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It is shown, in the case of fermions coupled to a chiral field, that for every value of the coupling
constant the energy of the B=O sector is lower for a localized chiral field than for a translationally
invariant (uniform) field. An expansion is given which converges for fields localized in a region of
space smaller than the inverse mass of the fermions and which in lowest order explains the vacuum
deformation. Exact energies are calculated for a hedgehog field. The instability of the uniform vacu-
um is found to increase with the winding number of the chiral field.

I. INTRODUCTION

The o. model, in its linear and nonlinear versions, is
used in many contexts in field theory with the assumption
that its ground state, the physical vacuum, is translation-
ally invariant. MacKenzie, Wilczek, and Zee discussed
the possibility that heavy fermions could deform the vacu-
um in the B=O sector. Their analysis was based on the
gradient expansion. The instability however occurs for
small size deformations of the vacuum which involves
strong gradients of the fields. For such deformations the
validity of the gradient expansion breaks down. In this
paper we investigate this question further, in an exact fer-
mion one-loop calculation, without relying on the gradient
expansion. We show that when fermions are coupled to
an SU(2) chiral field which is localized in space, an insta-
bility of the translationally invariant vacuum occurs in the
B=O sector for any value of the coupling constant. We
give an expansion which converges for chiral fields local-
ized in a region of space of size R smaller than the Comp-
ton wavelength of the heavy fermions and for which the
gradient expansion breaks down. The expansion is com-
pared to an exact calculation of the fermion one-loop en-
ergy in the case of a chiral field with a hedgehog shape.
The lowest-order term of our expansion is able to describe
the deformation of the vacuum. The instability of the
translationally invariant vacuum is found to increase with
the winding number of the chiral field.

In Secs. II and III we explain the exact calculation of
the fermion one-loop contribution to the energy in the
case where the chiral field has a hedgehog shape. In Sec.
IV we give an expansion for the energy which converges
for chiral fields localized in small regions of space and we
use this expansion to prove that the energy (measured rel-
ative to the translationally invariant system) is always
negative for sufficiently small sizes irrespective of the
shape of the chiral field and for any value of the coupling
constant. Our work is similar to that of Soni who no-
ticed the instability of the translationally invariant vacu-

um by analyzing some of our previous calculations for
chiral solitons.

We consider the nonlinear cr model with fermions g
coupled to a chiral field U. The Lagrangian density is

2

tr(c)„U)(t)"U )+f( i ttl+gf U—)4&,
16

( l. la)

where U is an SU(2) chiral field:

iO ~y)U=e

The partition function is, formally,

Tre ~ = f 2)(g)2)(g)%(U)exp —f d4xX

(1.1b)

(1.2)

We work in a Euclidean metric in which

x"=x„=(r,r), y"=y~=(t'P, y ) = —y"

d4x = d'T d3x
(1.3)

In the fermion one-loop approximation we integrate the
quadratic form of the fermion fields. This leads to the
eA'ective Lagrangian

2

X( U) = tr(t)„U)(c)~U ) —tr ln( i')+gf U—) . (1.4)

—tr ln( i8+gf U)+tr ln—( —i itl+gf) . (1.5)

One further subtraction is required to eliminate an ultra-
violet logarithmic divergence. For an SU(2) field U we
have

tr ln( —i tt)+gf U) =tr ln(+i t)t+gf U )

= —,'tr in[ —t) +g f +igf (tlU)] . (1.6)

Our reference state is the translationally invariant vacuum
defined by U= l. We subtract from (1.4) the constant
X(U=1). The eff'ective Lagrangian becomes

f 2

&,QU)= tr(t) U)(c)"U )
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XF( U) = —
—,tr ln 1+ 1

igf (8U)ai+g~f i (1.7)

Since (aU) is odd in y matrices, only even powers of g
contribute to the expansion of the logarithm. All except
the second-order terms are ultraviolet convergent. The
divergent part of (1.7), and therefore of the Lagrangian
(1.5), is equal to

g2f 24"
'2

(aU)(a U')
a'+g'f—'

g'f'„
4

2

(a„U)(a~U')
a2+g2f 2

2 2

= —tr(a„U)(a" U ) f d4k (1.8)

where the trace is evaluated on the plane-wave basis (4.4)
normalized to a volume Q. No other terms appear in the
expansion of the logarithm which are quadratic in the
derivatives of the field U. Thus a subtraction of the diver-
gent term (1.8) from the Lagrangian (1.5) is a renormal-
ization of the decay constant f. The renormalized
eff'ective Lagrangian we shall work with is

