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We reexamine the decay K+~~+m y within the context of the six-quark Kobayashi-Maskawa

model of CP violation. We estimate the short- and long-distance contributions to the matrix element

for direct photon emission. We argue that most of the matrix element is from the long-distance con-

tribution restricted to photons of magnetic polarization and does not contribute to any possible asym-

metry. Although this argument fits nicely with the existing experimental data, it implies that any po-

tential asymmetry must be less than 10 's2s3 sin6.

I. INTRODUCTION

The violation of CP symmetry is one of the few low-
energy observations which has no explanation within the
context of the standard model. It is believed that the ori-
gin of this phenomenon holds a key to the generation of
baryon asymmetry starting with big-bang cosmology. It
therefore holds a key to going beyond the standard model.

The original observation of the decay KL ~~~ as well
as the results of subsequent experimental observations are
all consistent with superweak theory in which a AS=2 in-
teraction is responsible for CP violation. With present ex-
perimental accuracy, many other models mimic the su-
perweak theory. Methods to distinguish these alternative
explanations of CP violation have attracted much theoreti-
cal and experimental investigation.

The most promising candidate for such a search is that
for nonvanishing e'. One problem with the e' measure-
ment is that it is suppressed by the EI= —,

' rule as

e = —Im( A 2 / A o )exp[i(52 —50)]

In Sec. II we repeat the phenomenological analysis
given by other authors together with an update of the ex-
perimental situation. In Sec. III we present an effective
Hamiltonian for K~m~y within the context of the KM
model. In Sec. IV we isolate the hadronic matrix ele-
ments needed to compute the asymmetry. In Sec. V we
give a very rough estimate of the short-distance contribu-
tion to the direct K~mm. y amplitude and find that the
predicted amplitude is too small by an order of magni-
tude. We then go on to discuss the long-distance contri-
butions. We argue that, unfortunately, most of the long-
distance contributions give M

&
transitions which cannot

contribute to the asymmetry. In Sec. IV we discuss real-
istic prospects for observing this decay. In Appendix A
we entertain the possibility of observing photon polariza-
tion. However unrealistic the measurement of the photon
polarization may be, the asymmetry involving the photon
polarization is sensitive to the M] amplitude and is pre-
dicted to be large. There is no kinematical suppression in
this asymmetry. For completeness we also discuss the
prospects for other electromagnetic decays.

While the search for e is in progress, it is worthwhile in-
vestigating the possibility of other processes which may
shed some light on this puzzle.

Other investigations in CP-violating phenomena have
led [at least within the context of the Kobayashi-Maskawa
(KM) model] to vanishingly small results. Fractional rate
differences in hyperon decays were found to be of order
10 (Refs. 1 and 2). Also muon polarization in

KL ~p+p predicts an asymmetry of 10 or less.
In this paper we reexamine the decay K*~~*~y.

It is hoped that the bremsstrahlung amplitude and in-
ternal photon emission amplitude will interfere to produce
a difference between I (K+ ~m+n. y ) and I (.K

y). The asym. metry can be maximized by choos-
ing the kinematical region in which the bremsstrahlung
amplitude is comparable to the direct photon emission
amplitude. This procedure is helped by the fact that the
kinematically enhanced bremsstrahlung amplitude is
suppressed by the AI= —,

' rule as the S-wave ~++ state
must have isospin 2. This possibility was emphasized
long ago and the decay was a subject of intense
research; to our knowledge, this possibility has been
forgotten since the advent of the standard model.

II. PHENOMENOLOGICAL ANALYSIS OF E+ ~m. +m. y

As mentioned above the decay in question proceeds by
two possible mechanisms.

(a) Bremsstrahlung emission First the ka.on decays by
E+~m. +m, and the two pions are in a state of angular
momentum 1~~=0. The final state changes under the
interchange of the two pions by a factor ( —1) +'; iso-
spin addition alone tells us that the final state must have
isospin I = 1 or I=2; however, I=2 is picked out as the
pions are bosons and this factor must be 1. At that
point the photon is emitted from the charged pion and
conservation of angular momentum is maintained if the
orbital angular momentum of the photon is opposite to
its spin. This is an electric-type transition with the ma-
trix element given by

l
A (K~~+ m )exp(i6~0) F„p+k', (2.1)

