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The mechanism of energy deposition and matter formation in the central rapidity region of ultra-
relativistic nucleus-nucleus collisions is studied in terms of the flux-tube model. This model assumes
that two Lorentz-contracted nuclei are color charged at the instant of collision by a random color ex-
change. The strong color-electric field confined between the two capacitor plates will immediately be-
gin to polarize the vacuum making qq and gluon pairs and the quanta excited in the system may
form a rapidly expanding plasma. We examine the transverse evolution of the plasma within the
framework of nonviscous relativistic hydrodynamics, incorporating the matter formation from an ex-
panding background color field and also taking into account the interaction of the plasma with the
remaining field. The hydrodynamic equations with a source term for the matter, which is due to the
pair creation and Joule heating, are derived from a semiclassical transport equation. We solve these
hydrodynamic equations coupled to Abelian equations for the expanding background field, and ex-
arnine the generation of a transverse flow as well as entropy production at the early stage of the
matter evolution. It is shown that only a small portion of the initial field energy can be converted
into transverse-collective-flow energy of the plasma fluid and transverse-flow energy never becomes
significant in comparison with internal thermal excitation energy of the plasma fluid before the had-
ronization transition sets in. As expected, most of the deposited energy goes into longitudinal
motion.

I. INTRODUCTION

Multiparticle production by ultrarelativistic heavy-ion
collisions raises a number of interesting questions con-
cerning the mechanism of formation of matter and its evo-
lution.

It is expected' that at sufficiently high beam energies
the matter is formed as a dense plasma of nonconfined
quarks and gluons which eventually evolves into a large
number of ordinary hadrons, leptons, and photons. This
theoretical conjecture is partially supported by some spec-
tacular cosmic-ray events which were observed at energies
above some tens of GeV per nucleon in the pp center-of-
mass frame. According to several theoretical analyses, '

these events in fact indicate that the initial energy density
of the matter formed in the central rapidity region must
be greater than several GeV/fm which is already one or-
der of magnitude larger than the energy density of pro-
tons.

What is the dynamical mechanism of such a large ener-

gy deposition? Does the deposited energy immediately get
thermalized? If the matter is formed initially as a plasma
of nonconfined quarks and gluons, how does it hadronize
and what are the characteristic observables which give us
the evidence for the plasma formation and the properties
of such an extreme form of matter?

It is the purpose of this paper to study the mechanism
of the energy deposition and the plasma formation in ul-
trarelativistic nucleus-nucleus collisions using a dynamical
model of particle formation and to examine the initial

condition of the evolution of matter in the central rapidity
region.

Historically, multiparticle production phenomena ob-
served in cosmic-ray events was first analyzed by thermal
and hydrodynamical models. These models assume that
in the center-of-mass frame all the kinetic energy of the
beam is deposited as heat in a small volume of Lorentz-
contracted colliding nuclei. This happens at the very in-
stant of collision, making superdense hadronic matter ini-
tially at rest. The Quid mechanics provides a well-defined
prescription for the calculation of the initial excitation
stage by the shock heating and compression, and the re-
sults can be used as initial conditions for the later expan-
sion of the system. These types of models have achieved
a certain phenomenological success in reproducing the en-
ergy dependence of the total multiplicity and its distribu-
tion in phase space. However, the assumption of com-
plete stopping at high-energy collisions and almost instan-
taneous matter formation and thermalization seems very
unrealistic and unacceptable on the basis of the Lorentz
time-dilatation efI'ect for the particle formation. Further-
more, the observed leading-particle efI'ect cannot be ex-
plained by this model.

Recently, a new hydrodynamic model for the nucleus-
nucleus collisions was proposed by Bjorken and oth-
ers. ' In this model the initial conditions for the hydro-
dynamic evolution of the matter produced in the central
rapidity region are imposed to be invariant under the
Lorentz boost in the beam direction. This symmetry con-
straint on the initial conditions has been motivated by the
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apparent formation of the central rapidity plateau in the
particle distribution. This suggests that the space-time
evolution of the central rapidity region should look almost
the same irrespective of the choice of reference frame, pro-
vided that it is somewhere between the target and the pro-
jectile rest frame but not too close to either of them.
Comparing to the original Landau model, this new hydro-
dynamic model of ultrarelativistic nucleus-nucleus col-
lision is more consistent with the requirement of the un-
certainty principle and special relativity. However, it
suffers from the lack of a well-defined prescription for pre-
dicting the initial conditions for the matter evolution. The
best one can do so far is to construct the initial conditions
by just superposing the assumed space-time picture for the
particle formation process in elementary pp collisions, or
by integrating the hydrodynamic equat&'ons backwards
from the final break-up conditions which are constrained
by the actual outcome of nucleus-nucleus collisions. It is
desirable to obtain a dynamical description of the plasma
formation which tells us how to set up the initial condi-
tions and how to relate them to the beam parameters.