X,ir(U)= tr(a„U)(a" U ) —trln( irl+gfU)—
16

+tr ln( i rl+gf)—

g2f 2

4

2

(aU)(aU') . (1.9)
a2+g 2f 2

The second line of (1.5), which is the fermion contribution
LF to the action, is thus equal to

ho= . +gf/3 hojk&=el ~k&, (k ~k&=I, (2.4)

and ek =+(k +g f )'
With this notation and in the zero-temperature limit

/3~ m we have

1 I oo—f dqx trln(a, +h)= f d3x f trln(h —co) .—i oo 2'7T'l

(2.5)

With one integration by parts we obtain

1—f d4x tr[ln( —irl+gfU) —ln( —i8+gf)]

ioo de 1

—i ~ 2771 A —CO Ap —co

eg &p
(2.6)

The sums in (2.6) are over the negative-energy orbitals
which lie to the left of the energy integration path. We
could, at will, include some positive-energy orbitals (or ex-
clude some negative-energy orbitals) in the sums (2.6) by
adding a chemical potential: h - h —p. We do not need
to do so however in the study of the vacuum instability.
The expression for the renormalized energy is thus

fE = g ei —g ek+ f d3x tr(aU)(aU )

eg &0 ek &0 16

ho = . +gf/3
l

are Dirac plane-wave states which we shall denote by
~

k & where k denotes all the quantum numbers (momen-
tum, Dirac index, flavor, color, . . . ) needed to specify the
state:

II. CALCULATION OF THE ENERGY
FOR A HEDGEHOG CHIRAL FIELD g2f 2

d4x tr
/3 4

2

(aU)(aU') .
a2+g2f 2

In this section we explain how the exact energy was
calculated numerically for a chiral field with a hedgehog
shape. In Sec. IV we will show that the instability of the
translationally invariant vacuum occurs for any localized
shape of the chiral field.

A stationary state, for which (a,U) =0, has an energy
equal to Ir r0(r)y5U=e (2.8)

(2.7)

The energies e~ of the fermion orbits were evaluated
numerically. The chiral field U was assumed to have a
hedgehog shape:

E =— d4x U
1

(2.1) with an exponential profile

which is evaluated with the Lagrangian (1.9). In the Eu-
clidean metric we have

i rl+gf U =/3(a,—+h), (2.2)

where h is the Dirac Hamiltonian the eigenstates of which
are the fermion orbitals

h = +gf/3U, h
~

A& =ei
~

k&, (X A&=1 .
l

(2.3)

Similarly for the translationally invariant case U=1 we
have ip+gf =/3(a, +ho). The ei—genstates of

B(r) =nme (2.9)

the winding number n being an integer. Such a hedgehog
shape is a common occurrence in soliton theory. The
choice of the exponential profile (2.9) is arbitrary except
for the boundary conditions at r =0 and r - ao . An im-
provement in the shape of B(r) can only make the instabil-
ity, displayed below, worse.

Having fixed the shape of the chiral field U, we diago-
nalized the Dirac Hamiltonian (2.3) on a spherical basis of
a free Dirac particle defined in Ref. 6. The momentum k
of the basis states was discretized by introducing a bound-
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XF( U) = —tr ln(B, +h)+ tr In(B,+hp) . (2.10)

Using the property trln(B, +h)=tr ln( —8,+h) we write
the action (2.10) thus

XF(U)= ——,'trln 1+ V
1

—0, +hp
(2. 1 1)

where the interaction V is defined by the equation

ary condition at a radius r =D chosen to be larger than
the soliton size R, typically D&4R. The results were
checked to remain unchanged with a further increase of
D. The basis was made ftnite by including only those
basis states with momenta k &A. Basis states with all
possible angular momenta were included compatible with
the condition k &A. The maximum angular momentum
was found to be of the order of the classical value DA, in
fact a few percent lower. Further details are found in
Ref. 6.

