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Solving two-dimensional P theory by discretized light-front quantization
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The recently proposed discretized light-front quantization (DLFQ) method is applied to P field
theory in 1+ 1 dimensions. We start with the normal-ordered Hamiltonian and perform calcula-
tions with and without finite-mass renormalization in order to elucidate its role. We find that
finite-mass renormalization prevents the phase transition by restricting the theory to the weak-
coupling region. Comparison with results obtained without mass renormalization demonstrates
that both treatments can yield the same estimate of the critical coupling for which the mass gap
vanishes. This DLFQ estimate of the critical coupling may be compared with other estimates.
The invariant mass of various states is calculated as a function of bare coupling. In the weak-
coupling region where we can easily extrapolate to the continuum limit we find evidence for
scattering but there is no two-particle bound state in agreement with the well-known result estab-
lished for constructive quantum field theory. In addition, we find no multiparticle bound states.

I. INTRODUCTION We start from the Lagrangian density

Discretized light-front quantization (DLFQ) was pro-
posed recently, ' as a method to solve relativistic field-
theory problems nonperturbatively. So far scalar two-
dimensional Yukawa theory and both massless and mas-
sive two-dimensional QED (QED2) have been studied in
this scheme. ' To understand the strengths and
weaknesses of this technique it is desirable to apply
DLFQ to a model field theory which has been studied
previously by other means. Among the popular field
theory models, two-dimensional tb theory has received
much attention in various approaches to solving strongly
interacting field theories. For some of the recent work see
Ref. 3. In particular, one can quantitatively test the vari-
ous aspects of analytical and numerical techniques since
many properties of (P )z have been established rigorously
from the viewpoint of constructive quantum field
theory. ' In this work we investigate the (P )z theory
with the DLFQ scheme.

The plan of this paper is as follows. In Sec. II the
light-front quantization of self-coupled scalar-field models
is reviewed. Discretization and the construction of the
Hamiltonian and momentum operator are discussed in
Sec. II. The distinct features of DLFQ that deserve de-
tailed study are elaborated in Sec. III. Section IV con-
tains our numerical results and comparisons with other
methods. The summary and conclusions are presented in
Sec. V.

(2.1)

t)+t) P+m P+ —P =0 . (2.2)

Here

where

X =X +X+ 0 1

We choose k greater than zero so that the Hamiltonian is
bounded. Further, the mass parameter m is chosen posi-
tive so that the vacuum state is the normal vacuum at
least for small coupling.

As is well known in light-front formulation the num-
ber of independent variables describing a dynamical sys-
tem is reduced by half as compared with the conventional
equal-time formulation. The equations of motion and the
commutation relations between true dynamical variables
are derived from Schwinger's action principle. "

In 1+ 1 dimensions, the equation of motion is

II. REVIEW OF LIGHT-FRONT
QUANTIZATION

and

Light-front quantization originated almost four decades
ago from the work of Dirac on the forms of relativistic
dynamics. Formal foundations of the light-front quanti-
zation approach to quantum field theories were laid by
Yan and collaborators. ' In this section we first review
certain results from Refs. 7 and 8 for the case of (tb )2
theory.

i [P( +x,y ),P(x+,x )]
~

+ ————,'e(y —x ),
where e(x) is the antisymmetric step function:

(2.3)

The metric tensor g" is given by g++ =g =0,
g + =g + =2. The commutation relation is given by
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e(x) = —25(x) .
Bx

The commutation relation can be rewritten in the form

A

&4~, &n

{2.14)
[P(x+,x ),&+/(x+, y )]

~
+
——~5(y —x ) . (2.4)

We construct the stress tensor T" from the Lagrangian
density X by

Note that the factors 1/&4w and 1/&n are introduced
so that a, and a obey the commutation relation
[a„,a ]=5„.The interacting field P is chosen to coin-
cide at x+ =0 with the free-field solution Po. We choose

Tpv Qvp gpv+
BB„P

Now,

T++ g+yg+y

and

(2.5)

(2.6)

p(x-, o)=p, (x-,o) .

One also introduces operators K and H such that

(2.15)

{2.16)

T+ =m P+ 2X
4t

(2.7)

We note that both T++ and T+ are positive definite.
From the stress tensor T" we construct the energy-
momentum operator P":

P"=—' dx T+"
2 (2.8)

The conversation of T"'(r)„T" =0) implies that both the
operators P+ and P are independent of the light-cone
time x+. We also note that P+ and P commute with
each other.

