ‘“mass terms:”

ev? e?v?

Lmas =0 29 W Weut

u
8p sin’6 cos?0 2Ly 416
In Eq. (4.16) we have chosen v and p to give the leading-
order mass relations for the W and Z. This determines
the Goldstone-boson decay constants, to leading order, so
that ) and f, are equal to v and f3=v/Vp.

There are many terms with Sn;=4. There are terms
with two derivatives and two W’s. In unitary gauge,
these are corrections to the gauge-boson kinetic energy.
These terms are smaller than the terms of Eq. (4.15) by

factors of order

vl e? o«

S m———=¢. 4.17)
Mgg© sin“0  4msin“6

Il

There are also terms with one derivative and three Ws,
and other terms with four W’s. In unitary gauge, these
are corrections to the gauge couplings of Eq. (4.15), also
smaller than the corresponding terms in Eq. (4.15) by
factors of order €.

Terms with 3 n; >4 correspond, in unitary gauge, to
operators of dimension higher than four in the gauge
fields. Their coefficients are of order € times (1/Msg) to
the appropriate power.

All of the nonleading terms in the effective Lagrangian
produce effects that are suppressed, compared to the
leading contributions, by powers of (E /Msg), where E is
a typical energy (V's, for example). These effects are
small in the kinematic region My?<<s <<Mgg?, but
they become as big as the leading terms as s approaches
Mgg?, where the underlying strong interactions begin to
show up.

One of the most important morals of the above analysis
is that effective-Lagrangian arguments can be used to
make sense of calculations in unitary gauge. The non-
renormalizable interactions in the unitary gauge theory in-
troduce cutoff dependence in the infinite tower of nonlead-
ing terms. However, when all that cutoff dependence is
absorbed into the physical parameters, the remaining
effects of the nonleading terms are small, of order
E /Mgg, in the kinematic region in which the effective-
Lagrangian analysis is valid. Thus we conclude that the
unitary gauge argument of Ref. 12 is perfectly valid.

We can also obtain the desired result for longitudinal
WW scattering from the effective Lagrangian by working

in Landau gauge and using the “equivalence theorem” of
Chanowitz and Gaillard.> We simply calculate the invari-
ant scattering matrix element for the Goldstone bosons
and identify this with the matrix element for the corre-
sponding longitudinal gauge bosons:

/’/LU gauge( WII‘ Wi g Wllf WII, )

:-/nLandau gauge(wiwl‘—>wkwl)+O(MW2/S) , (4.18)

where W is the longitudinally polarized W.

In the Landau gauge, the “mass term” of Eq. (4.16)
comes apart into a W mass term, a w kinetic energy term
and an infinite series of terms describing the derivative in-
teractions of the w fields. To calculate the leading contri-
bution to the scattering we need the 3- and 4-w vertices.
Note that in the absence of a custodial SU(2) symmetry,
both the 3- and 4-w vertices are present. The G parity
that forbids the 3-w couplings in the SU(2) X SU(2)/SU(2)
calculation is explicitly broken for ps~1. If we put Egs.
(4.2), (4.8), and (4.11) into Eq. (4.16) and expand the ex-
ponential, we can calculate these vertices explicitly. Then
a straightforward calculation gives the result

2

M(w1w1‘>w3w3)=ﬁ2— ,
ZVP 4.19)
g 3
Mwiw;—wrw;r)= -1,
1w 2W2 aMy? p

in agreement with the unitary-gauge result and the
equivalence theorem.

The discussion in this section has treated the
SU(2) x U(1)/U(1) case. Similar  treatment  of
SU(Q2) x SU(2)/SU(2) can be found in many places. Let us
close by showing that these are the only two possibilities,
as long as we assume that there are no other light parti-
cles. The important point is that if there are no extra
light particles, then the mechanism responsible for
SU((2) X U(1) breaking cannot produce any Goldstone or
pseudo-Goldstone bosons except those absorbed by the
Higgs mechanism.

The generators T, and S cannot be part of the same
simple subalgebra of G, because no simple algebra except
SU(2) can be broken down to a subalgebra with only
three fewer generators. Let ¢ be the simple [or U(1)] fac-
tor of G that contains the T,, s be the simple factor that
contains S, and r be everything else. Because the W and
Z correspond to broken generators in ¢ and s, and be-
cause we have assumed that only three Goldstone bosons
are produced by the symmetry breaking, r cannot be
broken at all. Thus 7 is a common factor of G and H, ir-
relevant to the structure of the Goldstone-boson mani-
fold, and we can ignore it. Now if either ¢ or s is larger
than SU(2), it must remain unbroken, or else there
would be more than three Goldstone bosons. But then
the other factor must be completely broken and 73+S
will not be in H. Thus the only possibilities are those we
have considered. Of course, it may be that there are ac-
tually additional pseudo-Goldstone bosons produced, in
which case there may be additional light particles below
Mg. This possibility is briefly discussed in the next sec-
tion.
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V. CONCLUSION

