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Series solutions for the Klein-Gordon equation in Schwarzschild space-time
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Three pairs of independent solutions of the radial equation corresponding to a massive Klein-
Gordon field in Schwarzschild space-time are given. They are defined through different series expan-
sions for the cases r~O, r~ ao, and r —26M.

I. INTRODUCTION

It is well known' that the mode solutions of the Klein-
Gordon equation

( +m )/=0
in Schwarzschild space-time, described by the line element

ds 2 = 2GM
dt 2 — 2GM

r r

knowledge of the solutions of (1.4), at least of approxi-
mate solutions. In a recent paper with Tarrach on the
existence of a nontrivial A,P theory on a Schwarzschild
background —in which the present study has
originated —we became aware of this necessity. Here we
shall construct three different pairs of independent solu-
tions of Eq. (1.4) in the form of series expansions for
r ~0, r ~ m, and near the Schwarzschild radius
r =2GM. We shall show how these series can be
thoroughly obtained by a recurrent procedure. For re-
lated work dealing with solutions of Eq. (1.4) see Ref. 4.

—r (dg + sin Hdy ),

can be written in the form'

r 'R~I(r)Yt~(O, qr) exp( idiot), —

(1.2)

(1.3)

II. SOLUTIONS IN THE REGION INTERIOR
TO THE SCHWARZSCHILD HORIZON

In the region 0&r &2GM, an appropriate ansatz for
solving Eq. (1.4) turns out to be

where the Y~ are spherical harmonics and the radial
functions R ] satisfy

I (1+1)+ Q) — m + 2

R(r*)=a exp +i kr*+ao ln +a~
2GM

r r
2GM 2GM

3

2GM+
r

2GM
r

R ~t ——0 (1.4) + ~ ~ ~ (2.1)

with r * (the Regge-Wheeler coordinate) defined by

r*=r+2GM ln
r

2GM
(1.5)

exp(+ikr*), k=(cu —m )'

and (1.3) reduces to

(1.6)

For most purposes, it is not necessary to solve Eq. (1.4) in
detail, in particular, when attention is restricted to obser-
vations made in the asymptotic region r ~~ ~ In this re-
gion the solutions of (1.4) are

ao —+i, a
&

——+il(l + 1),

a =kGM+ —l (1 + 1)[l (& + 1)+2],
4

(2.2)

a3 ———3kGM+i —', m G M

where the a„s=0,1,2, . . . are dimensionless (complex)
constants which, in general, depend on co and l. They are
not difficult to obtain by direct substitution of an ansatz
(2.1) into Eq. (1.5) and comparison of the different powers
of r', s =0, 1,2, 3. We obtain

r 'Yt (O, y) exp[ i(cot+ kr*)] . — (1.7)

Particle creation by a collapsing spherical body —the cele-
brated Hawking effect —is a beautiful example showing
how one can proceed without knowing the solutions of
the wave equation (1.1) in terms of simple functions.

However, a more complete investigation of field
theories in curved space-time certainly require a

[3+—', I ( l + 1)+I'( 1 + 1 )']I 1+1)

After some further calculations, we obtain the following
recurrent expression for the general coefficient a„s)4, in
terms of the preceding ones:
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a, +, —— , (s+3)(2s+7)a, +,+[—(s+3)+4ikGM](s+2)a,1

(s +4)'
s+1

+i —4kGM(s + 1)a, , + g j(s —j +2)a, a, , z

j=1
s+2 s+3—2 g j(s —j+3)a,a, , +, + g j(s —j+4)a, a, , +,
J =1 j=1

s)0. (2.3)

Notice that by making use of this expression any term of the series expansion (2. 1) is obtained in a straightforward way.
In particular, up to terms of O((r /2GM) ), we have

r l(l +1) l(1 +1)+2
2GM 2GM SGM

r
2GM

3

r2
X exp +ik r + 4GM

+2GM 0
2GM

3

0&r &2GM . (2.4)

III. SOLUTIONS IN THE ASYMPTOTIC REGION r ~ oo

In the asymptotic region r~ co, that is r/(2GM) ~~ 1, an ansatz which proves to be very convenient in order to solve
Eq. (1.4) is

2 r 3
2GM 2GM 2GMR(r*)=a exp +i kr*+bo In +b1 +b2 +b3 + ''

2GM r r 2GM
)1, (3.1)

where the b„s =0, 1,2, 3, . . . , are dimensionless constants. Substituting (3.1) into (1.4) and equating the successive
powers of r ', s =—1,2, 3,4, . . . , we obtain

GMm m m 1 (1 + 1) i4 +,+

m

16k
m m 1 +1—1 2 . 2m l(1+1)+4 + +i +2k4 k2 k2GM GM 2 k3 kG2M2 2

(3.2)

b3 ———2 1— 1

3 2kGM 4kGM 4kGM 2kGM

The recurrence for an arbitrary coefficient b„s)4, in terms of the preceding ones, is given by

1
b,

s —1

m m m
1 — (s —2)b, 2+ (s —3)b, 3

— (s —4)b,
2k2 s — k2 s —

2k2 s—

1
s —3 s —4 s —5

+ g j (s —j —2)b, b, i z
—2 g j(s —j —3)b, b, , 3+ g j(s —j 4)b, b, —

j=1 j=1 j=1

+ [ —(s —1)(s —2)b, &+(2s —3)(s —3)b, 3
—(s —2)(s —4)b, &], s ) 5 .

