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Green's function for the scalar field in the early Universe
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We derive the thermal Green's function for the scalar field in a de Sitter space-time and apply it
to the problem of the early Universe. Field fluctuations relevant for inflation arise predominantly
from wavelengths of the order of the inverse Hubble constant. Sufficient inflation is obtained in a
Coleman-Weinberg model, provided the coupling constant is small enough. The results are insensi-

tive to the choice of the vacuum of the field theory.

The new inflationary universe model, arising out of at-
tempts to solve the major problems facing the original
ideas of the old version, ' appears to provide novel solu-
tions to a number of outstanding difficulties of standard
cosmology. Notable among these are the horizon prob-
lern, the flatness problem, and the primordial magnetic
monopole problem.

There are, however, some crucial problems which
remain to be clarified before we can have a completely sa-
tisfactory treatment of the inflationary period. The im-
portant question is to find conditions for a field theory
under which the inflationary scenario occurs and to ascer-
tain whether such conditions are indeed realized in grand
unified theories (GUT's). A related problem is to find the
correct initial state. Although the assumption of thermal
equilibrium at the beginning of de Sitter expansion seems
likely, there are other plausible initial states as well.

The basic quantity of interest is the two-point Green's
function for the scalar field, with appropriate initial con-
ditions, which measures the quantum and thermal fluctua-
tions. ' In this note we obtain the free Green's function
assuming an initial thermal equilibrium condition follow-
ing the elegant real-time formalism. ' This is the starting
point of any perturbative treatment.

The thermal Green's function for the physical field, to
the lowest order in the coupling constant, consists of two
terms: the usual zero-temperature (T =0) expression and
the T&0 contribution. Each of the terms can be infrared
singular, depending on the choice of the vacuum. The
singularities cancel out mutually, independently of the
definition of the vacuum. In the Coleman-Weinberg
model, ' we find that field fluctuations with a wavelength
of the order of the inverse Hubble constant are most
relevant for inflation. Sufficient inflation results in this
class of theories with an upper bound on the coupling
constant.

Consider a scalar field P(x) with the action
I

S= dx —g —,g" B„d ——, m + R

——P —V(0)
4

Here g represents a coupling between the scalar field and

the gravitational field. R (x) is the scalar curvature. V(0)
denotes the "false" (symmetric) vacuum energy density
and is to be chosen to obtain a zero cosmological constant
in the "true" (broken-symmetric) vacuum.

As usual we assume a Robertson-Walker universe,
which is taken spatially flat for convenience:

ds =dt —a (t)dx (2)

—y2GT4+H2
a

(4)

where

4~ N 2 StrGV(0)
4~

The Universe starts undergoing a de Sitter expansion at
a time to when the false-vacuum energy exceeds the
thermal energy density, the corresponding temperature To
being

To-(MpH/y)', G =Mp

and we get

a(t) =e

Below we consider the evolution of the scalar field from
to until the time the scalar field has not shifted appreci-
ably from its false-vacuum configuration.

To obtain the thermal Green's function to lowest order
in A. , we consider the terms quadratic in the field P(x)
only. We now work in arbitrary (D —l) spatial dimen-
sions rather than in 3. It will serve as a regularization pa-
rameter for a divergent integral. It is well known '' that
the quadratic terms in S can be set in a flat (Minkowski)
space form. One introduces the so-called conformal time
g by

The energy density p at temperature T is given by

p= NT + V(0),
30

with N =Nb+ —,Nf, Nb(f) being the number of light
(mass « T) bosons (fermions). The Einstein equation be-
comes

2
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dtdn— 7a (t)
so that

Hq= —e

The metric (2) then becomes

{dY/ —dx ) .
1

(Hr) )

Define

(10)

&o+)&o/2

"o- '&o/2

o

Irn q =-(so/2

P(x) =(Ht))' ' P(x),
and the action for the free Lagrangian becomes

FIG. 1. The contour c in the g plane. The dashed lines mark
the domain of analyticity of the Green's functions.

