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By extending O(n) to the conformal group CO(n)=0(n)X R~ we show that in an O(n) gauge
theory with spontaneously broken symmetry the Higgs scalar field may be regarded as a linear ap-
proximation of an internal-space conformal factor in a CO(n) covering theory. The conformal factor
enters the theory in such a way that it has a natural physical interpretation as a mass field . In the
CO(n) theory the masses of the O(n) and R * gauge fields depend on the state of the mass field; how-
ever, all mass ratios are constant and the O(n) ratios agree with the mass ratios in the standard
theory. The Q field equation reduces to a constraint equation that determines € algebraically in
terms of the massive gauge fields, and this constraint may be used to eliminate  from the Lagrang-
ian. The resulting CO(#n) theory describes the usual number of massive and massless O(n) fields to-
gether with a new massive gauge-invariant vector field. The gauge fields have quartic self-coupling
terms in the Lagrangian, but the masses are now constants. Solutions of the field equations for the
CO(n) gauge fields in turn determine the conformal factor 2, and therefore the massive vector bosons
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may be viewed as acting so as to produce “ripples” in the internal conformal geometry.

I. INTRODUCTION

In standard formulations of U(n)-type' gauge theories
it is tacitly assumed that the internal metric on multiplet
space is a nondynamical element of the theory.”? This as-
sumption is implemented when the constant metric asso-
ciated with the group is used in writing down the
gauge-invariant Lagrangian of the theory. Thus, for ex-
ample, the Higgs sector of the total Lagrangian of an
O(n) gauge theory is typically of the form

Ly=18;D,®D"d/ —V(§,d'dD)), (1

where i,j =1,2,...,n. The constant matrix (§;) is the
standard metric on the multiplet space R" that is invari-
ant under the gauge group O(n), and V(S,-j(I>[<I>j) is typi-
cally an O(n)-invariant quartic potential. In this paper
we develop some of the simplest consequences of relax-
ing this tacit assumption with the eventual goal in mind
of ascertaining if it would be of physical interest to drop
the assumption altogether and let the internal metric be-
come an additional dynamical element of the theory.?
The success of gauge theories that employ the Higgs
mechanism and spontaneously broken symmetry is well
known. However, there appear to be problems with the
standard interpretation of the Higgs particle. The stan-
dard interpretation fundamentally requires the presence of
at least one massive scalar particle in the theory and, for
example, in the Glashow-Weinberg-Salam (GWS) theory®
the Higgs mechanism introduces a massive scalar particle
that has not yet been observed. In addition there appear
to be other basic problems that arise due to the presence
of the Higgs scalar particle, and these problems have led
some researchers to attempt to reformulate theories that
employ the Higgs mechanism in such a way that the
benefits of the mechanism are retained while the disadvan-
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tages are removed.* In this paper we study this problem
from a geometrical point of view. That is to say, we ask if
the Higgs scalar field can be realized as some fundamental
feature of the geometry> of internal space.

As a first approximation to a theory with a dynamic
internal metric we will restrict attention in this paper to
the case where the internal metric is allowed to vary over
the conformal equivalence class containing the standard
metric. This special case leads to a theory with the con-
formal group CU(n)=U(n)X R * as gauge group (R " is
the set of positive multiples of the identity matrix I). We
restrict attention to this special case because there are
both physical and mathematical reasons for its considera-
tion, and the generalization is simple enough to allow a
rather complete description of its implications.

Consider for the moment the general structure of typi-
cal O(n) gauge theories. In the physics literature such
theories are standardly formulated in local gauges on the
spacetime manifold, as is the Lagrangian given in Eq. (1)
above. Such formulations assume the existence of an un-
derlying O(n) principal fiber bundle which is the
mathematical arena for the theory. One is thus led to
consider the question of the uniqueness of O(n) principal
fiber bundles.

A principal fiber bundle B with structure group O(n)
may be viewed as a subbundle of a GL(n) principal bun-
dle P. If P is mapped onto itself by a bundle automor-
phism defined by u-—ug for all u €P, then B is
transformed into a new subbundle B,=Bg with the
gauge group G,=g 'O(n)g. Generally, G,0(n);
however, if g is a conformal transformation matrix then
g=cl, and G;=O0(n). In this case the new subbundle
B, is also an O(n) principal subbundle of P. Thus O(n)
principal bundles are not unique as subbundles of a
GL(n) principal bundle.
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It is therefore natural to extend O(n) gauge theories to
conformal CO(n)=0(n) xR * gauge theories. The cor-
responding principal fiber bundle CB has the conformal
group CO(n) as gauge group, and CB may be considered
as a conformal equivalence class of O(n) principal bun-
dles. Each of these O(n) subbundles is associated with
an internal metric that is conformally related to the
standard metric defined by O(n), and thus conformally
related to each other. In local gauges on the spacetime
manifold each of these internal metrics is the product of
the standard metric with a scalar field, the conformal
factor. Now if a CO(n) theory can be formulated in
such a way that field equations for the conformal factor
are a fundamental part of the theory, then the internal
metrical geometry will be a dynamical element of the
theory. A conformal factor that is a solution of field
equations of this type will determine a specific O(n) sub-
bundle, thus resolving the nonuniqueness problem. In
Secs. II and IIT we will show that an O(n) gauge theory
with a Higgs potential can be generalized in a natural
way to CO(n) theory in which field equations for the
conformal factor are an integral part of the theory. The
interesting feature that emerges is that the conformal
factor enters the theory in such a way that it has a natu-
ral physical interpretation as a mass field. These
features of the CO(n) model theory will be seen to de-
pend crucially on the nontrivial ground-state structure of
the Higgs potential.