Let us introduce the free-field annihilation operator a
(defined by a

~

vac) =0) and the creation operator a . In
terms of these operators the free-field solution Po(x+, x )

can be written as

and

P = H .2' (2. 17)

Ae= dna„'a„,
]

(2. 18)

and

H =Ho+H] +Hp ) (2.19)

Thus K is the dimensionless momentum operator and H
is the Hamiltonian operator with dimensions of mass
squared. The invariant-mass operator M =P+P =TH
is independent of L.

In the discretized version, the momentum K and the
Hamiltonian H are given by

[a (k+ ),a (k'+)] =27r2k+5(k+ —k'+
) (2.10)

+ 1 dk+
Po(x+,x ) = j [a (k)e '"'+a (k)e'"'] . (2.9)

2n 2k+

The commutation relation between the fields imply the
following commutation relation between a and a:

where

Ho ——g —a„a„m
n 4~2 k

aka~ a a„
4 4 ~ ~k( m +n, k+1

(2.20a)

(2.20b)

k+~k+= n, n =1,2 3, . . . , A .2w
r r . s ~ (2. 1 1)

Since k+ =k +k ', k+ can be zero for a massive particle
only when k'~ —oo. It is important to note that the
above construction omits the zero-momentum states and
neglects what is referred to as the zero-mode problem. As
we discuss further below, this could be a significant issue.
It is convenient to introduce the dimensionless variable

In the rest of this section we construct the light-front
momentum and energy operator in the discretized version.
In doing so we follow the conventions of Pauli and Brod-
sky. '

Discretization is introduced by the replacement

1
Hp ———

6
aka~a a„+a,a a& ak

&klmn ~k, m +n+1

(2.20c)

Since we are dealing with a quantum field theory one
should expect divergences. For (P )z theory, the only
divergent graph is the "tadpole" (one-loop self-energy)
which is logarithmically divergent. ' The logarithmically
divergent additive term to m in Ho is the DLFQ mani-
festation of the tadpole contribution. We elaborate on this
point in the Appendix. We can readily remove this diver-
gence by considering the normal-ordered Hamiltonian'
which we now adopt for our numerical work.

(2.12)

Then

—,'k+x =ng . (2.13)

In the discretized version, the free-field solution is given
by

III. RELEVANT ISSUES

The DLFQ method proposed in Ref. 1 has four distinct
features: (1) the quantization on the light-front surface in-
stead of the usual equal-time formulation; (2) discretiza-
tion in momentum space; (3) choice of a Fock-space basis
with the normal (perturbative) vacuum as the lowest-
energy state in the spectrum; (4) treatment of the mass pa-
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rameter in the Langrangian as the adjustable bare mass
and the lowest eigenvalue of the invariant-mass matrix as
the fixed physical mass.

One may ask the question whether the equal light-cone
time and the equal ordinary time formulations of the
quantum field theories are equivalent to each other. This
is a nontrivial issue since a spacelike surface can never be
brought into a light-front surface by any finite Lorentz
transformation. For self-interacting scalar-field models
the proof of the equivalence of the S matrices obtained in
the two formulations to all orders in perturbation theory
has been given by Chang and Yan. It is still legitimate
to ask whether the DLFQ method yields results consistent
with that demonstration, whether there are multiparticle
bound states, and how the method is implemented in the
strong-coupling region. In the remainder of this paper we
will show how the DLFQ yields results consistent with
what is known from quantization in ordinary space-time.
We also show evidence for a lack of multiparticle bound
states. In addition we demonstrate that the method is
currently limited to the weak-coupling region.

Discretization in momentum space of course breaks
Lorentz invariance. The method proposed in Ref. 1 is to
take advantage of the fact that K is a bounded operator
which commutes with the Hamiltonian H. Further,
since k+ for each individual quanta can only be positive,
there are only a finite number of basis states for a given
finite K (provided we neglect the zero-mode problem).
The exact spectra is only obtained as K~ ~, the contin-
uum limit. This is one of the central issues in the
current effort. Here, we will concern ourselves with
seeking the continuum limit by extrapolating to large
but finite values of K.

Following Ref. 1 we have neglected the k+ =0 states
which should, in principle, be included even at finite
values of K. However, this opens the possibility of a
zero-momentum condensate and would require an exten-
sion to the method proposed in Ref. 1. We defer this par-
ticular issue to a future eftort.

The Hamiltonian is diagonalized in the subspace
spanned by the basis states for a given K. Even though
the box length L has been eliminated from the eigenvalues
of the invariant-mass operator M, the eigenvalues and
eigenvectors have dependence on K as we show in specific
examples. It is of great interest to see just how the results
in DLFQ method approach the continuum limit as a
function of the coupling constant k.

