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An optimized variational method to calculate the energy eigenvalues for the anharmonic oscillator
is proposed. The convergence for the single-well potential is very quick; for the double well it de-
creases as the wells become deeper, and larger matrices should be diagonalized to obtain required ac-
curacy. The partition function and free energy are calculated for the single- and double-well poten-

tials.

The one-dimensional anharmonic oscillator (AQO),
which can be regarded as a field theory in one dimension,'
recently became the testing ground for new methods in
quantum field theory (QFT), particularly in the case when
the solutions of the classical field equations are degen-
erate. It led to renewed interest in calculating the accu-
rate eigenvalues of the Schrodinger equation

Hy, (x)=E,¥,(x) (1)
with the AO Hamiltonian given by
1|ad’ 2.2 4
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It is convenient to eliminate one parameter, expressing all
quantities in the units of an appropriate power of A. After
rescaling x >xA =%, H—>HA'3 and w—wA'’?, the AO
spectrum depends on only one dimensionless parameter
z=1w?A~2/3, which accounts for the relative strength of
the harmonicity and anharmonicity. When discussing nu-
merical results, we will use the rescaled quantities.

The spectrum of the AO can be studied perturbatively,
expanding the AO eigenfunctions and eigenvalues into a
series in € for the Hamiltonian which has been divided
into the following manner:

H=H0+6H1 . (3)

where H is an exactly solvable operator. The conven-
tional perturbation series is generated, if the Hamiltonian
of the harmonic oscillator (HO) with frequency w is taken
as the unperturbed part

and the anharmonicity as a perturbation H;=Ax* The
conventional perturbation series for the AO energies
divergesl and the Borel sum can be found? only if w?> 0;
i.e., the classical potential is single-well (SW) shaped. For
the double-well (DW) potential (w? <0), the series is not
even Borel summable.? Therefore, a different choice of
H, has been considered, to generate a series with better
convergence properties. For a review see Ref. 4.

A linear variational method can be constructed for
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every choice of the unperturbed Hamiltonian H, taking
its eigenfunctions ¢,(x) as an orthonormal basis to
decompose the AO eigenfunctions:

o0

P(x)= 3 cadulx) . 4)
n=1
Varying the coefficients ¢, , to obtain the minimal expecta-
tion value of the Hamiltonian in the normalized state v,
gives an infinite set of equations:

(Huym —E8,m)cm =0 . (5)
1

Ms

m

Exact energy levels are obtained after diagonalization of
the infinite Rayleigh-Ritz (RR) matrix. Numerical calcu-
lations for the truncated set of N basic functions provide
approximate values of the N lowest eigenstates. For
N =1 we can only find the ground-state energy; it coin-
cides with the first-order perturbative result for the parti-
tioning given in Eq. (3). Increasing N, more energy levels
are obtained with increasing accuracy and the conver-
gence of the method can be estimated. Such systematic
application of the variational method provides an alterna-
tive to the perturbative calculations. Generally, the accu-
racy of the nth eigenvalue decreases, as n approaches the
truncation level N. A convergence rate of the variational
scheme depends strongly on the choice of basis functions,
i.e., on the particular partitioning given in Eq. (3). For
the conventional choice of H, the convergence decreases
with decreasing w? and the method will not be applicable
for w? <0, when the HO spectrum is continuous.

In this work we build the variational scheme on the
partitioning

2
A7 2

H:
dx?