S()= cj x 0'17 2

where

m D(D —2)
H'

(12)

m =mp +gD(D —1)H2 . (13)

The path-integral formalism for the partition function
in the absence of interaction (A, =O) and in presence of a
source j(x) is '

Z[j]=N fNp, exp i fd 'xdp —,

f

m

H
n' 0+F0. (14)

the boundary condition (15) leads to the famihar Kubo-
Martin-Schwinger periodicity condition:

where the q integration runs over the contour c shown in
Fig. 1. With this choice of contour, ' Z [j] generates real,
analytic n-point functions, also when the Hamiltonian is
not constant in time, as is the case here. To obtain the
thermal Green's function, we require the path integral to
go only over all periodic paths:

g(x, gp+ , i Pp) = t/(—x,7lp — I Pp) (15)

G~) gp ——Pp, g';x —x' =G~( gp+ —Pp, g';x —x'

(20)

To construct the Green's function, we need the solu-
tions of the homogeneous equation

6
, +k'+( —,

' —v')/q' f(g)=0,
(21)

2

H
A set of two linearly independent solutions are
(k )'~ H'' (kg) and (kri)'~ H' (kg) where H,' '(z) and
H'„'(z) are the Hankel functions of the first and second
kind. " However, to leave the choice of the vacuum state
of the field theory open, ' we consider the set

fk "(ri)=(rrkr//2)' [c*, (k)H "(kg)+c2 (k)H", (kg)],

G~(x,x')

=6 '(x —x')5, lr/ —g') .

Because of spatial translation invariance

gD —1

G~(x, x') = e'"'" " 'GP(g, ri'),
(2~)

(17)

In this formalism the system is assumed to be in thermal
equilibrium at time t/p at a temperature Tp Hgp/pp. ——
Here and below the subscript c denotes functions on the
contour.

The two-point Green's function satisfies

m D(D —2)
II' 4

—k-
dn'

m D(D —2)
a' 4

where Gk(g, g') satisfies

n' Gk(n n')

(22)
and its complex conjugate

fk '(q)=(vrkg/2)' [c& (k)H' '(kq)+c2 (k)H'"(kg)] .

=5, (q —g') . (18)
Writing

G~(x,x')=G~ (x,x')8, (g —g')+G~ (r/, g')&, (r/' g), —

(23)
Each choice of the functions c~(k) and cq(k) subject to

(24)

gives rise to a different vacuum. Gk(g, q') is now given
13

(25)
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where

(2) PO
~k +k fk 90 2

(2) ~ (2)fk 90+ l fk lp
2 2

(26)

The Gibbs ensemble average of the field operators is related to the Green's function as

& Tg(x)g(x')&=iG~(x, x'), (27)

where T denotes g ordering on the contour. We now let x~x' and a measure of the quantum and thermal fluctuations
is given by

&y'(g) & =(Hg) '& t)"(g) & = (Hg)

(4 )(D —) )/2D —I

2

j dkkD-'(1+2ReA, )
~

fk")(q) t'.

It is implied that any term divergent in the limit D~4
has to be removed by a corresponding counterterm in the
Lagrangian.

For k & K where K is sufficiently large, the mode func-
tions f»' (rI) [fk '(g)] are dominated by negative [positive]
frequencies if we set

c,(k)=1, c2(k)=0, k &K . (29)

Then for k &K, we have the conventional vacuum of the
field theory in Minkowski space. For k &K, there is,
however, no such unique vacuum for any choice of c] and
c2. Now if we choose (29) to continue to values k &K, we
see, by a small argument expansion of the Hankel func-
tions, that both the integrals in (28) are separately infrared
divergent' at the physical D =4. However, it has been
shown' that the coefficients c

&
and cz may be chosen to

remove the infrared divergence of the terms in the two-
point function, the coefficients themselves being divergent
in that limit. For example, if we augment (29) with

c)(k)=(k/K) t', c2(k)=[(k/K) t' —1]'~

~ fk "(rt)
~

-(kryo) (k/K) t' (31)

MP » To »H
as is the case in GUT's. Then

Po/rip H/Tp « 1 . ——

(32)

(33)

A natural approximation for Red~ suggests itself if we
consider the regions k & k

&
and k & k ] separately, where

Hta
k, g0=l, or k, -IIe (34)

Then for k &k((k &k() we may use the small (large) ar-
gument expansion of the Hankel functions appearing in
Ak and we get (K=k()

as k~O. The two integrals in (28) are now separately
convergent for m =0 [v=(D —1/2)] at the lower end.