Special care was required to ensure the convergence of
the energy as the cutoff momentum A was increased. For
this purpose the counterterm, as expressed in (2.7), al-
though formally correct, is not adequate for numerical
evaluation and we rederive it now in a form which en-
sures numerical accuracy. The second line of (1.5), which
represents the fermion contribution to the effective La-
grangian, can be expressed in terms of the Dirac Hamil-
tonians (2.3) and (2.4) thus

h'=h, '+ V,
V=h —hp ——g f (UU —1)+igf(VU) .

(2.12)

1

2 f d,xtr 1
2V—8, +hp

1 1 + ~ ~ ~

—8, +hp

(2. 13)
The divergent part, evaluated on the plane-wave basis
~k&, is

Although UU is equal to 1 formally, it is not strictly
equal to 1 in the subspace spanned by the basis plane-
wave states with k &A. Since h is diagonalized in this
subspace it is essential to calculate V=h —hp as the
difference between the squares of the matrices h and hp as
evaluated in this subspace. Otherwise the counterterms
will not cancel the divergent parts of the orbital energy
sums appearing in the energy (2.7). Let us denote by

~

k &

the plane-wave basis states. No confusion should arise
with the use of this symbol to denote also the eigenstates
of hp in (2.4) since they could equally well be used. The
fermion contribution to the energy (2.1) may be obtained
from the eff'ective Lagrangian (2.11):

EF=—f d4x XF ( U)
1

1 f iao dci)

2 —I oo 2771

&k ivik& 1 &k iv'ik& 1 &k iv[k& 1 &k
i

V [k&
2+g2f 2p322(k2+g2f 2p32)24(k2+g2f 2)1/216(k2+g2f 2)3/2+ (2.14)

These are the counterterms we subtract from the energy.
The form of the energy, which was actually calculated is
thus

1 &k iVik&"+„&„2 2e(p e„(p k «+g
V k 2

+ f f d3x tr(()U)(gUt)
( k 2 +g 2f 2

)
3 /2

(2.15)

This energy is identical in form to the energy (2.7). How-
ever, in the numerical calculations the Hamiltonian was
diagonalized in the subset of basis states

~

k & with k & A
and the sums appearing in the counterterms were limited
to the same subset. Finally V was considered as a matrix
in this subset and was squared as such. The last term of
(2.15), which is the kinetic energy of the chiral field, was
evaluated in the form

III. RESULTS FOR THE HEDGEHOG FIELD

The results are more easily discussed if energies are
expressed in units of gf and distances in units of 1/gf.
This eliminates the constant gf from the eigenvalue
problem (2.3) which becomes, in these units,

h = +pU, h ~A&=ei
~

X&, &X
~

k&=1, (3 1)
l

where V; —=8/B(gfx; ) and where ei =e3 /gf. The eigen-—
values of hp are then equal to ek =+(k +1)' . In these
units, the energy (2.15) of the system is expressed thus

E 1 &k ~V~k&
ek +-

&k
i

V2ik&

(k 2+ 1 )3/2

2

f d x tr(BU)(BU ) + ', f-4 y'dy
2g

2
dO 2sjn 0+

y
(3.2)

2 f"4~r'dr
2 p

dO

dT

'2
2sin 0+

T

which is derived from the hedgehog form (2.8).

(2.16) with y =gfr. This way, the fermion contribution to the
energy, which is the first line of expression (3.2), becomes
independent of the constants g and f and the chiral field
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instability occurs at all values of the coupling constant
and independently of the (hedgehog) shape of the chiral
field.

-10

-15

gfR

Nc =3

IV. SMALL-SIZE EXPANSION

In this section we derive an expansion which converges
when the chiral field is localized in a small region of space
of size R & I/gf. The chiral field does not necessarily
have a hedgehog shape. We use this expansion to show
analytically that the energy is lowered, relative to the
translationally invariant case, when the chiral field is lo-
calized in a sufficiently small region of space.

The expansion of the logarithm in the fermion action
(1.7) yields an expansion which converges for chiral fields
which are localized in a small region of space. Subtract-
ing the counterterm (1.8) the fermion one-loop contribu-
tion to the energy becomes

FIG. 3. General behavior of the fermion and chiral field con-
tributions of the energy as a function of the dirnensionless size
parameter gfR. The energies are expressed in units of gf

1
EF =— d4x LF(U)

d 4x tr ln 1+G V + —,
' G V

translationally invariant system for which U= 1. Since
the energy density is localized in a region of space of size
roughly equal to R, one could arrange an infinite array of
nonoverlapping hedgehogs such that the energy per unit
volume would be lower energy than that of the transla-
tionally invariant system.