We recall that a fundamental role played by the Higgs
Lagrangian in spontaneously broken gauge theories is to
provide mass terms for the vector bosons. Moreover, it
is well known that conformal invariance can be funda-
mentally related to notions of mass, although standard
arguments that link conformal invariance and mass are
usually related to external conformal transformations on
the metric tensor of spacetime.® As indicated above we
are concerned in this paper with internal rather than
external conformal invariance. In the case of spontane-
ously broken gauge theories with one-dimensional vacu-
um symmetry groups we will show that the conformal
factor for the internal metric is related to the single
component of the Higgs scalar field that survives the
reduction of symmetry. As indicated above we will also
show that in spontaneously broken gauge theories the
internal conformal factor may be viewed as a mass field,
thus giving some concrete realization to one aspect of
the well-known proposal of conformally invariant dy-
namics of all microphysical mass fields as recently reem-
phasized by Bekenstein and Meisels.’

The organization of our paper is as follows. In Sec. IT
we present a conformal extension of the Higgs and
Yang-Mills sectors of a standard O(r) gauge theory with
spontaneously broken symmetry, with the Higgs poten-
tial chosen so that the symmetry group of the ground
state is one dimensional. The structure of the theory
may be viewed as an internal space version of classical
Weyl geometry on a manifold. The extension of O(n) to
CO(n) requires the introduction into the Lagrangian of a
new R 1 gauge field C, and an extra coupling constant
g*. In order to expose the effects of the generalization
the Lagrangian is reformulated so as to conform as

closely as possible with the Lagrangian of standard
theory. In the reformulation the R * gauge field and the
conformal factor, both of which transform under CO(#n)
transformations, are eliminated in favor of two CO(n)-
invariant fields, a vector field Q (the internal Weyl vec-
tor), and a scalar field Q.

In Sec. IIT we discuss the physical implications of the
theory. The CO(n) theory predicts the usual number of
massive and massless O(n) vector bosons, but now the
masses depend on the state of the Q field. However, the
ratios of the masses are constants and agree with the ra-
tios of the masses in the standard theory. The new
gauge-invariant vector boson Q is also massive, with the
mass of Q also involving a factor of . We argue that the
properties of the gauge-invariant scalar field Q suggest
that identification of ) with a particle field is incorrect,
and we propose to interpret ) as a mass field. By a prop-
er choice of the gauge we show that () may be identified
with the internal conformal factor, and thus the Q field
equations are equations that determine the mathematical
arena for the O(n) theory. Moreover, we show that a cer-
tain low-energy limit of the CO(n) theory is a pure O(n)
theory with the nonvanishing field Q playing the role of
the Higgs scalar field. When Q is approximated to first
order the theory reduces to the standard O(n) model.

In Sec. IV we examine the dynamics of the mass field
1. By defining a new variable (S, =0, —9,InQ) we show
that the Q field equation reduces to an algebraic equation®
for  in terms of scalar invariants formed from the gauge
fields. Treating the ) field equation as a constraint and
substituting it into the Lagrangian completely eliminates
the Q field from the dynamical equations. The resulting
Lagrangian describes only vector bosons with quartic
self-coupling terms, and the masses of the vector bosons
are constants. We show that if the algebraic variable Q is
calculated after having solved the field equations, then the
action of the massive vector bosons is to produce ‘‘rip-
ples” in the internal metrical geometry. We also discuss
in Sec. IV a simple application of the CO(n) theory in
which constant classical solutions for  induce a classical
mass spectrum for the particles in the theory.

In Sec. V we sketch a conformal extension of the GWS
gauge theory, and conclusions and suggestions for further
work are given in Sec. VI.

II. A MODEL CO(n) GAUGE THEORY

Our objective in this section is set up to a CO(n) con-
formal extension of a standard O(n) gauge theory, and
then to recast the generalized Lagrangian into a form that
clearly shows the effects of the generalization. Consider
first the Higgs and Yang-Mills sectors of the total La-
grangian for an O(n) gauge theory:

Lo=—1|F |*+18,D,®'DID/ —V(5,0'D) . (2)

Here A= A,"(dx"®Ty) is the gauge field, F, =D 4 is
its curvature, ®/ is the R"-valued Higgs field, and
Dﬂ¢>j:8u¢j+gAyM(TM)j,vq)". In these expressions
greek suffixes refer to flat-spacetime coordinates and the
internal-index ranges are M=1,2,...,n(n—1)/2,
i,j=1,2,...,n. The T, are the matrices for the stan-
dard basis of the Lie algebra o(n), and g is a coupling
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constant.
We generalize to a conformal CO(n) gauge theory by
introducing the following CO(n)-invariant Lagrangian:

Leo=—3(|F4|?+ |Fc|?)
+10y;D, DD~V (0,;P'D) . (3)

All quantities are now subject to CO(n) gauge transfor-
mations, and as we are considering an internal metric (o ;)
on R" that is conformally related to the standard metric
we assume

o (x)=B"Hx)8,; . 4)

The coefficient 8~ %(x) is the conformal factor, where f3 is
a positive-valued function. The extra R * degree of free-
dom requires us to introduce a new gauge field com-
ponent C=C,dx* and a new coupling constant g*. In
the Lagrangian in (3) above F-=dC is the curvature
component associated with C, and the covariant deriva-
tive of the Higgs field ®/ now takes the form

