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Deep-inelastic structure functions in the MIT bag model
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Deep-inelastic structure functions are calculated from a Peierls-Yoccoz-projected MIT bag wave
function. The calculation yields quark distribution functions that have the correct support as a
function of Bjorken x. These functions are evolved to Q =15 CxeV using QCD perturbation
theory, where they are shown to disagree with experiment. Possible improvements are discussed.

I. INTRODUCTION

Since the discovery in 1982 of the European Muon Col-
laboration (EMC) effect, ' much effort has been made to
understand the effects of the nuclear medium on the
quark distributions of individual nucleons. Usually, the
starting point for investigations of this type is an empirical
determination of the quark distribution of a free nucleon.
One then selects a parametrization of the desired nuclear
effects and calculates the quark distributions in nuclei.
Unfortunately, there is little theoretical understanding of
the free-nucleon structure functions [F,(x)], so choosing
the parametrization of the nuclear effects is very difficult.
Our opinion is that this lack of knowledge of F;(x) is re-
sponsible for the current confusion about the origins of
the EMC effect. Thus, there is renewed interest in the de-
velopment of techniques for calculating quark distribution
functions from nonperturbative quark models. Further-
more, F;(x) is a fundamental measurable quantity which
deserves theoretical attention.

This paper will report on recent progress toward the
calculation of quark distributions in the MIT bag model.
Previous calculations of this type suffer either from the
lack of translational invariance of the bag wave functions,
or from the assumptions necessary to ensure momentum
conservation. ' Here we use a Peierls-Yoccoz-projected
MIT bag wave function for the nucleon and calculate the
Bjorken limit of the current-current correlation function.
These distributions are interpreted as the twist-two piece
of the nucleon structure function evaluated at a low-
momentum scale Q =pc =0.5 GeV . QCD perturbation
theory is then used to evolve the distributions to Q = 15
GeV, where higher-twist effects are small, and compar-
ison with experiment is made.

II. INTERPRETATION OF QUARK-MODEL
CALCULATIONS

at which one probes it. Thus, if the nucleon looks like
three valence quarks in a confining interaction at some
scale po, radiative QCD corrections will change its com-
position at higher Q . Quarks will radiate gluons and
these in turn will pair produce quarks until the nucleon
becomes a very complicated object.

Knowing the twist-two piece of the structure function
at Q =go, we may then use QCD perturbation theory to
evolve to high Q . At high enough Q, higher-twist
effects become negligible and we may compare the result-
ing distribution functions with data. Note that this
prescription implies that the structure functions calculated
at Q =go should not look like any data, since the physi-
cal structure function will certainly have important contri-
butions from all twists at this scale.

Finally, we need to decide upon a reasonable value for
po . Jaffe and Ross determine po by performing a fit of
the ratios of evolved and unevolved moments to the pre-
dictions of second-order QCD. Here, we will simply re-
quire that po be a scale characteristic of a single nucleon.
In the bag model, there is only one scale, the bag radius.
Hence, we shall take po =1/R -0.5 GeV . Since QCD
evolution depends on po only logarithmically, the precise
value of po is not critical to our results. Indeed, we shall
see later that varying po by 20% produces little change
in our quark distributions.

III. CALCULATION OF STRUCTURE
FUNCTIONS

In this section we obtain the distribution functions that
serve as boundary conditions for QCD evolution. We
wish to calculate the Bjorken limit of

W'„= f d pe+'~s(N, p=O
~
[J„(g),J (0)]

~

X,p=O),

In the calculations that follow, we shall adopt a point
of view suggested by Jaffe and Ross. In particular, we
shall assume that the calculations of structure functions in
the bag represent the twist-two piece of the physical struc-
ture function evaluated at a low value of g =pc . The
motivation for this is the observation from QCD that the
quark structure of the nucleon changes with the scale Q

where
~
X,p=O) is the ground state of a nucleon at rest

and J„(x)=alt(x)y„p(x) is the usual vector-current opera-
tor. [For our purposes, the charge in J„(x) is irrelevant. ]

Making the usual parton-model assumptions and taking
the Bjorken limit [q ~ ac, x = —q /2p. q fixed,
P„=(M&,0)], Eq. (1) reduces to
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(2)

where

1F, (x)= F2(x),
2x

F~(x)= g x[q;(x)+q;(x)],

q;(x)= f dg e' (N, p=o
~
g;(g )y+P;(0)

~

N, p=o),
4~ 7 (3)

q(x)= f dg e'~ ~ (N, p=o
~
g;(0))'+p;(g )

~

N, p=O),
4m

—Mx + y +y
2

—
~2 ~2
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In order to proceed further, we must specify the nu-
cleon wave function. We choose a Peierls- Yoccoz-
projected version of the usual MIT bag ground state:

~
N, p=O) =& f d'a

~

R=a),
where

~

R=a) =—bp(a)bp(a)bp(a)
~

EB;R=a)
is an unprojected MIT bag state centered at R= a, bp(a)
is the creation operator for the lowest quark mode, and

~

EB;R=a) is an empty bag state centered at R=a.
(Flavor-spin and color indices are not made explicit. )
The factor A, is chosen so that the state

~
N, p=o)

satisfies the covariant normalization for momentum
eigenstates:

(4)
d a R=O R=a

The advantage of this state is that it is an exact eigen-
state of momentum. Thus, problems related to transla-
tional invariance will not arise. Potential problems are
the fact that

~

Np=o) is not an exact eigenstate of energy
and determining what mass appears in the expression for

We address both of these issues below.
To obtain the mass M, we perform a variational calcu-

lation of
&N, p=o

i H~»
~
N, p=o)

(N, p=o
~
N, p=o) (5)

Minimizing (H~») with respect to the bag radius R,
we obtain an approximate solution for the ground state
and mass. The details of this procedure are given in Ap-
pendix A.

Now, we turn to the calculation of the matrix elements
in Eq. (3):

At = (N, p=o
~
g(g)y+P(0)

~

N, p=o)

f d a d b(R=a
~

g(g)y+P(0)
~

R=b), . (6)

Expand the field operator on the right-hand side in
terms of MIT bag states centered at R=b, those on the
left-hand side in terms of MIT bag states centered at
R=a.

P(x, t) = g [ b„„(a)P„(x a)e—
tl, K

+d„(a)P„(x—a)e " '],

where ji(z) are spherical Bessel functions, UM are two-
component Pauli spinors, and N„„ is a normalization con-
stant.

Finally, we need to specify the anticommutation rela-
tions between the creation and annihilation operators in
(7):

[b„(a),b (b)]= f d rP„(r—a)P (n —b):—b.„(b—a),

[d„(a),d (b)] = f d r P~(r —a)PM(n —b)

=b„(b—a) .

Since we deal only with the lowest quark modes, we
use the following notations:

cop ) =E=2.04, P'p ~(x) =Pp(x)

Np, =N, b,pp(z) =b, (z)—.
(10)

We use the expansion (7) to obtain At of Eq. (6). Then
it is simple to show that

where b„„(a)and d„,(a) create quark and antiquark exci-
tations with wave functions P„(a) and P„(x—a).

The wave functions are given by

Jp(~„.~x
~

y~p)
P„(x)= 8(Rp n), —

v'4~ io"xj &(co„,
~

x
i
/Rp) UM

At= lgl, f d a d b b, (b —a)Pp(g —a)y+Pp( —b)e (EB;R=a
~

EB;R=b) .
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The b, (b —a) term enters as a result of applying the anticommutation relations. In Appendix B, we show that this
reduces to

At = 18K,~N f exp —i —K.g F(K)P(K)@+$0(K),
(2~) Ro

(12)

where

F(K)= f d z e ' '*b, (z)(EB;R=z
~

EB;R=O),

$0(K)= f d ze ' 'Po(z) .

Plugging this result into Eq. (3) yields

(13)

where K =
~

Mx —e/Ro
~

.
Putting in the MIT bag wave functions, Eq. (8), we get (/3—:KRO)

(MRO)(N Ro ) „~ 2
2/3

q(x)= f dp G(p) ro (E&/3)+r] (e,p)+ t, (~,p)&~(e, /3) (14a)

where P =e—MRox, and

(MRO)(N Ro ) „~ ~ 2P+6 t0 g, + t, g, + t0 e, t, e,
2~V +

(14b)

where P+ ——e+MRox. The functions appearing in Eqs.
(14) and (15) are given by

G(P) = f y dy sin2Pyb, (y)(EB;R=2Royz
~

EB;R=O),
0

V= y dy 5 y EBR=2R0yz EB R=O
(15)

ro(~&)= f 3'd3io(~yvo(/By» )
0

ri(~,P)= f y'dye(n Vi(/3y»
0

A problem that is apparent in the analytic expressions
is that q(x) &0. This is a result of improper treatment of
the cavity-vacuum bubbles shown in Fig. l. In the ap-
proximation we are using, high-momentum quarks behave
as free particles; hence, the graph shown in Fig. 1 is com-
pletely disconnected and therefore discarded. Whether or
not this is the correct procedure in the bag cannot be
determined, since the vacuum state is not included in the
model. A lesson to be learned from this is that the sea-
quark distributions we have obtained should not be trust-

ed. Hence, we confine our attention to the valence distri-
bution q, (x)=q(x) —q(x). As we shall see below, this
distribution satisfies the normalization and momentum
constraints to a reasonable approximation.