In the real world of 3+1 dimensions renormalization
is necessary for solving a field theory. How one incorpo-
rates renormalization without violating physical princi-
ples is a crucial issue. In order to avoid divergences in
the (1+1)-dimensional model under present study, we
need only the renormalization of the mass which can be
accomplished by normal ordering with respect to the
mass parameter appearing in the Lagrangian. Then we
are left with the finite-mass renormalization which has
its origin in many body interactions. In their treatment
of the two-dimensional Yukawa model Pauli and Brod-
sky' followed the mass renormalization scheme intro-
duced by Brooks and Frautschi' for that same model in
ordinary space-time. In our case this implies that for a

IV. NUMERICAL PROCEDURE AND RESULTS

We denote a general state in the Fock-space basis as

~
n, ', n2 ', n3 ', . . . ) in order to represent a state with

m& quanta with n& units of momentum and so on. for a
given K one has K =n&m&+n2mz+ . . Let us denote
the square of the physical mass of the boson by mphys
The finite-mass renormalization is implemented by insist-
ing that for each value of K the lowest excitation (in other
words, the mass gap with respect to the perturbative vacu-
um) has the invariant mass mphy, .

(a) K =0. Since we have neglected zero modes (k+ =0
states), the only basis state is the vacuum state

~

vac):

K
i
vac) =0

i
vac) .

Hence

(4.1)

M
~

vac) =0
~

vac) .

Thus
~

vac) is the only state with M =0.
(b) K =1. We have a single state 1') with

(4.2)

(1'
~

M
~

1') =m =m~h„, . (4.3)

Thus for K = 1 finite-mass renormalization is not an is-

sue.
(c) K =2. We have two states 1)=

/

2') and

Mg ——(I/M /1)=m =m „„, (4.4)

M2' ——(2
~

M
~

2) =4m + =4m „,~+
4~ '" 4

(4.5)

(1 iM i2)=0 . (4.6)

Again mass renormalization is not an issue.
~

2) is the
state containing two comoving particles which are at rest
with respect to each other. Since k is greater than zero,
M& is greater than 2mphy in agreement with the well-
known result that (P )2 theory has no two-particle bound
states. '

At this stage we have to specify how to approach the
continuum limit. The situation at K =2 is quite instruc-
tive since we have a single two-particle state with each
particle carrying momentum fraction x = —,'. (In general

x; =k;+/K). On the other hand, for any value of momen-
tum one should have a continuum of two-particle states

given value of k and mphy one diagonalizes the Hamil-
tonian matrix for an initial guess for the bare mass m
and obtains the lowest eigenvalue e&. Then one iterates
to solve the nonlinear equation

e, [m', A, ]—mph~, ——0 (3.1)

until convergence is achieved to within a required accura-
cy (m~h„, was chosen to be 1.0). By definition, this mass
renormalization method preserves the mass gap and in the
case of (P )2 theory we now show that it restricts the solu-
tion to the weak-coupling region. Indeed, Brooks and
Frautschi also showed that this mass renormalization
scheme apparently avoided certain pathologies that other-
wise occur at strong coupling in the two-dimensional Yu-
kawa model.
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TABLE I. The dimensionality X of the Hamiltonian matrix
as a function of K.

TABLE II. Co, the square of the coefficient in the Fock-space
expansion of the state

~

(K/2) ) and C, , the sum of the squares
of the coefficients of all two-particle state components of this

state as function of K at k=2.4.

2
4
6
8

10
12
14
16
18
20

2
5

11
22
42
77

135
231
385
627

2
4
6
8

10
12
14

Co

1.0000
0.9894
0.9762
0.9627
0.9496
0.9375
0.9263

Cl

1.0000
1.0000
0.9996
0.9993
0.9992
0.9991
0.9991

such that the fractional momenta carried by the constitu-
ents vary continuously from 0 to 1 in each state. Obvious-
ly such a situation arises only if we take the limit K~ ~.
We concentrate primarily on this state which reappears at
even values of K.

(d) K) 4. The dimensionality of the Hamiltonian ma-
trix grows rapidly as K increases as illustrated in Table I.
This table applies to an arbitrary scalar field theory in
1+1 dimensions. In this application to (P )z theory these
matrices are reducible to submatrices of approximately
equal size for the even- and odd-particle cases.