D, /=03, +gA,MTy V& +g*C, b/ . (5)
Under a CO(n) gauge transformation x-—>g(x)
=[b(x)I]h (x) with b(x)IER™ and h(x)
=exp[EM(x)Ty ]EO(n), the fields &, o AMM, and C,
transform® as
d-d=b""n""'®, (62)
oc—g=b%c, (6b)
A—>A=h"'Ah +(1/g)h ~'dh , (6¢)
C—C=C+(1/g*)d[In(b)] . (6d)

Since o; =(/3)‘28,-j, Eq. (6b) implies that 8 transforms ac-
cording to the rule

B—B=b"18. N

An important consequence of Eqgs. (6) and (7) is that
the covariant derivative of the internal metric o; can be
expressed as

D,o;=(3,8 *—2g*C,B~)5,,=2Q,0, . (8)

The covector field Q =Q,dx" thus has the defining for-
mula

Q= —d(InB)—g*C . 9)

It is not difficult to show that Q is invariant under the
full conformal group CO(n) and therefore may be con-
sidered as a covariant vector field on spacetime. Because
of the structure of Eq. (8) we refer to Q as the (general-
ized) Weyl vector for the internal geometry.'®

Counting independent degrees of freedom we have
1+n(n—1)/2 vector fields 4Y and C, together with
(n 4+ 1) scalar fields &/ and 8. The question of the physi-
cal identification of these fields will be dealt with in the
next section.

Now the Higgs potential function'~ ¥V supplies the
mechanism for the breaking of symmetry, and as in stan-
dard theories we take it to be of the form

11

V(z3)= —pzt+Az* . (10)

Computing 3V /3®/=0 from this equation with z2
:[)’*25,]-(1)'(1}’ we obtain the nontrivial ground-state condi-
tion

B2(x)8,; P (x)P/(x)=p? 2k =v2/2 . (1

The conformal factor 8~ %(x) and a field (®p) that mini-

mizes V are thus related by (11). Clearly we may rewrite
(11) as

8, (B~ ') (B~ ®g) =v2/2 (12)

and by an O(n) gauge transformation rotate (3~ '®,) to
the form (0,0, ...,0,0/V'2). Thus a general vector (DyY
can be parametrized as

0
) 0
(Do) (x)=P(x)exp[™(x)T,, ] :
0

v/ V72

where the T, are the generators of O(n) that do not an-
nihilate the vector (0,0, . . .,0,v /V'2).

In a standard interpretation the Higgs field &/ in the
Lagrangian would be a general R"-valued field, and
would be parametrized by a scalar field 7(x) as

0

) 0
D/(x)=PB(x)exp[£™(x)T,, ] : . (14)

0

v+7(x)

V2

Clearly this parametrized field need not be everywhere
nonzero. In the following we will use instead of (14) the
parametrization

0
) 0
D/ x)=T7(x)exp[E™(x)T,, ] : , (15)
0 _
v/V'2

where we assume that the real-valued function 7(x) is
everywhere positive. We are thus assuming that the
Higgs field ®/ never vanishes, and in particular that any
state of this field is CO(n) related to the ground-state
vector (0,0, ...,0,0/V2). This assumption will play an
important role in our interpretation'? of the fields in Sec.
I11.

Working with a Higgs field parametrized in this way
we decompose it as @/(x)=L (x)X/(x) where L (x)
=(8,;9'9/)! 250 and X/(x)=d/(x)/L(x). The scalar
field L (x) is invariant under O(n) transformations and
transforms as

L>L=b"'L (16)

under the pure conformal transformation x —b(x)I, while
the 8 unit vector X/ is invariant under pure conformal
transformations. The covariant derivative Dd’ can now
be reexpressed as
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D, ®/'=LD X +(D, L)X
=L[D X +L D, L)X] . an

Since X/ is invariant under pure conformal transforma-
J
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tions the covariant derivative D#Xj will involve only the
O(n) gauge fields.

Equation (17) can be used to decompose the kinetic
term for the Higgs field in (3) as

10D, ®'D*®/ = L(B7?)L28,[ D, X'+ (D, L /L)X [D*X+(D*L /L)X]
=+HB*)L?[8,;D,X'D*X/+L ~XD,L)D"L)] . (18)

-7

In the calculation we have used the fact that
8,;X'D,X'=0. We introduce the following notation for
the quantity 5~ 'L that appears in this equation:

Q=B"'L)/V2. (19)

Note that ) is a positive-valued function. Using Egs. (7)
and (16) it is easy to show that the function Q, like the
Weyl vector Q, is invariant under the full group CO(n)
and therefore may be considered as a function on space-
time. Q2 is in fact one-half the square of the o length of
®: Q’=1lo(d,D).

To simplify further we observe that Eq. (16) implies
that (DL)/L =d(InL)+g*C. Using Eq. (9) to eliminate
C we have the formula

(DL)/L =d(InB~'L)—Q=d(InQ)—Q . (20)

Rewriting Eq. (18) using (19) and (20) and inserting the
result into (3) we get the following decomposition of our
Lagrangian:

Leo=(—4|F4|*+Q%,;D, X'DHY)

1
- 4g*2

+ |dQ | *+Q’Q?

+[(dQ)P—V(20*)]-0#3,(0?) . (21)

In the decomposition we have also rewritten the R *
curvature component as Fc = —(1/g*)dQ using Eq. (9).