4kGM
(3.3)

As before, this expression provides a direct way to obtain any of the coefficients b, of the series expansion (3.1) where
the first of them are given by (3.2). For the radial wave component R I(r*), we get

GMm G M m l(1 +1)R~i r* =cz exp — + + +O
2k r 2k r 4k r

3

GMm r GMm
k 2GM 2kr

m 1(l + 1)
k2 2kr

G3M3 2 4

2kr 2k
m GMm (1 +1—1) GM+4 + +0k2 4k'r' 2kr

2GM
3

(3.4)
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IV. SOLUTIONS NEAR THE SCHWARZSCHILD RADIUS rs =2GM

Let us start once more from Eq. (1.4). We shall now find a couple of independent solutions of it in the neighbor-
hood of the Schwarzschild radius rz ——2GM. To this end, let us set

2GMp=l— (4.1)

It is easy to see that (1.4) can be exactly transformed into

l +l+1 2l +2l+3 2 I +l+3 q 1 4+ cu — m j p+ p + p R„t=0e2 4G2M2 4G2M2 4G2M2 4G2M2
(4.2)

The following ansatz turns out to be a good one for solving Eq. (4.2):

R ](r*)=a expt+ico[r*+g ](r*)]], g(r*)=c](1—p)+c3p +c3p + (4.3)

where the c, are constants with dimensions of length, which in general depend on c]] and i. Substituting the ansatz (4.3)
into Eq. (4.2), we obtain

—co (1 —p) 4GM —c]p+ g jc,p' +(1—p) —c]p+ g jc,p'
J =2 J =2

+i

cup�(

1 —p ) —c ] + ( 3c, +4C 3 )p —g [j (j + 2 )cJ
—(j + 1 ) cJ + ] ]p~

J =2

—(4G M m +i +1+1)p+(21 +2i+3)p —(1 +1+3)p +p .R =0 . (4.4)

Setting the coefficients of the terms in p and p equal to zero we obtain, respectively,

=2GMm ~l ~l ~1 2+c] ——2GM
1~46 g

(4.5)

C2=— GM

1+co
(m +l +i+1) (49 —5) (m +1 +1+1)(4' +7)+2(14-4' ) 1+4'

i (m'+l'+i+ 1)(8~'—1) 3(m'+I'+i+1) l2 i 3+
2(1+co )(1+46 ) (1+co )(1+48 )

where we have introduced the dirnensionless quantites

m =—2GMm, cu=2GMco .

Moreover, from the coefficients of p and p one obtains the relations

(4.6)

2 -2 2
C) +C )C2

c3 Tco c I +4c2 +9~4 GM
~2(3c, ~4cp ) ——,'GM(l ~l ~ 3)

2
C] +C]C2

+&~ —3c j ——c2 /3 GM
GM(l ~l~3)

(4.7)

and

1
Cg=

2(4+ co )

GM 1 2

2
—co c2 —3cg +

2GM
( —c] +4c]c3+c3 ) —5c] —18C3+21C3

+]co ~ c] ~7C3 ——c3+ ( —c] +4c]c2+c3 )
GM 9 1 2

CO
—2 2 GM

(4.8)

respectively.
In general, for the coefficient c„s) 5, we derive the equation
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C
2

—2

X, +2' [2(s —1)c,
&

—(s —2)c, 2]
s (s'+4' ')

+s [(s —1)(2s —1)c, , —3(s —1)(s —2)c, ~+(s —3)(2s —3)c, 3
—

—,'(s —2)(s —4)c, 4]

+i' X, —2(s —1) c, , +(s —2)(5s —6)c, 2
—2(s —3)(2s —3)c,

+(s —2)(s —4)c, „,s )5, (4.9)

where

X, —:c~[(s —1)c, ~
—4(s —2)c, 2+6(s —3)c, 3

—4(s —4)c, 4+(s —5)c, s]
$ —2

g j(s
J =2
$ —5

+2 g j(s
j=5

$ —3 $ —4—j)c,c, , +2 g j(s —j —1)c,c, , ~

—3 g j(s —j —2)c,c,
J =3 j=4

$ —6
—j—3)c~c, j 3 T' g j(s —j —4)ctc,. J 4 .

j=6
(4.10)

As in the preceding cases, the recurrence (4.9) permits us to obtain c, in a straightforward way for any value of s.
Notice that Eqs. (4.9) and (4.10) and also the former ones (2.3) and (3.3) are very well suited for computer manipula-

tions. This is very convenient because of the lack of closed algebraic expressions for the exact solutions of Eq. (1.4) in

any of the ranges considered.
Substituting (4.6) into (1.4), we obtain

m +l +I +1 2GM rn +l +I +1R t(r* =aexp +1+4' r 2(1+ca )(1+48 )

21 +2l +3
4(1+co )

(8' —1)(m +I +I +1) +3
2(1+4ta )

2'
2GM 2GM

r* 2(m +1 +l+ I) 2GM

m 2+1~+ f +1
2(1+ca )(1+4' )

(4' —5)(m '+l'+l +1) +4' +7
2(1+ 4' )

2l~+2l+3
4(1+ra )

2GM
r

. +0 2GM
r

2

r -2GM . (4. 1 1)

R„t(r *)=P exp(+icier *), (4.12)

as it should be [cf. Eq. (1.6)], where f3 is some constant.

These solutions (4. 11) are apparently best suited for per-
forming the calculations involved in the study of quan-
tum scalar fields in a Schwarzschild space-time back-
ground. ' The reason is that they extend to r ~ oo

without any problem and, moreover, viewed as functions
of co, they do not develop singularities at k =0 or at any
other value of co—as happens to be the case with the
asymptotic solutions (3.4). In fact, for r~ao the solu-
tions (4.11) reduce to

I

Moreover, from (4.5)—(4.8) and the general recurrence
(4.9) we see that these coefficients will never become
singular for any real value of co. This is a necessary con-
dition when one has to integrate over the full range of k
(massive case) or ca (massless case).
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