We adopt the notation that states are identified by their
A. =O structure. For efficiency, we present the ratio of the
mass of the lowest two-particle (K/2) ) to the mass
(Qe, =M, ) of the lowest single-particle state E'). We
choose m =1.0 for the calculations without mass renor-
malization. We summarize our results for this ratio in
Fig. 1 as a function of K for different values of X. These
results alone indicate that the invariant mass of this state
approaches 2rnphy for large K in the weak-coupling region
(A. & 10.0). Convergence becomes much slower as the
coupling becomes stronger and we return to this issue
below.

The results begin to depend significantly on whether
mass renormalization is adopted when k exceeds about
10. In the (P )z model the only dimensionless parameter
is k/m and the differences in these results for increasing
k can be easily understood. In the case of k=24 the
dashed curve represents k/m =24 for all K while the
solid curve represents X/m decreasing with K to the
point where it is approximately 18 at K = 16.

For the moment, let us concentrate on results in the
weak-coupling regime which are less dependent on the
normalization issue. Does the fact that the invariant mass
of the state

~

(K/2) ) approaches 2m~„~, in the continu-
um limit imply that (P )z theory is a free-field theory? To
answer this question, we study the Fock-space decomposi-
tion of this state for k=2.4 as a function of K. Let us
denote the square of the coefficient of the state

~

(K/2) )
by Co and the sum of the squares of the coefficients of all
two-particle state components of this state by C&. In
Table II we present Co and C& as a function of K. The
fact that Co differs from unity with increasing K indicates
the presence of scattering in the continuum limit. CI
remains close to unity indicating that the dominant mix-
ing of the two-particle state (K/2) ) is with other two-

2.4
24.0

2.3

2.2

7.2

2. S — 4 8

2.4

2.0

I I

4 5
K

I

6 7 8 910 20

FIG. l. Invariant mass of the two-particle state
~

(K/2) )
as a function of K for dift'erent values of X. Solid lines: with
mass renormalization; dashed lines: without mass renormaliza-
tion. Smooth lines are drawn through results obtained at even
values of K.

particle states (all of which have higher invariant masses
at X=O). It has been known previously' that the renor-
malized coupling for P is nonvanishing 1+1 dimensions,
indicating the nontrivial nature of the theory. We have
therefore obtained results consistent with that conclusion.

So far our attention has been focused on the state which
has an invariant mass of 2m phy: 2m at k =0. The ma-
trix diagonalization gives the invariant mass and Fock-
space composition of many multiparticle states. We noted
before that Table I gives the number of states as a func-
tion of K. The lowest excitation is the single-particle state
whose mass is fixed at m phyz m = 1.0. Then at K =4,
there are 2 two-particle states, 1 three-particle state, and 1

four-particle state. All these states reappear at K values
which are integer multiples of 4. Let us arbitrarily select
the case with mass renormalization for the moment ~ In
Fig. 2 we present the invariant mass of these four states as
function of K for A. =2.4 As before we denote a state by
its Fock-space structure at X=O and the mass at R=O is
shown as a horizontal reference line. The results for these
three- and four-particle states indicate the lack of bound
states in the continuum limit since the convergence is
similar to that of the two-particle state.

We now return to the question of the behavior of the
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2.03 2.38

2.02
2.36

2.34

2.01

2.32

2.00

1.99
2

I

5 6 7 8 9 10
K

20
2.28 I I I I I I

5 6 7 8 9 10
K

20

3.35
1 I 1 I

3.30

4.2

3.25

4. 1

3.20

4.0

3 15
2

I

5 6 7 8 9 10
K

20
I I I

5 6 7 8 9 10
K

20

FIG. 2. Invariant mass of all the states at K =4 (except lowest one which is fixed by mphys ——1.0) as function of K for /=2. 4.
The horizontal reference line shows the mass at A=O. Smooth lines are drawn through results obtained at values of K which are
multiples of 4.

results with increased coupling. Without mass renor-
malization, the DLFQ results yield a single-particle in-
variant mass squared e& which decreases with increasing

and eventually becomes negative for all values of
K )4. The calculations which incorporate the finite-
mass renormalization define the value of the mass gap
and thus avoid this vanishing mass gap. We now ask
whether we have really gained anything by the finite-
mass gap constraint. The answer is no and is demon-
strated in the following way by considering the results at
K =16 as a typical example. Here the mass gap is found
to vanish at the critical coupling A,, =43.9. The values
of 1,/m with mass renormalization are plotted in Fig. 3
as a function of k and are clearly seen to approach A., as
A.~ ao. Thus, it is impossible to go to strong coupling
(to exceed A., ) by simply adopting mass renormalization
in the DLFQ method The abov.e conclusion should not
be so surprising since the (P )2 theory depends only on
one dimensionless parameter k/m .