We may consider this Lagrangian to be composed of
the sum of four terms:

LC0:LA +LQ +Lﬂ. +Lim >

where
Ly=—4|F,|2+Q%,;D X' DX, (22a)
1
Lo=— 22 |dQ | *+Q%Q?, (22b)
Lo=(dQ)—-V(2Q?%), (22¢)
Lin = —0%"3,(0%) . (22¢)

The original CO(n)-invariant Lagrangian given in (3)
has thus been split into a Lagrangian L, for the
n(n —1)/2 O(n) gauge fields, Lagrangians L, and Ly,
for the CO(n)-invariant fields Q and , respectively, and
an interaction Lagrangian L, that couples the Q and Q
fields. It should be noted that each of these four La-
grangians is individually CO(#n) invariant, and that no
CO(n) gauge conditions have yet to be imposed.

III. INTERPRETATION OF THE MODEL

We are now in a position to examine the implications
and particle content of the theory. The Lagrangian L ,
describes the n(n —1)/2 O(n) vector bosons, where the
second term in (22a) is the mass term for these bosons.
L 4 is identical with the Lagrangian of standard O(n)
theory except for the factor Q2 that multiplies the mass
term. Thus by an O(n) transformation we may rotate
the vector X/ to the ground-state vector
(0,0,...,0,0/v2) and conclude that the theory de-
scribes n(n —1)/2—1 massive vector bosons and 1
massless vector boson. We observe that the ratios of the
masses of these bosons are constants, and will be identi-
cal in both this CO(n) theory and in standard O(n)
theory, but in the CO(n) theory the masses will depend
on the state of the Q field.

The remaining three terms in (22) describe the dynam-
ics of the two gauge-invariant fields Q and Q. Since the
interaction Lagrangian L, is composed of CO(n)-
invariant quantities it cannot be removed by a gauge
transformation, and without further assumptions it must
be considered as an essential coupling of these two fields.
Before examining the effects of this coupling term in detail
we consider a special case that allows the interaction La-
grangian L, to be discarded.

Specifically, suppose that the Weyl vector satisfies the
divergence-free condition 3,0*=0. Then

Lin=—0%3,(0%) = —3,(0°0*)+Q%,0*
=—09,(0°0") . 23)

In this case L, is a pure divergence and may be discard-
ed in the variational principle. The Lagrangian L, now
describes a massive gauge-invariant vector boson Q whose
mass V'2g*Q also depends on the state of the Q field.
Note, however, that the ratios of the mass of the Q field
with the masses of the O(n) bosons are independent of (2.
Even when the divergence-free condition is not satisfied it
is clear that the mass of Q will involve Q as a multiplica-
tive factor and that the mass ratios will still be indepen-
dent of Q.

Returning to the general case we consider the structure
of the Lagrangian L. Standard interpretation of this La-
grangian would suggest that the  field describes a mas-
sive scalar particle. However, there are two reasons that
suggest that an alternative interpretation of this field is
needed. The first is the fact that by construction the Q
field never vanishes, and, as is well known, most physical
particle fields do not enjoy this property. Moreover, as
we have seen above the Q field occurs as a multiplicative
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factor in the masses of the Q and A fields. For these
reasons we propose to interpret ) as a mass field. It can
be linked to the geometrical structure of the theory as fol-
lows. B

Recall that by definition Q(x)=8"1(x)L (x)/V2. Now
although Q(x) itself is CO(n) invariant, the factors 3~
and L (x) are not. Under the pure conformal transforma-
tion x —b (x)IER * we have B—b 'Band L -b 'L, so
that the product B~ 'L remains unchanged. Since
L (x)0 by assumption, we may perform the Rt gauge
transformation x — L (x)I, and in the new gauge we find

Qx)=B)'x)/V2.

We may thus interpret solutions of the -field equa-
tions as defining the conformal factor for the internal
metric. As alluded to in the Introduction we have the
result that the Q field, which in standard theory would
represent the Higgs scalar particle, in this CO(n) theory
serves to define the mathematical arena'® for the O(n)
theory. The internal conformal geometry is thus now a
dynamical element of the theory. The physical implica-
tions are that the masses of the physical vector bosons in
the theory depend on the state of the internal geometry,
while the ratios of the masses are constants that are in-
dependent of the state of Q. This theory is a concrete
example of a theory that relates a mass field to confor-
mal geometry, but with the new feature that the confor-
mal geometry is on internal space and is not related to
spacetime geometry.!*

We would expect that standard O(n) theory should in
some way be a low-energy limit of this CO(n) theory,
and by considering a limiting form of the Q field equa-
tions we can show this. If standard O(n) theory is to be
a low-energy limit of the CO(n) theory, then we would
need mgy >>m 4, or equivalently, g* >>g;,. Let us con-
sider the case that g* is so large and Q is sufficiently
slowly varying that we can ignore the first term
(—1/4g*2)|dQ |? in (22b). The Lagrangian for Q then
reduces to LQzﬂzQZ. The only terms in (22) that in-
volve Q are Ly and Lj,, and variation of the sum of
these two Lagrangians with respect to Q leads to the
field equations

2
20°Q, —9,(0%)=0. (24)
Solving (24) for Q,, we obtain
0,=3,(InQ) . : (25)

In this limiting case the Weyl vector is a gradient, and by
Eq. (9) this condition implies that the R * component C,
of the full CO(n) gauge field is also a gradient, and is thus
trivial. When this is the case the CO(n) geometry reduces
to O(n) geometry,'” and thus this limit of the CO(n)
theory leads to an O(n) gauge theory.