As the coupling constant g decreases, the minimum en-

ergy occurs for decreasing values of R. In order to deter-
mine whether the hedgehog field has lower energy than
the constant field for any value of the coupling constant,
we need to know how the fermion contribution to the en-
ergy behaves at small values of R. Fortunately there is an
expansion valid for small values of R. This expansion is
presented in the next section, where we will show that the

d4x tr —,'GVGV ——,'G V + —,
' GV

+ —,', (G V)'+ ] (4.1)

with the notation

6=
~ 2 ~, V= igf(8U) —.1

$2+g2f 2
(4.2)

Because V is odd in the y matrices, only even powers con-
tribute to the expansion.

Consider first the lowest- (second-)order contribution:

EF' I= dqx tr[G, V] &0 .
Sp

(4.3)

This second-order contribution, which turns out to be the
dominant contribution for chiral fields localized in a small
region of space, is negative. Indeed G and V are Hermi-
tian, their commutator [G, V] is therefore pure imaginary
and its square negative. This explains why, for example,
the curves in Fig. 2 all start out negative at small values
of R.

We evaluate the expression (4.3) using a normalized
plane-wave basis

~

k & defined thus

&x ~k&= e "", G ~k&= ~k& .
QPQ k 2 +g 2f 2

(4.4)

tat

In our Euclidean metric
second-order energy becomes

k„=x„=ko~+ k- r. The

FIG. 4. Total (fermion+ chiral field) energy in units of gf
plotted against the dimensionless size parameter gfR The case.
depicted is for a coupling constant g=4 and for N, =3 colors.

EF'= & &ki
I
VIk2+k21VIki&

klk2

1
X

(k 2+g 2f 2)(k 2+g2f 2)

( k 2 +g 2f 2 )2
(4.5)
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We consider a time-independent chiral field U which
we scale by setting F(q) = 1 1

4~+ ~ (k'+g'f')t~(k+q)'+g'f')
U = IV(r/R ) . (4.6)

The scaling of the matrix element (k ~
~

V kq ) can then
be expressed as

1

(k 2+ 2f2)2
(4. 10)

(k, V k2) =6g g. igf (k, (7U) k, )

1
=6&„q„igf R L (Rq),

where L (Rq) is the Fourier transform of (7U):

L (R q) = f d&x e' q'"(VU) .

(4.7)

(4.8)
(k2+g f'-)'- (4. 1 1)

The function F(q) can be evaluated by the well-known
method of writing

F(q)= g dx
1 ) 1

4P& g o [k'+g'f '+q'x (-1 —x)]'

Setting q =k2 —k~ and using (4.7) the second-order ener-

gy becomes
and by using the identity

EF'-'=(gf)'R, f d3q L (Rq)
~

'F(q),
(2~)'

(4.9) g f (k') = —', ~' f k'd (k')f (k') .
0& g (2~)

(4. 12)

where We find

7 )/7

F(q) = — 2 — 1+
64~' q 2gf

2 )/2

ln
2gf

q

2gf

2 1/2

2gf

q

2gf

(4.13)

Let us set y=Rq in (4.9). We then obtain the second-
order fermion energy in the form

Ez '=(gf) R . —f d3k L (y) F(y/R) .
(2~)'

(4.14)

This expression has also been obtained by Zuk and Tu-
dor. The limit R ~0 of the function F(k/R) can be
obtained from (4.13):

F (y) —,2 —21n
2

~« —~ 64~' 2g'R f (4. 15)

Substituting (4.15) into (4.14) we obtain a limiting form
for the second-order energy at small R:

EF (R) —agfR +6gfR IngfRR~0

where the coefficients a and 6 are

(4.16)

a=gf d3y L (y) 2 —2 ln
tr 2 1

(2~)' 64~

6=gf f d3y ~L(y) ~'
(2~)' 64~

(4.17)

EF" —agf + 6gf ( 1ngfR + 1 ) —~ . (4.18)
dR R-o R -~O

A dimensional argument shows that the kinetic energy

Since 6 is positive, the energy (4.16) will have a (negative)
infinite slope at the origin R =0:

of the chiral field is a positive linear function of the size
R as shown in Fig. 4. Therefore, no matter how small
the coupling constant g is, the total (fermion + chiral
field) energy will become negative at sufficiently small
values of R. This result was also noted by Soni. ' The
dashed curves in Fig. 2 show the second-order energy
calculated with the chiral field of hedgehog shape (2.8)
and exponential profile (2.9). The second-order energy
(4.3) is seen to approximate the one-loop fermion energy
sufficiently well to display the minimum.