(q k)(q.p+

where A (K ~~~) is the amplitude for K+ ~~+sr, 62o
is the final-state phase shift for 1 =0 and I=2, k", p~+
are the four-momenta of the kaon and charged pion,
E„=q&e —q e„, and q„,e„are the four-momenta and
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polarization of the photon.
(b) Direct emission T. he photon is emitted from some

intermediate state which subsequently decays into a ~+m-

final state. For the simplest case of dipole emission J = 1,
where J=l+S is the total angular momentum of the pho-
ton, orbital angular momentum plus spin. As S=1 we
have J=l+1,l, l —1 and these are classified as follows:
J=l+1 is the electric transition; J =l is the magnetic
transition. Note that for fixed J, electric and magnetic
transitions produce photons of opposite parity as
( —1)( —1)'=( —1) or ( —1) +' for j=l+1 or J =l.

If J is kept at one we must have l =1. As the two
pions are bosons we must have ( —1) ( —1) "=1;I= 1 is
picked out as l„=1. The matrix element for this type of
transition is given by

—sin]t] sin(5» —52p)

(1+y ) +cosp cos(5]]—52p)
(2.8)

with kinematical degrees of freedom. The interference
measurement in the two-pion final state of Kz~a+~ is
essentially limited by the fact that the I =0 piece of the
matrix element dominates over I=2. In the
K+~n. +sr y decay however one can choose to look at a
region of phase space where the I= 1 and I=2 pieces of
matrix element contribute equally thus avoiding the —,

'

suppression occurring in e' [see Eq. (1.1)].
Indeed one can show that aq(x) is maximum at

x=(
~

E
~

+
~

M
~

)
' for which the I= 1 and I=2

terms contribute equally in the denominator. The max-
imum value of the asymmetry over all x is then given by

ibll
g(K+~~+rrP) (EF„,p+k +MF„p+k"),

m~
(2.2)

I
E

I

where 6&& is the final-state phase shift for I=1 and l =1,
mz is the mass of the kaon, F„=e„&F~, and E and M
are dimensionless form factors for electric- and magnetic-
type transitions.

Adding the contributions from (a) and (b) gives the to-
tal matrix element

M+=Ae
(q.p+ )(q.k)

i611

(EF„,p~+k +MF„,p]+k') .
m~

(2.3)

Using CPT invariance one can show that M =M(K
7r y) is given by

(E*F„„p~+k' M*F„p+k —) .
m~

(2.4)

We are interested in CP violation in the above decay; this
will show up through an asymmetry between the Dalitz
plots of K+~~+~ y and K ~vr ~ y, that is a nonzero
value of

fM+
/

—/M
/M+/ + /M

(2.5)

(q.k)(q.p+) cp (m~/2 —cp )

4 2m Jr- m~
(2.7)

At this point it is important to note that one advan-
tage this decay has over the K~~~ decays involved in
the measurement of e' is that it is a three-body decay

Using the above expressions for M+ and M one obtains
the following expression for a 2.

—4
~

E
~

sin]))sin(5» —52p)a2=
2x(

i
E +

i
M

i
)+2/x+4

i
E

i
cos])]]cos(5]]—5zp)

(2.6)

where P is the phase of E and x is a dimensionless kine-
matic variable given by

This will provide a useful measure of the magnitude of
CP-violating effects parametrized by the values of y and

An experiment due to Abrams et al. was performed to
measure this asymmetry. Their results can be summa-
rized in the following way:

(1)
i
E

i
+

i

M
i

=1000+200o',

(2)
~

E
~

sjn])]] sin(5] ] 5pp) —0 8+2 5cr

(3)
~

E
~

cosgcos(5]] —52p) 1 ~ 25+3 75(T

(2.9)

where cr =1 if we are to use their data to 1 standard devi-
ation, a =2 to 2 standard deviations, etc. The data seem
to suggest that y) 5 for small P, yet (y= 1, /=75. 5',
a2 ——0.1) can be reached with cr =1, as well as (y=0,
P=vr/2, a2 ——0.173) for cr=1.51. In short, although the
best fit favors pure magnetic dipole emission, pure electric
dipole emission with P=vr/2 is less than 2 standard devi-
ations from the most probable value.

III. THE EFFECTIVE HAMILTONIAN FOR K ~mm. y
(SHORT DISTANCE)

To evaluate E,M we need a specific model of interac-
tion. We choose the Weinberg-Salam model with six
quarks and the standard parametrization of the KM ma-
trix. An analysis with four quarks has been carried out
for K~rrrry by Lucio and Malakyan (KL ~rr rr y
only). We show in Fig. 1 diagrams which are of poten-
tial relevance to K ~~vry.