More explicitly, we show that when Eq. (25) holds
there exists an internal metric 7; such that D;=0.
Specifically define m;; by

=020, . (26)

We recall that Q(x) is a CO(#n)-invariant function so
that DQ=d ). Thus
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D =Q*2Dor~ -H:r--dQ‘2
=20 Q0 +d0 oy , 27)
where we have used Eq. (8) to substitute for Do ;. Com-
bining Eqgs. (25) and (27) we obtain
Dm;=0. (28)
This condition implies that the CO(n) connection

reduces to the O(n) subbundle!® defined by Tije

Finally, we show that on this O(n) subbundle the
linear approximation of the field Q reduces the Lagrang-
ian L to the standard Lagrangian'® for the Higgs scalar
field 7(x). We parametrize the positive-valued function
Q as

Qx)=(v/V 2)exp[n(x)/v] .
Expanding the exponential to first order we obtain

x)=[v+79(x)]/V2, (29)

and substitution of this approximation into the Lagrang-
ian L, leads to

Lo=(3m)—V([v+n(x)]*) .

This Lagrangian is the standard form of the Lagrangian
for the scalar Higgs field.!® We have therefore shown
that the Higgs scalar field may be interpreted as a rem-
nant of a ‘‘mass-field—conformal factor” in a CO(n) cov-
ering theory.

IV. THE Q AND Q EQUATIONS

By examining the Q and Q field equations in the CO(n)
model we can show that Q is an algebraic variable® in the
theory. This result, together with the identification of the
linear approximation of ) with the Higgs scalar field in
the O(n) limit, lends further support to our interpretation
of the Higgs scalar field as a remnant of a mass field as
opposed to a physical particle field.

From the Lagrangian Lq given in Eq. (22) we derive
the following field equations for Q and Q:

0Q+ 53V /3Q=0[Q%+3,Q"+(DX)], (30)

9,0MQMN = —4g*20%(Q"*—3"nQ) . (31)

These coupled equations may be simplified by using the
identity
9,[Q%(Q" —3"1InQ)]=0 (32)

that is implied by Eq. (31). Expansion of (32) and substi-
tution of the result into (30) leads to
(10)3V /3Q=(Q" —3InQ)*+(DX)*
9,0MQM = — 3"nQ) .

If we make the definition S, =Q, — 9,InQ=—(D,L)/L
[see Eq. (20)] then these last two equatlons may be rewrlt-
ten as

(10)3V /30 =S>+(DX)?, (33)

4g*2Q2 Q)



36 CONFORMAL EXTENSION OF GAUGE THEORIES WITH . ..

9,0lsH=(—4g*2)Q%s* . (34)

The form of the field equations shows that the field Q is
an algebraic variable in the theory, since it appears in the
field equations undifferentiated [ will also enter the
remaining O(n) field equations algebraically].

We can solve (33) formally for Q2 as

Q2 =f(S2+(DX)?) (35)

for some function f that depends on the explicit form of
v

This formula can then be used to eliminate Q? from
the remaining field equations, and specific solutions for
AM and S would then in turn determine Q2 through Eq.
(35).

Let (4™,S,02) be a solution of the field equations, with
Q? calculated from (35). In the last section we have ar-
gued that by a choice of gauge we can make the
identification Q2=8"2/2. A solution of the field equa-
tions thus leads to the formula

0, =2f(S*+(DX)")5; . (36)

Recall that when DY is evaluated at the vector
(0,0, ...,v/V2), then (DX)*=Mpc A®, A" where Mpc
is the usual mass matrix with rank (n —1). Equation
(36) shows that the massive vector bosons 4™ (M
=1,2,...,n—1) and S act so as to produce “ripples”
in the metric geometry of internal space. For the trivial
solutions S?=(DX)’=0 we have f(S?+(DX)*)
=const#0 and the metric geometry on internal space
is everywhere the same.

Now since S,=Q, —3d,In(}, the limiting case S=0
leads to the reduction of the CO(n) theory to the O(n)
theory as discussed in the last section. In this O(n) limit
U,-j=2f((DX)2)8,-j by Eq. (36), and we thus have the re-
sult that the internal metric o;; on internal space is deter-
mined by the massive O(n) bosons.

The fact that the conformally invariant field Q is an
algebraic variable in the theory tends to support our inter-
pretation of  as a ‘‘mass-field—conformal-factor” that
does not introduce more scalar particles into the theory.
We can show this explicitly by reformulating the original
Lagrangian Lo using the field equation (33) as a con-
straint. When the potential V is the Higgs quartic poten-
tial given in (10) the solution of (33) is

Q*=[2u’>+S>+(DX)*]/8% . (37)

When this expression is substituted into Lo given in (22),
and Q,, and (2 are eliminated in favor of S, =Q,, —3,InQ,
we find that the Lagrangian takes the form

Leo=—1|F, |+ (—1/4g*?)|dS |?
+[2u*+S2+(DX)*]*/16A . (38)

This Lagrangian describes 1 massless and (n — 1) massive
O(n) vector bosons together with a new massive vector
boson S. These bosons have quartic self-coupling terms
plus an interaction term that is proportional to S%(DX)?,
and the masses are now constants and may be read off
the quadratic terms in (38). The Q field has completely
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disappeared from the Lagrangian at the price of the in-
troduction of a new massive vector boson S. We can
now regard the CO(n) model theory as being described
by the Lagrangian (38), together with the formula (37)
for computing the conformal factor Q2.