% +elAxt+ L2 —0x2],  (6)

used in the Caswell® and Killingbeck® (CK) perturbative
method. An arbitrary HO frequency () in the unper-
turbed part has been introduced in such a way that the
Hamiltonian becomes equal to the Hamiltonian given in
Eq. (2) when e=1. The exact value of any physical quan-
tity, obtained after a series summation, does not depend
explicitly on Q). However, if the series is truncated to the
order (k), the dependence on  appears. The frequency
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Q can be fixed by the principle of minimal sensitivity
(PMS), requiring the dependence on the unphysical pa-
rameter () be as weak as possible.” In the kth-order CK
calculations the parameter (2 is fixed for each energy level
(n) independently, requiring

dE};

70 =0. (7)
The corresponding set of eigenfunctions is not orthogo-
nal in any finite order. For the SW classical potential,
the first-order CK method gives the bound-state energies
with the error less than 2%, in the whole range of A
(Refs. 5 and 6). The agreement becomes better in higher
orders,’ as opposed to the conventional perturbation re-
sults, which become worse even for small values of A, as
the series is asymptotic. For the DW potential the CK
series seems to be still summable; however, the number
of orders necessary to obtain the convergence increases
as z— oo (for z= —3.7 twenty orders have to be includ-
ed,’ to obtain 2-figure accuracy).

In the variational scheme we use a basis of the HO

wave functions
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Q H,(Qx)e ~2x2 ()

|n>:¢,,(x): m

where H, ({1x) are Hermite polynomials and the scale pa-
rameter () is arbitrary. Such a variational method has
been used first for the quartic oscillator (0=0) by
McWeeny and Coulson,® who stressed the dependence of
the convergence rate on the choice of . In the calcula-
tions of the nth eigenvalue they proposed to take () which
minimizes the expectation value of the Hamiltonian in the
HO state |n). For the SW oscillator quick convergence
for the whole spectrum is obtained by choosing the pa-
rameter () in the HO basis to minimize the expectation
value of the Hamiltonian for the lowest HO eigenstate.
For the DW such a method does not work if z is too neg-
ative, as has been observed by Balsa, Plo, Esteve, and
Pacheco.” They proposed to minimize the value of the
Hamiltonian in the nth HO state, treating n and  as
variational parameters. The RR method with Q fixed in
this way converges quickly, but the scheme lacks a physi-
cal interpretation, as the solution corresponds to n=—1.
It was pointed out by Quick and Miller,'” who proposed
instead to minimize the sum of K expectation values, re-
quiring that Q satisfy

K—1
S (n|H|n)|=0 9)
-0

d_
a0

and treating K as an additional parameter.

However, this method also has no physical interpreta-
tion. In the RR method the only variational parameters
are the coefficients of the wave-function decomposition in
the orthonormal basis. If the basic functions are chosen
to have a parametric dependence, their values can be
chosen to improve a convergence. To this end all the dis-
cussed methods have used the requirement that the expec-
tation values of the AO Hamiltonian in the HO states (or
its sum) should be minimal. However, according to the
Ritz principle, the quantity which should be minimal is

the expectation value of the Hamiltonian in the AO eigen-
state, which is an eigenvalue of the RR matrix, but not its
diagonal element nor an arbitrary sum of such elements.
To find the AO expectation value, the RR matrix should
be diagonalized analytically. If the convergence is quick,
one can attempt to find an analytical solution. Similar
ideas have been applied to the SW potential providing
analytical approximations for the energy eigenvalues that
are better than perturbative results.!! However, it is not
applicable for large truncation orders, which are necessary
to obtain a good convergence in the DW case. For nu-
merical calculations it is more convenient to fix () before
the diagonalization of the RR matrix. In this case it is
better to use the PMS rather than the Ritz principle. The
PMS can be applied to any physical quantity, and there is
such a quantity which can be calculated before diagonali-
zation of the Nth-order RR matrix—it is a trace of this
matrix. Because the trace is invariant under diagonaliza-
tion, it equals the sum of elements of diagonalized matrix,
i.e., the sum of N lowest AO eigenvalues in this approxi-
mation (neither the sum of K <N nor K >N has this
property). As an approximant of the physical quantity
the trace should be insensitive to the variation of the un-
physical parameter . It gives the requirement (9) with K
equal to the truncation order N. Quick and Miller have
established numerically that the number of included states
K has to be roughly equal to the order N of the variation-
al matrix, to obtain a good convergence. In our approach
K =N is an immediate consequence of the application of
the PMS to the only physical quantity, which can be
found before diagonalization of the RR matrix. As the
PMS requirement coincides with the necessary condition
for minimum, the numerical results in our approach (ap-
plied independently in the sector of even and odd HO
functions) are the same as given in Tables I-IV of Ref. 10
in the columns corresponding to K =N. The convergence
properties are much better than obtained by Balsa, Plo,
Esteve, and Pacheco’ (diagonalization of the matrix of the
order two times smaller gives the same accuracy). For the
DW potential as z— — « the convergence decreases. In
this case larger matrices should be considered and the nu-
merical errors limit the accuracy.