SVZ (Shifman, Vainshtein, and Zakharov) have devised
a method to calculate the dependence of any weak ampli-
tude on M~ and on the masses of the quarks to the
lowest order in the electromagnetic and weak interactions
and includes the strong interactions through the leading-
logarithrnic approximation. ' The effective Hamiltonian
obtained depends on the scale of the external momenta in-
volved. One never includes fields in the effective Hamil-
tonian whose mass is greater than the scale at which it is
to be used. Rather these fields are integrated out to ob-
tain a new set of vertices involving only the light particles.

We divide the integration regions up into three inter-
vals [M]],m, ], [m„m, ], and [m, , m ], where m is a ha-
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dronic mass scale. In the first region 1(b) and 1(c) are
zero by Glashow-Iliopoulos-Maiani (GIM) cancellation
and the effective Hamiltonian is given by the two opera-
tors needed to close 1(a) under renormalization.

In the second region 1(b) and 1(c) would be zero if
GIM cancellation were exact in the four-quark model.
So their contribution must be proportional to
(a, +a2)=s&c, c3(sz +s2s3e' c2/c&cs). The phase 5 will
be proportional to CP-violating eff'ects. In order for 1(a)
and 1(b) to close under renormalization four more opera-
tors must be introduced. This will give the six operators
of the SVZ AS=1 efFective Hamiltonian. ' In the final
region 1(b) and 1(c) are proportional to a& so that all
operators develop a nonzero coefficient in the limit s2, s3
and 5 vanish.

The final effective Hamiltonian at m can be written in
terms of the six operators of SVZ, 0&, . . . , 06 plus a new
operator T explicitly due to the electromagnetic interac-
tions. These are listed below:

0) b) c)

UL 0

SL
SL

L
dL SL

u, c,f

I

dR

FICx. 1. Contributions to the eff'ective Hamiltonian for
K+ ~m+~ y. The solid dot denotes the insertion of the opera-
tor G+/&2qLy„qLs&y„dl . The dashed line represents a gluon.
(a) Diagram which gives to LL~LL operators in H,~. (b) Di-
agram giving penguin operators in H,~ with the emission of a
photon off' any external quark line. (c) Diagram which gives a
new operator T solely due to the inclusion of the electromag-
netic interaction.

T=im, dl o„g""sR,
0) dLy„sLu——LYpuI. dLy„uL—uLYI sL (8f, bI= ,'), —

Oz dLy„sl. u——l. y„uL+dLy„ur uLy„sL +2dLy„sLdL y„dI +2dLy„sLsz y„sL (8q, bI= —,'),
03 —dLypsLur y„uI +dl y„uLuLy„sL+2dr y„sl dLy„dI —3dI y„sLszy„sL (27,bI= —,'),
04 dly„sL ur——y, t ul. +d,L y„uI ul. y„sL dL y„sLdL —y„dL (27, bI =—', ),
Os =dL y„k,,sl (uz y„l,, uz +d„y„k,dz +sz y„l.,sz ) (8,bI = —,

' ),
06 dLy„sL, (u~y„u——g+dgyqd~+s~yps~ ) (8,6I= —,') .

(3.1)

The k, are defined so that the gluon coupling to the
fermions is g;A, '~A'g~. . The effective Hamiltonian of SVZ
can then be written in the form

68= —v 26F g [c;(a&+ za)+d;a, ]0;+c &T2GFT .

m=0. 3 GeV, m, =1.5 GeV,

m, =40 GeV, M~ ——80 GeV,
(3.3)

(3.2)

These coefficients c;,d; can be obtained numerically from
the results of Guberina and Peccei" who extended the
SVZ analysis to the six-quark model. For the choice

model by SVZ (Ref. 10) and in the six-quark model for
the first time here. The result is

cr =—', [—0.2545a, +0.2596 (a, +a~)] ~
. (3.5)

1

16~
One can see that the numerical coefficients in cT are
small. Indeed the coefficient of a] in cT is only 0.002, a
thousand times smaller than d&, and the coefficient of
(a ~+a2) is also about 0.002, ten times smaller than c &.