Lastly, we need to specify the empty-bag —empty-bag
matrix elements that appear in the expressions for q, (x).
The bag model gives us no input on this question. We
shall assume that these matrix elements are approximately
constant in the region where the quark overlap integrals
are large. Hence, the matrix elements divide out of the
expressions for q(x) and q(x). The resulting valence dis-
tribution is shown in Fig. 2 along with the analogous
unprojected result.

I I 5

]
I I I

f

I I I

f

I

proj ected
unproj ected—

0
0

Bjorken x

FICr. 1. Cavity-vacuum bubble diagram.
FICx. 2. Valence-quark distributions at the bag scale for pro-

jected and unprojected MIT bag.
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Results for the case of (1 + 1) dimensions are reported
and discussed in Appendix C.

IV. QCD EVOLUTION

V. RESULTS AND CONCLUSION

We begin this section by reviewing the consistency of
our calculations. First, we note that the valence quarks
are the only objects in the bag that can carry momentum,
so the valence quarks should carry all the momentum. In
terms of the distribution functions, this means

I I I
]

I I I
t

I I I

]
I I I

[
I I I

1 order QCD(~ =.5gev t-
2 order QCD~ =.6gev P

2 order QCD~ =.Sgev+
2 order QCD~ =.4gev P
cdhs data x(u —d )

0
0 4 .6

Bjorken x

FICi. 3. Results of QCD evolution to QUA=15 GeV . The
solid curve is first-order evolution (pp =0.5 GeV ). The dashed
curves are second-order evolution for pp ——0.4, 0.5, 0.6 GeV .

The valence-quark distributions calculated in the last
section are evolved from Q =Ittp ——0.5 GeV to Q =15
GeV using second-order QCD perturbation theory, with

AQCD —150 MeV. One may ask whether or not perturba-
tion theory may be trusted at such low values of Q . Pen-
nington and Ross' have argued that not all QCD pertur-
bation expansions need be equally convergent and certain
"good" predictions may be obtained, independent of the
renormalization scheme, which appear to converge very
fast. The nonsinglet evolution equations are an example
of such "good" predictions and we hope that it will reli-
ably interpolate between the bag scale po and experiment
at high Q .

The results of the evolution are shown in Fig. 3 for first
(pp ——0.5 GeV ) and second (ittp =0.4, 0.5, 0.6 GeV ) or-
der; also shown are data from the CERN-Dortmund-
Heidelberg-Saclay (CDHS) Collaboration. " The relative
smallness ( —10%) of the second-order QCD corrections
give some credence to the idea that perturbation theory is
applicable at the bag scale. One should also note the slow
variation of our results with changing po .

The oscillations of q (x) for x ~ 0.7 are an artifact of ap-
proximating the distribution by a ten-term Legendre
series. Inclusion of additional terms would suppress these
oscillations without affecting the shape of the curve at low
X.

&= f 'dx q, (x)=1 and (x)—:f dxxq, (x)= —,
'

0 0

at the bag scale.
Numerically, we find X= 1.004 and (x ) =0.312.

Thus, roughly 6% of the bag's momentum is "missing" in
our calculation. There are several possible explanations
for this. First, our variational calculation of the bag mass
used only one parameter, the bag radius. We show in
Appendix B that this leads to MRo ——4e, the same as in
the unprojected bag. Inclusion of additional parameters
in the nucleon wave function will cause MR to decrease.
Since the value of MRO determines the scale of x, decreas-
ing MRp will increase (x ).

Another possibility is that our assumption that the
bag-bag matrix elements are constant is not quite correct.
Modeling these matrix elements by a decreasing function
of the bag separation increases the quark distributions at
large x, without affecting their normalization. Hence, the
momentum fraction (x ) again increases.

Choosing between these two possibilities is impossible
within the context of the MIT bag. These questions may
be addressed in a more sophisticated model such as the
soliton bag. Here, these considerations serve to check
whether our approximations are reasonable. We conclude
that they are.

In Fig. 2 we see that the projected calculation has vast-
ly improved support properties when compared with the
unprojected result. At x =1, the projected quark distri-
butions are 30 times smaller than the unprojected ones
and are decreasing more rapidly. Thus, admixtures of
mass states other than the ground state are quite small.

Comparison of the evolved valence distributions with
experimental data gives no agreement at all. The calculat-
ed values of xq, (x) are roughly a factor of 2 larger than
experiment. This may have been anticipated before any
calculations were made. To see this, consider the follow-
ing argument In any model that contains only valence
quarks, those quarks must carry all the momentum in the
bag. If we associate the scale po -0.5 GeV with this
model, then evolution to 10 GeV will give valence-quark
distributions that carry momentum fraction'

2 0.395
1nIMp /AQ(

x
2

——0.255
ing /AqcD

with AQCD —150 MeV.
Experimentally, ' one finds (x) =0.155 for u quarks,

and (x) =0.12 for d quarks. Since (x) is simply the
area under the curve xq, (x), we see that any quark-model
calculation will yield valence distributions roughly twice
as large as experiment.