As a simple application of the conformal theory we
briefly indicate one way in which a classical mass spec-
trum may be included in a CO(n) gauge theory. We seek
classical solutions of Egs. (33) and (34) for which Q is
constant.!” When Q is constant Eq. (33) implies that the

quantity ¢>=S?%+ (DX)? is also constant. We now
rewrite Eq. (33) as
VF/3N=0, V¥F=V_—q20%. (39)

The constant (2 solutions of (33) are thus given by the
extreme values of the effective potential V¥,

Up to now we have assumed that the potential V'
represents the quartic Higgs potential given in Eq. (10).
However, ¥V may be more general'! provided that it
defines a nonzero ground state with a one-dimensional
symmetry group. Now if we take for V the quartic
Higgs potential then (39) has the single solution (> 0)
given in Eq. (37). Suppose, however, that V is a poten-
tial function such that V¥ has the general form shown
schematically in Fig. 1.

There will be in this case a finite sequence of solutions
of (39). Discarding the unstable equilibrium solutions,
we denote the remaining stable equilibrium solutions by
Q;,i=0,1,2,...,N.

In this multilevel equilibrium situation these constant
solutions (); provide a discrete mass spectrum for the vec-
tor bosons in the theory. The O(n) vector bosons AM
(M=1,2,...,n—1) are described by mass parameters
(mp);=€;g, while the Q boson has mass parameters
(mg);=Q;g*. If other particle fields were included in the
theory in an appropriate conformally invariant way, then
these constant solutions for €2 would also induce a mass
spectrum for these particles.

V. CONFORMAL EXTENSION OF THE GWS THEORY

The model theory described in Sec. II can be modified
easily to a conformal extension of the GWS theory of the
electroweak interaction. The symmetry group is now

Ve

FIG. 1. A prototypical effective potential V' #.
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CUQ)=U@R)XR*=(SU(2)XU(1))XR ™, and the La-
grangian for the Higgs and Yang-Mills sectors of the total
Lagrangian has the form

L=—;|F, |2+—HFC12

+10,(D,®)ND"Y)—V(0,;®B) . (40)

The notation for the various quantities is parallel to the
notation of Sec. II. The nonzero field ® has values in
C2, and o is an internal metric on C? that is conformally
related to the usual metric (5;;). Thus

UU 2[3725[}' (41)

and o(X,Y)=B"%8,X'Y /.

The decomposition of the Lagrangian in (40) along the
lines described in Sec. IT leads to L=L 4+Ly+Lg+Lj,
where

Ly=—1|F,|*+Q%,;D XD"X, (42a)
1

Lo=— ppes |dQ |4+ Q%Q?, (42b)

Lo=dQ)P—v (20, (42c)

Lin=—0"3,(0%) . (42d)

The Lagrangian L 4 for the SU(2) < U(1) bosons is iden- -

tical to the corresponding Lagrangian in GWS theory ex-
cept for the factor of Q2 in the mass term. Analogous to
our discussion in Sec. IIT of the model CO(n) theory we
conclude that in this conformal extension of the GWS
theory we have (i) three massive vector bosons W+, W,
and Z°, (ii) one massless vector boson A4, (iii) a new mas-
sive, uncharged vector boson Q0 and (iv) a mass field Q.

The ratios of the masses of the SU(2) X U(1) bosons of
the GWS theory will be identical with the ratio of the
masses of the corresponding bosons in this extended
theory. The new massive vector boson Q0 is uncharged
since it is gauge invariant and therefore does not couple to
the SU(2) x U(1) bosons via a U(1) subgroup of CU(2).

The low-energy limit of this theory will be a pure
SU(2) X U(1) theory that agrees with the standard GWS
theory except that the field  never vanishes. If the
theory is specialized further by approximating  to first
order as in Eqgs. (29), then the resulting theory reproduces
the standard GWS theory.

VI. CONCLUSIONS

In this paper we have shown how to set up a conformal
extension of U(n)-type gauge theories. This generalization
of nondynamical internal metric geometry was motivated
by the nonuniqueness of O(n) principal bundles, and by
the desire to geometrize the Higgs mechanism and to
eliminate the Higgs scalar particle from the theory. The
fact that the role of the Higgs mechanism is to provide
masses for the vector bosons, together with the well-
known association of conformal geometry and notions of
mass, supplied additional motivation for the consideration
of a CO(n) theory.

As shown in Sec. II the Lagrangian Lo of a CO(n)
theory, initially containing n(n —1)/2+1 gauge fields
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and n + 1 scalar fields, decomposes naturally into a sum
of four CO(n)-invariant Lagrangians Lco=L ,4+Ly
+Lg+ L. In the reformulation the R * gauge fields C,
and the conformal factor B(x), both of which transform
under Rt transformations, were eliminated in favor of
two gauge-invariant fields, a vector field Q (the internal
Weyl vector), and a nonvanishing scalar field . L, and
L, are Lagrangians for the Q and Q fields, respectively,
while L;,, in an interaction Lagrangian for these two
fields.

L , is the Lagrangian for the n(n —1)/2 O(n) bosons,
and is identical with the Lagrangian of standard theory
except that the mass term is now multiplied by the factor
O2%(x), so that the masses of these bosons depend on the
state of the scalar field Q(x). The new gauge-invariant
vector boson Q with Lagrangian Ly also has a factor of
Q2 in its mass term. However, it was pointed out in Sec.
IIT that the ratios of the masses of all the vector bosons
are constants, independent of (2. For the O(n) bosons the
mass ratios in the CO(n) theory are identical with the
mass ratios in the standard O(n) theory. These facts, to-
gether with the nonvanishing nature of the field Q(x), led
us to propose that ) be interpreted as a mass field.