We present the result for cT only for completeness; it
is not expected to be important to this decay unless T
has an anomalously large matrix element. It has been
shown to be important to other decays, namely,

y (Refs. 12 and 13), in which the contribution
of 0&, . . . , 06 are inhibited.

we obtain the values

0.0238
—0.0096

0

—0. 1102

—2. 58

0. 1012
0.0817
0.4083
—0.092

(3.4)

IV. MATRIX ELEMENTS
Having obtained the coefficient of each operator above

what is left is to calculate the matrix elements of the
operators between initial and final states. We have

M =«
I H..I

~ ~'y &

= —&26 q;e(&+
l
o;

l

~+~ y ~

—0.0655 —0.006 i

The coefficient cT of T has been derived in the four-quark

+ &2 GFcTe(K+ l
im, scr„g" d

l

m+n ),
(4.1)
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where

q; =s|c
& (d;c3+c (c3s2 +s2s3c2/c I ) )

and

(K+ 10,
1

sr+~'y )

d xe'~ K+ T Oj„' x e" ~+~

j „' (x) is the electromagnetic current. We will neglect the
contribution of T due to the small numerical value of cz
and set

(K+ 10;
1

rr+rr y ) =m '(E,F„,p "+k'+M;F~ p "+Ir. '),
(4.2)

where we have used Lorentz and gauge invariance to ex-
press the matrix elements of 0; in terms of the dimension-
less form factors E; and M;. Our immediate goal is to ex-
press the form factors E and M of Sec. II in terms of E;
and M;. From the expression

i 620

M = F„,p+k

+ee "(—3/2 GFm 'q;)(E;F„+M;F„)p"+k"

enhancement in the decay K ~m+m. and this is thought
to be due to a large enhancement in the matrix elements
of the penguin operators 0& and 06 which contain right-
handed currents and only contribute to AI = —,'. An
analysis using the vacuum-saturation approximation and
soft-pion theorems has been carried out for K~~~y in
which no such enhancement was found. Nevertheless we
will keep E5 and E6 as free variables and see how the
asymmetry a 2,„depends on them.

We find that we can parametrize the asymmetry by
r =E&/E, and y= 1M

1
/1E1. The results are shown in

Fig. 2. In summary we can say that if we assume the
bound by Abrams et al. for 1E

1

cosP is only good to 4cr,
taking the smallest value of y we possibly can and assum-
ing E5 and E6 are strongly enhanced we get an asym-
metry as high as 0.04 s2s3sin5. One loses about a factor
of 10 if E5 and E6 are not enhanced and at least a factor
of 4 if the data of Abrams et al. for 1E

1

cos(() to Irr is
used instead, forcing us to use a larger value of y.

V. LONG-DISTANCE CONTRIBUTION
TO THE MATRIX ELEMENT

For the amplitude

(K
1

H
1
rr7ry) = f dx e' (,K

1

T(Hj „' (x))
1

rrrr)e"

(4.3)

we obtain

E= —&2 GFm mz 3 (q E;) . (4.4)

We need now an expression for the amplitude
A = A(K+ ~~+~ ). In the transition K+ ~sr+~ the
two pions must be in a I =2 state. The process involves a
AI= —,

' transition hence the operator 04. Note that q4 is

real so we can take the whole amplitude to be real. The
magnitude of 3 can be inferred from experimental data
and is given by SVZ as'

A =1/(1.6)(c4GFs, c,c3mK f ), (4.5)

where we have normalized the above to the result ob-
tained using the vacuum-saturation approximation' con-
tained in the second set of parentheses. Giving us

E=[—3/2(1. 6)m~ f 'm ']

we shall distinguish between a short- and a long-distance
region. Short-distance strong-interaction effects can be
calculated using perturbation theory as was done in Sec.
III. In doing so one integrates a renormalization-group
equation (REISE) from a scale M~ down to some scale jtt

usually taken to be about 1 GeV, beyond this perturbation
theory is thought to break down as the strong force be-
comes confining. Following Ref. 9 we shall call the re-
gion satisfying x

1

)p
' long-distance regions. The

short-distance effective Hami1tonian we derived in Sec. III
will not be valid in this region.

The short-distance contribution to K~~~y can be cal-
culated from the effective Hamiltonian of Sec. III using
the vacuum-saturation approximation and soft-pion
theorems as was done in Ref. 9. This leads to a value of
the branching ratio given by

BsD =4&& 10

004 — / sps3 sin 8Zmax(r) j
gE; d;+c; s2 +s2s3 e'2 2 l5

C3Ci
(4.6)

0.03

y= I

y=2
As c; and d; were determined from the short-distance
analysis of Sec. III, the unknowns are the matrix elements
E; and M;. One might not think that we have gained
anything by expressing the unknowns E and M with the
12 unknowns E; and M;, but these matrix elements are,
in principle, calculable within various approximations and
the coefficients c; and d, give the weights with which they
come in. %'e give an estimate in Sec. V using the
vacuum-saturation approximation.