The actual value of A,, changes with K and our value
at K = 16 should be compared with Chang's Hartree re-
sult' of 54.3 when expressed in our conventions for the
coupling constant. For comparison, another numerical
method recently introduced' obtains 22. 8 & A,, (51.6.
We do not dwell on the significance of our result for A.,
since we have restricted our discussions to a single phase
of the theory. If, however, we had obtained A,, in the
continuum limit and found it be larger than Chang's re-
sult then we would have identified a serious problem
with the DLFQ method.

V. SUMMARY AND CDNCLUSIDNS

DLFQ, a recently proposed method to solve field
theories is applied to (P )2 theory to understand the
strengths and weaknesses of this scheme. Quantization on
the light front leads to a spectrum which is in agreement
with properties established within constructive quantum
field theory for the (P )2 scalar field model. ' The physi-

50 I I I I I I I I I I I I I I I

40—

30—

20—

10
I I I I I I I I

102
I I i I I I I I I

103
I I I I III

104

FIG. 3. The intrinsic dimensionless coupling L/m as a func-
tion of A, in the scheme with mphy ——1.0. The bare coupling at
which the mass gap vanishes in the calculation with fixed mass
parameters in the Lagrangian (m =1.0) is shown as a horizontal
line. Both results correspond to K = 16.
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cal spectrum emerges only after we take the limit of the
dimensionless momentum operator K~oo. In this effort
we have obtained results with modest values of K which
are sufficient to sense the continuum limit for weak cou-
pling. We obtained evidence for a lack of multiparticle
bound states.

Calculations with a fixed mass parameter in the La-
grangian produce a vanishing mass gap as coupling
strength increases. We believe this to be a manifestation
in the DLFQ method of the nontrivial vacuum structure
of the theory. A positive viewpoint of this breakdown is
as follows: had the DLFQ method not revealed some
pathology using the perturbative vacuum with strong cou-
pling we would have a major concern about the overall
validity of the method. A finite-mass renormalization
amounts to preserving the mass gap with respect to the
normal vacuum and preserves the phase structure. The
strength of the dimensionless coupling k/m always
remains below the critical coupling (at which the mass gap
vanishes) thus restricting the theory to the weak-coupling
region. The slow convergence of results with increased
coupling may also be a direct consequence of the underly-
ing nontrivial vacuum structure. Lastly, we emphasize
the fact that we have neglected the important question of
the zero-mode problem altogether in the present study.
For a boson field theory the presence of zero-momentum
condensates may be essential for a study of its vacuum
structure.

In conclusion we would summarize our own efforts
in conjunction with the results of Refs. 1 and 2 in the
following way. While certain limitations have been
identified, the DLFQ method has continued to yield re-
sults in test applications which are in agreement with re-
sults from other methods and it has produced a number
of interesting predictions.
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APPENDIX

X(p ) is independent of p . In space-time variables,
d k=dk dk'. After the Wick rotation, i.e., k ~ik, we
have the well-known result

Aln—
4~ m

or

i.e.,

ik dk+dk 1X=
4 (2~) k+0 —m'+i@

iA, dk+ dk 1

4 2~k + 2~ k —(m ~+i e)/k+

(A2)

If k+=0 is neglected, X=O which directly leads to a
contradiction. ' This contradiction underscores our
claim in the text that it is important to address the
zero-mode problem. One way to proceed is to use the
integral representation

k k —m

Then

ia(k ~lc —m +i@)= —i do. ed
~ 1 I I ~ ~ 2

0
(A4)

ia( —m +ie)e
42m o a

Next introduce the covariant regularization

ia( —m '+ is)e ia( —m +ie)(e
o 0 0.'

IclI —A + IE)
)

2—e

(A5)

(A6)

where we have introduced the high-momentum cutoff' A.
Using

f

dic
, ;a(, +;,) ia(g +;,), , a
~e —e )= ln

0 A b
(A7)

we have

X(p )= ln—A
4~ m

(A8)

mh, ——m+ ln—A
4m m

Here m phy, is the physical mass and A is the high-
momentum cutoff.

In light-cone variables we have

In this appendix we outline the calculation of the self-
energy graph for P theory at the one-loop level. In 1+1
dimensions we have

which agrees with the previous result. Coming back to
the additive logarithmically divergent term in Ho, it can
be written as

—ix(p ) = i-d k i
(2~) k —m +is

(A1) 1 1 1 A +m dk A= ln—
2

&
k 2 m' k m
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