We have derived low-energy theorems for the longitudi-
nal modes W, ,Z; of the SU(22)X U(1) electroweak gauge
theory that are valid for W,Z energies in the domain
My? << E? << Asg® where Agg is defined in Eq. (1.8). The
theorems are derived for any value of p and therefore do
not assume the existence of a custodial SU(2) symmetry.
We have demonstrated the result by three methods. The
perturbative U-gauge analysis shows that the low-energy
amplitudes are a consequence of the gauge sector interac-
tions and the decoupling of the heavy-symmetry-breaking
sector as indicated by naive power counting. The
current-algebra R-gauge derivation stresses the analogy
with pion low-energy theorems, with a technical difference
due to the absence of an isospin counterpart [custodial

(2)] and G parity in the general case. Finally, the
effective Lagrangian provides a succinct formulation in
any gauge: applied to the U gauge it justifies the power
counting of the perturbative analysis while in the R gauge
it is the analogue of the pion effective Lagrangians and
reproduces the current-algebra results.

The low-energy amplitudes given in the text assume, as
do the pion low-energy theorems, that there are no light
spin-zero exchange particles which could contribute to the
low-energy scattering. While some special cases are easily
understood, we have not obtained a general formulation
of the effect of light particles, such as pseudo-Goldstone
bosons, on the low-energy W ,Z; scattering amplitudes.
A trivial example is given by the global symmetry
G=SU(@3); xSUB3)g, as in three-flavor QCD, which
would result in five pseudo-Goldstone bosons, the coun-
terparts of K and 7. Just as in QCD where K and 7 do
not modify the pion low-energy theorems, in the elec-
troweak theory the W;,Z; amplitudes would also be
unaffected.

It is also easy to see that the sign of the effect of light
particles on amplitudes involving only W¥ but not
Z, WW — WW, is trivially fixed by the electric charge of
the light exchanged particle, since only the square of the
absolute value of the WW coupling appears in the ampli-
tude. For neutral scalars, as for the ordinary Higgs bo-
son, the effect is to diminish the magnitude of the ampli-
tude, while for Q =2 scalars the amplitude is increased.
Similar rules will apply to WW —ZZ and WZ — WZ if
there is a custodial SU(2) symmetry relating the cou-
plings of the W and Z bosons to the light exchange par-
ticles, but not in general. While the results of the
preceding sections show that the low-energy W, ,Z; in-
teractions with one another do respect an effective low-
energy custodial SU(2) if p=1, we have not yet investi-
gated the question of their interactions with possible
pseudo-Goldstone bosons. An SU(4)/SU(2) model pro-
posed recently by Chivukula and Georgi'® should be a
useful theoretical laboratory for studying this question.

The principal phenomenological use of the low-energy
theorems is to estimate the magnitude of the longitudinal
gauge-boson-pair signal that would be observed due to the
WW fusion mechanism!® at multi-TeV colliders. If one
imagines that the pion had been discovered before the pro-
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ton or neutron or any other hadron and that it had been
recognized as a Goldstone boson, then we can formulate
the analogous problem: given only F,=93 MeV, what is
the energy scale at which strong interactions set in and
hadron resonances occur? Naive extrapolation of the
low-energy theorem for the I =J=0 partial-wave ampli-
tude

N

— (5.1)
167F,*

ag(mm)=

suggests a scale of 4V7F,~700 MeV whereas the
I=J=1 amplitude would suggest a scale that is larger by
V'3 or 1100 MeV. These values are the order of magni-
tude of typical low-lying hadron masses and, not coin-
cidentally, of the energy scale at which pion-pion scatter-
ing saturates unitarity. It is also, again not coincidentally,
the scale set by one-loop corrections in low-energy chiral
Lagrangians. °

If the electroweak SU(2)XU(1) is broken by new
strong-interaction dynamics, then the W,,Z; low-
energy theorems suggest a scale of 4V'7v ~1.8 TeV for
the onset of strong interactions and the emergence of
resonances. The experimental implications of this expec-
tation have been explored in preliminary fashion for
proton-proton colliders** with the conclusion that a col-
lider with the SSC design parameters, V's =40 TeV and
L=10% cm~%sec™!, is near the minimal configuration
needed to be sure of seeing the strong-interaction signal
from WW fusion. More detailed studies, corresponding
more closely to experimentally implementable signals,
are presently in progress.”’ A similar investigation for
electron-positron colliders concluded that a colhder of
Vs =3-5 TeV and L=(1-2.5x10"® cm™sec™! is
needed to be able to observe the generic strong-
interaction signal.?!

A collider with the capability to see the strong-
interaction signal puts us in the enviable position of be-
ing able to learn from either the absence or presence of
the signal. If the signal is absent, we learn that the
quanta of the symmetry-breaking sector are much lighter
than 1 TeV. In that case if the new quanta in the J=0
channel are near or above the WW threshold, they
would be copiously produced at the multi-TeV collider.
If the strong-interaction signal is seen, it means that the
new quanta are at the TeV scale or above. Then the
most likely possibility is that the masses of the lightest
states correspond to the TeV scale of the onset of strong
interactions, and that indications of resonance structure
will emerge not long after the first observations of the
strong-interaction signal.
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