We would like to give a rough estimate of the E; and
M; consistent with experiment and use these values to get
an idea of the a2,, one would expect. There is a AI= —,

'

0.02

0.01

0005

10 15

y=6

) r= Eg

20 E)

FIG. 2, Plot of the maximum value of the asymmetry across
a two-dimensional Dalitz plot as a function of the ratio
r =E5/El of matrix elements of penguin operators over ordinary
four-fermion operators [see Eqs. (4.3)—(4.6)] for various values of
y= E /1M [.
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while the experimental result due to Abrams gives transition, we find roughly

B,„p,——1.6X 10 (5.2)
I

E
I
~

I
~

I

=
I &sD I

~
I MLD

I
=-,' (5.4)

Although it must be emphasized that the short-distance
calculation represents only a very crude estimate, this in-
dicates the long-distance effects are important. Indeed in

a similar decay KL ~yy it has been shown that the long-
distance contribution is dominant. In order to calculate
such contributions we shall assume that the process takes
place to leading order through one-particle intermediate
states. Here several possibilities arise. There are pole dia-
grams K~P~m.vry and vector-meson pole diagrams
K~n ~geo~(mm)y .(s.ee Fig. 3). Contributions of the
form K —~K m

—
y ~m ~—+y are suppressed by a factor

m„ /p according to Refs. 14 and 15.
In particular the second diagram in Fig. 3 can be cal-

culated as the effective coupling of g „and f „„are
known. ' Also (K

~
H~

~

m ) is known. ' We calculated
this diagram and showed that it led to a branching ratio

BLD ——2.7X 10 (5.3)

0) c)

vr K

~w

Y

Hw Hw

FIG. 3. Long-distance contributions to the decay
E+~~+~ y. The circled X denotes the insertion of the
effective weak Hamiltonian. The solid dot is an effective cou-

pling valid at long distances. P denotes an arbitrary intermediate
state.

This is the same order of magnitude as the experimental
measurement. More interestingly, this diagram led to a
contribution which was entirely magnetic. This was dic-
tated by the coupling of p and ~ to ~ which is given by

gp e" ~d~ r)~@~.
Owing to the parity conservation of the low-energy

effective vertices parity violation must reside in

(K ~H~
~

~). As the K and rr are pseudoscalers this
tells us nothing about the tensor structure. This is dic-
tated by (vr

~
Heff LD ~

~vry ). As H, ff LD must conserve
parity we have ( —1)(—1)(—1)( —1)' ( —1) + =1
where o. =1,0 for magnetic, electric transition. For de-

cay from a sealer or pseudoscaler l~~=J and a = 1, only
a magnetic transition is possible.

To modify this conclusion we must Aip the parity at the
level of (K

~
H~

~

S) with S an intermediate sealer. As it
must be charged the only possibility is the 6 resonance.
Owing to the large mass of 6 and the fact that 6 does not
contribute very much to a K —+K transition matrix ele-
ment we feel that the contribution of 6 to K~~~y should
be small. In principle its effect could be estimated in the
chiral-Lagrangian framework. ' Then if the long-distance
contribution does indeed dominate this would suggest that
the decay proceeds through a predominantly magnetic
transition. Indeed if we take the magnitude for electric
transition from short-distance direct emission and corn-
pare it to the magnitude of the long-distance magnetic

VI. PROSPECTS FOR MEASURING THK ASYMMETRY

Let us first compare the predicted asymmetry az,„
with the asymmetry parameters e and e'. Under the most
favorable circumstances y =0 and r =20 a2,„——0.04
$2s 3 sin6. Whereas various theoretical estimates based on
the KM model give a range for

~e'~ =(4.9X10 ) —(1.8X10 )$2$3sin5,

~

c
~

=(1.03—19.1)$2$3sin5,

~

6 /e
~

=(1.1 X 10 ') —(6.0X 10 ')

(see Refs. 11 and 19). For y=0 and r=20 we see that
a2,„ is somewhat larger than e'. A more conservative
guess y =7 and r = 1 yields a 2,„——6.8 X 10 s2s3sin6
about an order of magnitude less than t'. If photon po-
larization could be measured one could increase this by
about a factor of 4 (see Appendix A).