In Sec. III we showed that in a low-energy limit the
CO(n) theory reduces to a pure O(n) theory. If the theory
is further specialized by approximating the positive-valued
function Q to first order as Q(x)=[v +7(x)]/V'2, then
the theory goes over to the standard Of(n) theory upon
identifying 7(x) with the Higgs scalar field. The O(n)
theory therefore may be regarded as a low-energy limit of
the CO(n) theory, and the scalar Higgs field may be re-
garded as a remnant of a mass field in a CO(n) covering
theory. We also showed that by a proper choice of gauge
in the CO(n) theory the Q) field can be identified with the
internal conformal factor. Each solution of the Q-field
equations may be viewed as selecting a unique O(n) sub-
bundle, thus providing a resolution of the nonuniqueness
problem. .

It is well known that in the context of gravitational
theory pure conformal structure corresponds to a strictly
local pure mass field. Following others, Bekenstein and
Meisels’ have concluded that microphysics should be con-
formally invariant, and that all rest masses ‘“define a mass
field with important physical implications.” Bekenstein
and Meisels’ refer to external conformal invariance and a
corresponding mass field in spacetime. These external
concepts can be linked in various ways to certain scalar-
tensor gravitational theories and extended gravitational
theories with conformal structure.'® The mass field that
we have introduced in the specific theoretical model above
relates to internal conformal geometry; however it shares
some of the properties of external mass fields (e.g., a func-
tional scale transformation law for the masses). This spe-
cial case might be viewed as providing a deeper explana-
tion of the Bekenstein-Meisels functional scale transfor-
mation law for the masses in all conformally invariant mi-
crophysical theories. However, we are not proposing here
to link the external and internal conformal transforma-
tions.!* The internal conformal formulation discussed
above suggests that the geometrized Higgs field is more
appropriately thought of as a nonvanishing local mass
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field that interacts with the other particles in the theory,
but which does not actually produce another particle in
the theory. However, in the nontrivial case the CO(n) dy-
namics also produces a new massive vector particle that is
naturally coupled to the other particles in the theory by
the Higgs-boson mass field.

In Sec. IV we considered the dynamics of the new fields
Q and Q associated with the R * gauge freedom. Using a
differential identity supplied by the Q-field equation we
showed that the Q-field equation reduced to an algebraic
constraint equation that determines the conformal factor
in terms of scalar invariants formed from the massive
gauge fields. The massive vector bosons in the theory
therefore may be considered to act so as to produce “rip-
ples” in the internal conformal geometry. Substitution of
the constraint into the Lagrangian eliminated ) from the
dynamical equations, and the resulting Lagrangian de-
scribed only vector bosons with quartic self-coupling
terms and constant mass parameters.

In Sec. V we sketched a conformal extension of the
Higgs and Yang-Mills sectors of the GWS theory of the
electroweak interaction. The general features of the
theory are the same as those of the model CO(n) theory
described above. The theory describes the usual number
of massive and massless SU(2) X U(1) vector bosons, to-
gether with an electrically neutral massive vector boson Q
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and a mass field 0. The GWS theory was also shown to
be a low-energy limit of the CU(2) theory.

It should be observed that in CU(2) extension of the
GWS theory presented in Sec. V, the new vector particle
Q couples to the other vector particles only through the
mass field . In a more complete CU(2) theory that also
includes Lagrangian terms for the leptons, Q would cou-
ple to the leptons through the CU(2)-covariant derivatives.
We hope to examine this feature of the CU(2) theory in
future work.

We have remarked that because of the presence of the
mass field in the CU(2) extension of the GWS theory, the
masses of the particles depend on the state of the field Q.
If leptons were included in such a theory, then presum-
ably the masses of the leptons would also depend on the
state of the mass field 2. At the end of Sec. IV we de-
scribed a simple example of a classical mechanism for in-
ducing a mass spectrum for particles in a gauge theory. It
is interesting to speculate that this feature of the confor-
mal theory might be related to the similarity of the elec-
tron and muon. As is well known these two leptons ap-
pear to be identical in all respects except mass. We end
with a question. Could it be that the muon is really an
electron whose mass is measured in a configuration in
which the mass field is not in its ground state?

1By a U(n)-type gauge theory we mean a gauge theory whose
group is that subgroup U(n) of GL(n,K) which leaves some
positive-definite metric 0 on K" invariant. Here K may be ei-
ther the real or complex scalar field.

2Clearly U(n)-type gauge theories implicitly define a trivial me-
trical substructure on their internal spaces. L.
O’Raifeartaigh, Rep. Prog. Phys. 42, 159 (1979), pointed out
that, up until 1978, gauge theories other than gravitational
theories were presumed to have no nontrivial metrical sub-
structure. However, since 1978 a number of authors have
considered generalizations. See, for example, K. Cahill,
Phys. Rev. D 18, 2930 (1978); 26, 1916 (1982); J. Math. Phys.
21, 2676 (1980); J. E. Kim and A. Zee, Phys. Rev. D 21,
1939 (1980); R. O. Fulp and L. K. Norris, J. Math Phys. 24,
1871 (1983); J. Dell, J. L. deLyra, and L. Smolin, Phys. Rev.
D 34, 3012 (1986).

3S. Weinberg, Rev. Mod. Phys. 52, 515 (1980); A. Salam, ibid.
52, 525 (1980); S. L. Glashow, ibid. 52, 539 (1980).

4A number of authors have either implicitly or explicitly sup-
ported the idea that it would be desirable to eliminate the
Higgs field from present theory provided one could retain its
effects. In particular, see V. Weisskopf, Phys. Today 34 (No.
11), 69 (1981); J. D. Bekenstein, Found. Phys. 16, 409 (1986);
R. Jackiw, in Current Algebra and Anomalies, edited by S. B.
Treiman, R. Jackiw, B. Zumino, and E. Witten (Princeton
University Press, Princeton, NJ, 1985), p. 236.