Our discussion of the very early Universe is based on
(28). Thus we assume the Universe to be in thermal
equilibrium at to at a temperature To =e '/)t30 given by
(6). Further we assume

it satisfies (24) and

p &O, k &K, (30)

and

ReA»= ——, +O((k/k() ( t"), k &k, (35)

Red» =(e —1) ' 1+—,'(v —
~ )(1—e '

)
' +0

0

Keeping terms to leading order, (28) simplifies to"

2

k&k] . (36)

(Hg)

8(4~)(D —3)/21
2

dk kD
Ire e ' —1

H ''(kr))H,' '(krI) . (37)

We note, in particular, the mutual cancellation of the
infrared divergence of the two terms in (28) (Ref. 16).
Mathematically, the role of the coefficients c& and c2 is to
define separately each of the two integrals in (28), at the
lower end when rn is zero or negative. It is clear that the
cancellation is independent of any particular choice of c&

and c2.
Our result resembles the one obtained by Guth and Pi.

The difference lies in the manner that the low-momentum
region is treated. %'hilq we are led to a cutoff -0 at the
lower end of integration, they obtain an effective

coupling-constant-dependent cutoff by explicit introduc-
tion of a coupling-constant-, and temperature-dependent
mass term in the Lagrangian.

An approximate evaluation of (37) follows again by di-
viding the k-integration range at k2 into two parts:

k2rl =(k2/H)e ' —1 . (38)

Then approximating the Hankel functions by small (large)
argument expansions for k & k2 (k & k2) as before, we
readily get
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(p'(t)) = 2 I (v)
2&

2
H TQ

H

3 —2v
—I3 —2v) HIt —to! 1 —I 3 —2v)H(t —t~ )

e 'I, (1 —e—2 2(3 2v)

—2H(t —to) TQ

12

TQ HTQ
2I

2772 2772

H
8~

(39)

where
H(t —tO)

(H/TOI.=f„„" dx
0 e —1

(40)

For the Coleman-Weinberg case, I /H « 1. Consid-
er the time development after sufficient Hubble damping
has taken place:

(41)

We then get, from (39),

2 ' HTQ —(2m j3H )(t —to(P (t))=, e)

3H —
I 2m l3H)(t to )—+ 1 —e ' +O(H

Str m
(42)

The O(H ) terms arise from the "transients" (i.e., terms—H(t —toj
undergoing Hubble damping due to the factor e " ).
Considering times not too large, t —to &3H/2m, (42)
simplifies to

HTQ(tt'(t))=, +, (t t, )+O(H') . —
2w 4~

(43)

The period of inflation is easy to determine. As (P (t) )
grows, the effective mass squared of the field acquires an
extra negative contribution of —3A, (P ) and this in turn
makes the growth of (P ) exponentially fast. The period
of inflation stops when this stage is reached. For the
Universe to expand more than exp(70) times, we find from
(6) and (43) that

-2~ 10
H

70 TQ
(44)
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if we use H=10' GeV and X-200 as typical values in
GUT's.

From (39) and (43) it is clear that at t =to, ($ ) starts
out with a large value —TQ2/12. After sufficient Hubble
damping, it drops to -HTQ. Only then it starts slowly to
increase to the large "true-"vacuum value -HMJ /&k.
We see that (P ) does not at all settle to the latter value
during Hubble damping, ' thus invalidating the objection
raised by Mazenko, Unruh, and Wald. '

We now compare our results with those stated by
Linde, ' who initiated this approach to the problem. The
first term in (42) and (43) which dominates ($ ) is miss-
ing in the corresponding expression of Linde. Inspection
of integrals in (37) show that field fluctuations at wave-
lengths —H ' contribute dominantly to ( P ), while
Linde claims fluctuations at very long wavelengths

H(t —to)-H e to be dominant. Indeed these wavelengths
are completely absent from (37). Finally the upper bound
on A, (44) is about 2 orders of magnitude lower than that
given by Linde.
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