Experimentally the limit on a2,„ is about (2.5X 10
+8.3 X 10 ). How far away is the measurement from
the predicted value'? From above a z,„(y =0,
r=20) =0.04$2$3sin5. To proceed further we need to use
an acceptable range for the KM angles. For the experi-
mental result for

~

e
~

= (2.274+0.022) X 10 to fall
within the estimates (1.03 —19.1) $2$3sin5 we should take
$2$3sin5 = (2.2 X 10 )—( 1 .2 X 10 ). So that

a2,„(y=o, r =20) =0.04$,$, sin5

=(8.8X10 ')-(4.8X10 ') .

This is 3 orders of magnitude smaller than the experimen-
tal measurement. Further experiments with higher statis-
tics could hope to improve this measurement by an order
of magnitude but the measured upper limit will stay above
the predicted value for some time.

VII. CONCLUSIONS

One primary motivation in studying K+~m+m y is
the enhancement of the direct emission amplitude ac-
cording to the AI = —,

' rule. This would be very interest-
ing as the AI =—,

' rule is thought to be due to a large ma-
trix element of the penguin operators which have an ap-
preciable imaginary coemcient. This would lead to a
large asymmetry in the decay although not outside ex-
perimental bounds (Fig. 2). To determine whether there
is a AI = —,

' enhancement in K+~~+vr y one must look
at a Dalitz plot for this decay and determine if it has an
appreciable direct transition. The present experiments
indicate that there is an appreciable direct transition but
only of the magnetic type. Consequently there is only
evidence for AI= —,

' enhancement in the magnetic chan-
nel. The interference term involves only electric transi-
tions and has not been observed —consequently, neither
has any asymmetry.
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Theoretically we find evidence for AI= —,
' enhance-

ment only in the long-distance component which is pri-
marily magnetic. This seems to support the experimen-
tal result y=

I

M
I
/

I

E
I
) 5.5. The interfering electric

transition is present in the short-distance component to
the decay. It occurs in the standard model through the
graphs of Fig. 1. We estimated the magnitude of this
electric transition and found it to be about a 12% efT'ect

compared to the other pieces of the matrix element in a
particular region of the two-dimensional Dalitz plot. It
occurs at a level just below present experimental sensi-
tivity and would be discernible to an experiment with
higher statistics. CP violation arises for K+ ~~+~ y in
the standard model through the penguin graph [Fig.
1(b)]. It is a one-loop effect and comes in with a small
coefficient of order 1/~ . Unless the matrix elements of
the penguin operators are large the predicted asymmetry
will be small of order 0.003 s2s3sin5 (see Fig. 2). Also if
y=

I

M
I
/

I

E
I

is large, the asymmetry will be
suppressed by a factor 1/y, a photon polarization mea-
surement would then be necessary to observe an asym-
metry (see Appendix A). A better measurement of y,
similar to what was done for ~ ~iu, vy (Ref. 20),
would decide if this is necessary.¹teadded in proof. After submitting this paper we
learned that the long-distance contribution to
K+~w+m. y had previously been computed by Moshe
and Singer.
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APPENDIX A: PHOTON POLARIZATION

Inserting this form of e into the above gives

F .pi+k "F.pp+kt'=e, e
I p+ I

'
I q I

'E~'sin

where cos8=(p+. q)/(
I p+ Ilq I

). Similarly one has

(A4)

(polarization unsummed)
I

M+
I

'+
I
M

2e,—e sin~)} sin(5ii —52p)
I

M
I

x
I

M
I

em + 1/x +2e, e cosP cos(5ii —5&p)

(A6)

and x is defined in Sec. II. Defining y=(e /e, ) x we
obtain

—2IM l»nysin(5ii —52p)
a~(y) = (A7)

y I

M
I

+ 1/y+2
I

M
I
cosy cos(5ii —5pp)

This formula is zero if either e or e, vanish, i.e., if y is
0 or ce, so that we need look for photons of mixed po-
larizations. Note also that this formula is maximum at
y = 1/

I
M

I

for which it has the value

E„„p+k F zp+k =e, '
I p+ I I q I

Ex. sin 8 . (A5)

Formulas can now be given for the asymmetry as a func-
tion of e, they are similar to those of Sec. II except we
have an interference term between the magnetic and
bremsstrahlung portions of the matrix element and the
presence of the additional polarization variables. Actually
one would only push to observe such a term if the interfer-
ence between the electric and bremsstrahlung portions of
the matrix element turned out to be very small, so from
here on we shall set