5This idea of absorbing the Higgs mechanism into the geometri-
cal substructure is similar to the ideas of Bekenstein (see Ref.
4) who linked the Higgs mechanism to the exterior geometry
of spacetime rather than to internal geometry as we propose
here.

SA relationship between conformal structure and mass can be
illustrated in a very simple way. In Riemannian geometry a

conformal transformation of the metric tensor does not
change the conformal curvature tensor, but it does alter the
Ricci part of the curvature tensor and hence it alters the
Einstein tensor as well. Since mass-energy builds the source
terms in Einstein’s equations, and since the Einstein tensor is
altered by a conformal transformation, we have a fundamen-
tal link between spacetime conformal structure and mass.

7J. D. Bekenstein and A. Meisels, Phys. Rev. D 22, 1313 (1980).

8In Sec. IV we show that the Q-field equation reduces to an
equation [see Eq. (33)] in which Q appears undifferentiated.
When the potential for the Higgs scalar field is a polynomial
then the Q-field equation turns out to be a polynomial equa-
tion for , and in this sense () is an algebraic variable in the
theory. We will also refer to Q as an algebraic variable if Q
enters the field equations undifferentiated even when the po-
tential is not a polynomial.

9Since bh =hb for all IER * it follows that the transformation
of the pair (4*,C) to the pair (4 ,C) due to the gauge trans-
formation x—b (x)h (x) decouples so that the 4 ¥ do not de-
pend on b and C does not depend on A.

10R. O. Fulp and L. K. Norris, J. Math. Phys. 24, 1871 (1983).

"For the purposes of the present paper the potential ¥ may be
quite general. We need only that it supply a mechanism for
breaking the symmetry to a nontrivial ground state which re-
tains a one-dimensional symmetry group.

12We show in Sec. III that our assumption that ® never vanishes
allows us to interpret solutions for the field Q) [defined in Eq.
(19)] as solutions for the nonvanishing conformal factor.

13The CO(n) theory we have been discussing can be formulated
on a subbundle P of the bundle of all frames of internal
space. Given the standard inner product §, on the vector
space of internal state vectors at p, the fiber bundle P con-
sists of all pairs (p,e;) where p is in Minkowski space and
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{e;} is a B7?8p orthonormal frame in internal space at p for
some 3. If we work in a gauge in which Q=8"'/V"2 then
the corresponding metric is o=B"26=2Q0. The field
equations then determine () and the corresponding metric
20%8; this metric defines the O(n) arena of our theory:
namely, it selects the O(n) sub-bundle of P which consists of
20?28 orthonormal frames.

14The fact that external conformal geometry has also been uti-
lized in an effort to eliminate the Higgs scalar field (see Beken-
stein, Ref. 4) opens the intriguing possibility of developing a
theory in which conformally scaled internal metrics are cou-
pled via the conformal factor to conformally scaled external
metrics. We defer investigation of such coupled theories to fu-
ture work.

15This is a well-known fact from modern differential geometry.
See, for example, Ref. 10, and S. Kobayashi and K. Nomizu,
Foundations of Differential Geometry (Interscience, New York
and London, 1963), Vol. 1.

I6E. S. Abers and B. W. Lee, Phys. Rep. 9C, 10 (1973).

I7If Q) were interpreted as a particle field then certain of the con-
stant solutions would have infinite energy and would clearly
be unphysical. However, our interpretation of €} as a mass-
field—conformal-factor on internal space does not rule out the
constant solutions. In fact, setting ‘“mass field” =const corre-
sponds to selecting ““particle units” in Bekenstein and Meisel’s
work (Ref. 7).

8Contrary to the works of Dirac (Ref. 19) and Canuto, Adams,
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Hsieh, and Tsiang (Ref. 19), which may be linked with certain
forms of the Brans-Dicke (Ref. 19) and Jordan (Ref. 19)
theories, Bekenstein and Meisels (Ref. 7) have a way of look-
ing at the dynamics of the mass field of conformally invariant
microphysics in the context of ordinary general relativity that
precludes the notion of a variable gravitational constant. In
any case all of these theories can be embraced in extended
gravitational theories with a type of torsion field that can be
viewed as further geometrizing the mass field, and which also
include the notion of a variable gravitational constant (see, for
example, S. Hojman, M. Rosenbaum, and M. P. Ryan, Jr., in
Relativity and Gravitation, Proceedings of the Third Latin
American Symposium, edited by S. Hojman, M. Rosenbaum,
and M. P. Ryan, Jr. (Universidad Nacional Autonoma de
Mexico, 1982). Davis, Baker, and Green (Ref. 20) discuss
simple U(4) gravitational theories with a mass field of this type
that exhibit coupled conformal-projective invariance.

19P. A. M. Dirac, Proc. R. Soc. London A333, 403 (1973);
A333, 439 (1973); V. M. Canuto, P. J. Adams, S. H. Hsieh,
and E. Tsiang, Phys. Rev. D 16, 1643 (1977); C. Brans and
R. H. Dicke, Phys. Rev. 124, 925 (1961); R. H. Dicke, ibid.
125, 2163 (1962); P. Jordan, Schwerkraft und Weltall
(Vieweg und Sohn, Brunschweig, 1955).

20w. R. Davis, W. M. Baker, and L. H. Green, in Proceeding of

the Sir Arthur Eddington Centenary Symposium on Relativity
Theory, edited by Y. Choquet-Bruhat and T. M. Karade
(World Scientific, Singapore, 1985), Vol. 2.