A simple solution to this difhculty is to choose a
different value for pp such that (x) agrees with experi-
ment at high g . Using second-order QCD, we deter-
mine this value of po to be around 0.1 GeV . In terms of
distances, this corresponds to about 2.2R&. This distance
scale seems too large to be associated with the physics of a
single nucleon. Furthermore, the perturbative analysis for
the moments is not trustworthy at this scale.

A more realistic possibility, we feel, is to keep po -0.5
GeV and to add new components to the nucleon wave
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function. These new dynamical variables carry momen-
tum, and the right combination may be found to repro-
duce the data. Among the possibilities for these new de-
grees of freedom are pions, sea quarks, collective oscilla-
tions of the bag surface, and explicit gluons in the bag
wave function. Work on these topics is currently in pro-
gress.

In conclusion, we stress that the quark distributions we
have calculated have, to a very good approximation, the
support properties required by energy-momentum conser-
vation. Thus, they provide a foundation for further calcu-
lations of quark distributions in nucleons and, once that is
complete, nuclei ~

HM&T —— d r —
1( a.Vg+B +constraint .3 1

U l
(A1)

Our trial wave functions for the quarks satisfy the con-
straint condition by construction. Hence, we shall ignore

APPENDIX A: DETERMINATION OF THE
PROJECTED STATE'S MASS

We determine the mass of the projected bag state by a
simple variational calculation. We begin with the Hamil-
tonian

the constraint term in what follows.
Consider first the quark kinetic-energy term. This term

is translationally invariant; hence, it gives the same contri-
bution as the unprojected case:

(E )=
R

(A2)

The remaining term involves the following matrix ele-
ment:

(HMiT ) = +4aaBR3F 3

R

where a (1 is a numerical constant.
Taking 6(HM&T)/M =0, we find 4naBR = ,'(3e/R).—

Thus, the relation between the mass and radius of the bag
is the same as in the unprojected case, i.e., MR =4@.
Note, however, that the radius differs from the unproject-
ed radius by a factor of e ' so that the mass is lower
than the unprojected mass.

(N, p=O
~

U
i N, p=O),

where v is the bag's volume operator. By dimensional
analysis, this matrix element must be proportional to R
Therefore,

APPENDIX B: EVALUATION OF MATRIX ELEMENT

We begin with Eq. (2) of the text

At=18k, f d a d b N b, (a—b)$0(g —a;0)y $0( —b, 0)e

The empty-bag —empty-bag matrix element must be a function of a —b; hence, we introduce the functions

F(k)= f d z e ' 'b, (z)(EB;R=z
~

EB;R=O), $0(k)= f d z e '"'$0(z, 0) .

Inverting the Fourier transforms we find

d k &d k2d k3 j'k ~ (Q b) f'k .(g g) f

(2~)

(B1)

—i(gg /R —k g)—

(2')

where we have switched k&~ —k& and used the rotational
invariance of F(k, ).

f I I

i

I I I

j
1 i I

[
I I I

i

1 I

P —Y projected
L0 approximation-

APPENDIX C: COMPARISON
OF TRANSLATIONALLY INVARIANT STRUCTURE

FUNCTIONS IN 1+1DIMENSIONS

In 1 + 1 dimensions, exact translationally invariant
solutions of the MIT bag are known. ' Severe ordering
ambiguities in the quark field operators prevent one from
making exact calculations of structure functions. Jaffe'
has calculated structure functions in the "Lo approxima-
tion, " in which the bag is a static cavity of fixed length on
the light cone. In this approximation, the correlation
functions are simply related to those of the static-cavity
model, i.e.,

0
0

Bjorken x

d2
F(x)= lim f e'~"(T

~
g(x)g(x)1t(0)g(0) T)

ag 4~
(C1)

FIG. 4. Structure functions of the two-dimensional MIT bag
with three quarks.
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with

Fsc( —ln(1 —x) )
Ft (x)=

1 —x

where FL (x) is the correlation function in the Lo approxi-
0

mation, and Fsc(x) is obtained from (Cl) using the stan-
dard static-cavity approximation.

The correlation function de6ned above may also be cal-
culated using the Peierls-Yoccoz ansatz described in the
text. The result is

I2(x)
Fpv(x) = Fsc(x)

I3

where

I&(x)—= dz cos (1—z) cos[(MLx —m.j2)z],
0 2

I3 = dz cos
1 3 7TZ

(1 —z) 3

2

The distributions obtained by both these approxima-
tions are shown in Fig. 4. Qualitatively, the results are
very similar. The only difference is the oscillatory be-
havior of the Lo distributions at large x. We believe
that these oscillations are an artifact of the sharp bag
surface in this approximation. It is encouraging that
these two approximations do not give very different re-
sults.
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