I
E

I
=0. We then get

a,(e„e,x)

One of the troublesome aspects of the above analysis
is that

—1 sing sin(5i i
—5pp)

1+cosp cos(5ii —52p)
(A8)

where e„ is the photon polarization. Set e„=(0,e ) and
q-e =0 and expand e in the basis suggested by Christ:

&=e, [p+/ I p+ —(p+ q)q/(
I p+ I I q I

')]
+e (p+ xq)/(

I p+ Ilq I
) . (A3)

I

E
I
cosg&5cr, E

I

'+ M
I

'=1000+220o, (Al)

implies y/cosP ) 5.S which for small P would favor
purely magnetic dipole emission. However if the polar-
ization is summed over, the magnetic term will not inter-
fere with the other terms in the amplitude, electric di-
pole, and bremsstrahlung, although it contributes to the
total decay rate. To observe the interference with the
magnetic term it is necessary to fix the photon polariza-
tion. ' Then a potential asymmetry could develop unre-
stricted by a large value of y.

The interference between the magnetic and other
terms will be proportional to

F„p"+k F &p+k =Ex [e.(p+ Xk)](q.p+ep —q pp+E),
(A2)

One amusing fact is that az,„does not depend on the
unknown coefficient

I

M
I

although its position in phase
space does. By not summing over the polarization we
have avoided the suppression from the factor 1/y. In
light of the fact that the asymmetry is zero whenever e
or e, vanish one should not look for photons with a po-
larization lying along p+ or along p+ &(q but only along
a linear combination of them. In particular for e, =e
we would look for photons with polarization proportion-
» to p+ I q I

—(p+ q)q/
I q I +p+ x q.

APPENDIX B: OTHER ELECTROMAGNETIC DECAYS

To extend the analysis to other decays let us briefly
note that K ~~m.~y can proceed via a AI = —,

' enhanced
K ~~~+ followed by bremsstrahlung emission. This is
similar to Kz ~~+ vr y for which a measurement of
direct emission has yet to be made owing to the heavy
bremsstrahlung background. Such bremsstrahlung dom-
inance would make it difficult to observe an asymmetry
in K ~~~my.
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The decay K —~~—e+e can also have possible charge
asymmetry. Figure 4 represents contributions to this de-
cay. In Fig. 4(a) there is no strong-interaction phase shift;
however 4(b), 4(c), and 4(d) contain a phase shift associat-
ed with the p meson: exp(il /2m&). This is obvious for
4(b) and can be seen for 4(c) and 4(d) by relating the ma-
trix elements (K+

~
0;

~

n. +e+e ) to electromagnetic
form factors of the kaon and pion as was done in Ref. 22.
However the contribution of 4(a) to the matrix element is
only about 0. 1 of the others. This is because it arises
from a one-loop electromagnetic penguin which is down
by a factor 1/vr . This gives an asymmetry which is
roughly

0. I sin( I ~/2m~)s2s3sin5

less than 10 s2s3sin5. As the branching ratio for
E+~~+e+e is only 10 it would be difficult to see
such a small asymmetry.

a)
e+

c)

UL

SL

UL

4L

UR

SL

e+

4L

APPENDIX C: TRANSFORMATION
PROPERTIES OF MULTIPOLE EXPANSION

Here we discuss certain facts which were 1argely
covered in Ref. 5 but are included here to make our treat-
ment complete.

FIG. 4. Contributions to the effective Hamiltonian for
K+ ~~+e +e . (a) represents the insertion of
07 ——e /4~sy„(1 —y5)dey„e at the vertex, (b) represents a long-
distance contribution to the decay, (c) the insertion of
0&, . . . , 04 which gives rise to left-left transitions only, (d) the
insertion of 05,06 which can give rise to left-right transitions.

A. EFect of CPT, CP, and T on the matrix element

Under charge conjugation we have, using the conventions of Sec. II,

p, )r'(po)y(q, e)'"' IH IK'-(k) & = &~ (p, )~'(p, )y(q, —e)'"'
I

C-'HC

Now operating with a parity transformation

CP: M —= —(n(p, r)n(p. or)y(qz, . ez. )'"'
~

(CP—) 'H(CP)
~

K*(kr))
= (n (p,r)n (pop. )y(qr, er)'"'

~

(CP) 'H(CP)
~

K (kr) ),

(Cl)

(C2)

where p, r ——( —p„p,o) in accordance with Christ. Now subject the above to a time-reversal transformation keeping in
mind that under such a transformation both H and the externa1 states get transformed into their complex conjugates, so
the whole matrix element is transformed into its complex conjugate. Also (in) and (out) states are interchanged:

CPT: M —= (n. (p, )7r (po)y(q, e)'"
~

(CPT) 'H(CPT)
~

K (k))"

going back now if we apply a time-reversal transformation to the states untransformed by CP we find

T: M —=(n (p, r)n (par)y(qr, er)'—"~ T 'HT ~K —(kr)) .