Each extra factor GV in the expansion (4. 1) contributes
an extra factor gfR Indeed (4.7) .shows that V contains a
factor (gfR) . Each factor GV involves an extra q integra-
tion which contributes a factor 1/R when the substitution
y=Rq is made as in (4.14). Therefore the expansion (4. 1)

converges for small values of gfR. The argument is in-

dependent of the shape of the chiral field, which need not
have a hedgehog shape as in the numerical example dis-
cussed in Sec. III. All that is required is that the chiral
field be localized in space. In the linear o. model one
could calculate the contribution to the energy of the quan-
tum fluctuations of the chiral field (boson one-loop contri-
butions). In the dimensionless units defined in Sec. III,
the boson quantum fluctuations would be proportional to
the coupling constant g. Since the fermions cause an in-

stability for any value of g it is possible, although not
proved, that the boson one-loop contribution will not
upset the instability. The present calculation does not
show, however, how other degrees of freedom such as, for
example, vector mesons, will change the behavior of the
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system at small values of R. If however the energy of the
quark-loop calculation would increase when another field,
interacting with the fermions, is added, the energy could
then be lowered again by simply setting the classical value
of this field to zero.

It is difficult to assess all the physical consequences of
the instability we have found. It may be viewed as
displaying a limit to the domain of validity of effective
theories, such as the o. model, to short-distance phenome-
na. It would be important to study whether such instabil-
ities also plague theories involving Higgs fields, such as
the Weinberg-Salam model.

Finally it may be useful to compare our approach with
that of Dyakonov and Petrov' who view the problem
differently. Their Lagrangian consists of the (nonrenor-
malized) fermion Lagrangian (2.11) alone. They do not
include a term representing the kinetic energy of the
chiral field. The latter is assumed to be generated dynam-
ically in the fermion one-loop approximation. The La-
grangian (2.11) used by Dyakonov and Petrov can be
written in the form

4g N,
a (g, A/gf) =

(2~)

4g N,

(2')

d4k

(k2+ 2f 2)2

A A
ln +1

g2f 2 A2+g2f 2

(4.21)
If the momentum cutoff A is chosen such that
a (g, A/gf) = 1 the kinetic energy of the chiral field is gen-
erated entirely by the fermion loop. Typical values ob-
tained from (4.21) are A/gf=2 for g=2 and A/gf= 1 for
g = 8. In the range 3 5 g 5 9 we have in fact
a (g, A/gf)=1 for A=8f independently of g. When the
fermion-loop momentum is cut off in this way no instabil-
ity of the vacuum seems to occur.

Our work is most easily compared to that of Dyakonov
and Petrov if we write the Lagrangian in the form

X(U) = ——„'trln(1+GV) ——,'trG V

2

+ (t)„U)(()"U ) [a(g, A/gf)+. b] . (4.22)

XF(U) = ——,'tr ln(1+GV) ——,'trG V + —,'trG V (4.19)

using the notation (4.2).
We have purposely added and subtracted our counter-

term in order to display the contribution of the Lagrang-
ian to the kinetic energy of the chiral field. Indeed the
counterterm has the form of this kinetic energy since it is

equal to

Dyakonov and Petrov set b=0 (no bare kinetic energy
term for the chiral field in the Lagrangian) and they cut
off the Fermi-loop momentum at A=8f In our ap-.

proach we do not assume that the chiral field kinetic en-
ergy is generated by the fermion loop alone and we
choose b such that a +b=1 thereby maintaining the
chiral field kinetic energy at its desired value as A ex-
tends to infinity. When A ~ 8f the constant b becomes
negative. It is this difference between the Lagrangians
that explains the difference between our results and
theirs.
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