As expected in the variational method, the coefficients
of the expansion of the eigenfunctions in the HO basis are
obtained with a poor accuracy (2-3 figures). However,
the accuracy of the measurable matrix elements of the
operators x and x? is much better. To calculate these ele-
ments it iS more convenient to treat both parity sectors
simultaneously, keeping the basis orthogonal. Application
of the PMS to the sum of N even and N odd functions
gives the equation for Q:

AN (QP—02Q)—2A(8N?2+1)=0 . (10)

Taking 2N =110 for the quartic oscillator (w=0) the en-
ergies of 70 states converge up to 12 significant figures,
and the matrix elements  |m |x |n) and (m |x*|n)
between 10 lowest states converge up to 8 figures. The re-
sults agree within the quoted accuracy with the very accu-
rate results obtained from the reoccurrence relations re-
sulting from the Hill determinant.!?> A reasonable accura-
cy can be obtained with the matrix of the order 2N < 130
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even for DW if |z | <100.
The variational method is very convenient to calculate a
partition function
Z(T)= 3 exp(—E,/T), 4 (11)
n=0

at finite temperature 7, as it gives the whole set of energy
levels at once. As before, we rescale in terms of the cou-
pling constant A, i.e.,

T—TA 7.

For the SW potential the partition function has been
calculated by direct summation of (11), using the eigenval-
ues obtained variationally,'* or approximated analytical-
ly.'* The low- and high-temperature limits have been dis-
cussed for derivative thermodynamic quantities. We have
calculated the partition function of the AO for the SW as
well as the DW potential using the optimized variational
method. The required accuracy can be obtained, checking
the convergence for the calculated quantity with increas-
ing order of the RR matrix. In Fig. 1 we present the free
energy F=—TInZ as a function of a temperature for
different values of z. Although the shape of the classical
potential is qualitatively different for z >0 (SW) and z <0
(DW), the partition function and other thermodynamic
quantities depend on the temperature in a very similar
way. It can be attributed to the fact that there is no phase
transition in quantum mechanics (QM) as the symmetry
cannot be spontaneously broken.

The optimized variational method to calculate the spec-
trum of the Hermitian operator is shown here for the AO.
We have used the CK partitioning (6), but every other
choice of the unperturbed Hamiltonian, used to generate
perturbation series,* can be also applied to generate a vari-
ational scheme. Both methods can be optimized with the
use of PMS, if Hy contains arbitrary parameters. Anoth-
er QM problem can be solved in the same manner.

A similar approach can be applied in QFT, if a func-
tional Schrodinger formulation is used. For scalar theory
with A¢* interaction it will be a generalization of the QM
anharmonic oscillator Schrodinger equation. Using a trial
wave functional expressed as a linear combination of the

1275

10. 20.

TIO. 20.

FIG. 1. The free energy F of the anharmonic oscillator, as a
function of the temperature T for different values of the parame-
ter z= %wzk”yj.

vacuum and multiparticle wave functionals of a free
theory with an arbitrary mass , the Ritz principle will
determine the best vacuum and multiparticle states func-
tionals and energies of the interacting theory. The quality
of the approximation could be improved systematically by
increasing the number of multiparticle states of the free
theory taken into account.
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