(C3)

(C4)

B. Multipole expansion of the matrix element

The photon has spin one and as it is massless it has
m, =+1. If we choose the quantization axis in the direc-
tion of the initial kaon beam then k is proportional to z.
If we take the center-of-momentum frame of the two
pions then q~z, in that case the orbital angular momen-
tum of the photon in the z direction is zero and
M =m, =+1 where M is the total angular momentum of
the photon in the z direction. As the decay proceeds from
a spinless kaon the same statements are true for the orbit-
al angular momentum of the two pions. Note that the
final state is not necessarily an eigenstate of J . It can
however be expressed as a superposition of states with ar-
bitrary J and M =+1, as these form a complete set.

The three-body decay K~~~y has two independent

M(E„cosO, e) = g A~(E, , e)P~ '(cosO) .
1=1

(C6)

As a single photon is emitted the A~(E„e) must be pro-

variables which we take to be cosO=p, .q and E, in the
c.m. frame of the two pions. The matrix element is a
function of cosO, E„and the photon polarization e„. As
M(E„cosO, e) =(4/(E„cosO, e),HV; ). Note that the
cosO dependence resides in the final state which can be
expanded in terms of

P~*'(cosO) =sinOP/(cosO)

which is an eigenstate of l with m& ——+1, l the angular
momentum of the two pions. This will give us the expan-
sion
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portional to e&. By Lorentz and gauge invariance it must
be proportional to e„e "where e are defined by

This gives us AI(E, , e) =aI (E, )e„e "e' '" where we have
explicitly pulled out the phase shift 51. Finally we have

1

(k q)m ~ + M(E„c osO, e)= g ai (E, )e„e "Pi '(—cosO) .
1=1

(C7)

and

1
g„e "= F„p+k

7'~

This expression can be inverted to give ai (E, ) in terms of
the matrix element. To do this one has to choose a basis
in which the final-state polarization can be expanded, that
is, e„=a e „. If we define N =e"e„ then we have

(C8)rzl (E, ) =(21+1)/[21(l + 1)]f d(cosO)(N ') (cosO)M(E„cosO, e )PI—'(cosO)e—1

For the choice e+ ——(p, —q(p, .q), 0) and e =(p, Xq, 0) we have N =6 sin O/N where N+ ——mx/
~ p, ~

and
N =mx /(2E, q ~ p, ~

) in which case

a~ (E, ) =(21-+ 1)/[21(l+ l)]N f d(cosO)sin (O)M(E„cosO, e )PI+—'(cosO)e—1
(C9)

C. Implications of CP, CPT, and T for the multipole moments

We have the expansions

(1) (~ (p, )~ (—po )y(q, e)'"'
~

H
~

K —(k) )

for o.=—

—E'p( —Epjkp q k ) = —E E (C13)

aI E„E "e '—PI '(cosO), —

(C10)
(2) (77—(p, )~o(pQ)y(q, e)'"

~

H
~

II (k))

= g P, e„e "P& '(cosO—)e-
1=1

So CP invariance implies

CP: Q1a A Ia S
+

where s =1 for o.=+ and —1 for o. =—
Likewise for CPT invariance we have

(C14)

Note that the relevant S matrix in (1) is exp(t6I) =SI
while in (2) it is exp( —i6~)=S~ '. Under CP we have,
using the results of subsection A,

(P T POT qT ~T)

CPT: g a, E„E "e—'PI '(cosO)—
1=1

= g [PI &„& "e 'P~—'(cosO)]*,
1=&

aI e„TE" e 'P&—'(cosO),
1=1

(Cl 1)
CpT: a(~ =p, ',

and, for T invariance,

(C15)

for o.=+ 'PI '( c os O )
1=1

~„T~+" = —~ [ —p, +k(p, q)/(k q)]
—eo[p, o —ko(p, q)/(k q)]

(C12) T: a(—=p(+—*s

= g [PI eT„e "e 'PI——'(cosO)]",
1=]

(C16)
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