The dynamical model for the energy deposition in
nucleus-nucleus collisions which we shall study in this pa-
per is a naive extension of the model of multiparticle pro-
duction (of jets) by e+e annihilations at high energies.
The latter is viewed in its center-of-mass frame as being
initiated by the conversion of the e+e pair, through a
virtual photon, into a qq pair by the electromagnetic in-
teraction. Because of color confinement, these fast qq
moving oppositely may be connected by a tube of confined
color flux. This model explains the multiparticle produc-
tion as a result of an "inside-outside" cascade of qq and
gluon pair creation in the tube. "' This successive pair
(color-dipole) creation generates the spacelike color
current (vacuum-polarization current) in the system which
would eventually catch up with the quark and antiquark,
moving forward and backwards, respectively, and thus
neutralize the external quark colors completely. The pair
creation in the color flux tube can be considered as a
quantum tunneling of qq pair in the strong background
color field, ' '' which is the QCD counterpart of the
mechanism first studied by Schwinger in QED. ' It is
very important to note that this model of particle produc-
tion predicts that on the average the process is invariant
under the Lorentz transformation along the jets axis as
long as the boost velocity does not exceed the velocity of
the leading quark or antiquark.

It is not a new idea to apply this picture to the mul-
tiparticle production phenomenon in hadronic collisions.
The color-flux-tube model of hadronic interaction had
been first discussed by Low as a model of the bare-
Pomeron exchange' in the context of the bag model, and
independently by Nussinov. ' This model assumes the
exchange of a single soft gluon when the two hadrons col-
lide. Then the color flux tubes are created in between two
receding color-octet hadrons. The pair production inside
the tube leads to the multiparticle production exactly as in
the case of e +e annihilation. The only qualitative
difI'erence from e+e ~jets is that in the hadronic in-
teraction the "jet axis" is already fixed by the initial beam
direction. Hence this model asserts that the particle for-

mation process is indeed invariant under a Lorentz boost
along the beam direction in the central rapidity region.

This picture of multiparticle production in hadronic
collisions has recently been extended to hadron-nucleus
and nucleus-nucleus collisions. ' In such cases the as-
sumption of a single-gluon exchange seems no longer
reasonable since a large number of nucleons participate in
the collision simultaneously. One may expect that multi-
ple gluons are exchanged when two nuclei overlap and
this leads to the formation of a much stronger color field
and hence to the more copious particle production after-
wards. A simple but most plausible assumption would be
that the average number of gluons exchanged per unit
area in central nucleus-nucleus collisions is equal to the
number of "binary quark-quark collisions" per unit area
which is proportional to the product of the two linear di-
mensions of the colliding nuclei. If the color orientations
among these exchanged gluons are uncorrelated, the aver-
age strength of the charge on the "capacitor plates" will
increase in proportion to the square root of the number of
gluons exchanged just as a result of the random walk in
the color space. It has been shown recently that some of
the consequences of this simple picture are in an accept-
able agreement with the currently existing data of high-
energy proton-nucleus and nucleus-nucleus collisions.

When one applies this model to central nucleus-nucleus
collisions, it is an almost inescapable consequence that
quarks and gluons created from the background color
field in the deep interior cannot hadronize immediately
but instead form an expanding plasma. In such a plasma
two types of interaction will be at work. One is collision
among the excited quanta: these collisions maintain the
system in local thermodynamic equilibrium during the
hydrodynamic expansion. The other is the interaction of
the plasma with the background field: since the plasma
constituents are color charged, the remnant of the back-
ground color-electric field will further accelerate the pro-
duced particles and induce a conductive colo~ current in
the system in addition to the vacuum-polarization current
accompanying the particle creation. This conductive
current will speed up conversion of the field energy into
matter (plasma) energy and as a result heat up the plasma
faster; this is an analog of Joule heating. Hence in order
to describe the nucleus-nucleus collision in terms of the
flux-tube model we must also deal with the plasma trans-
port problem in the presence of a strong background color
field.

In the next section we shall formulate the problem in
terms of semiclassical kinetic theory. We extend the rela-
tivistic Boltzmann-Vlasov equation to incorporate particle
formation from a background field. We shall construct a
particle source term in the kinetic equation from an ex-
panding background field, and examine the influence on
the field equation. This is an extension of the previous
work of Kajantie and one of the present authors which
is necessary in order to allow the transverse expansion of
the system. In this paper we shall consider an Abelian
gauge field as in Ref. 23 to focus on the essential new as-
pect of the problem related to the transverse evolution of
the system. Hence the dynamics of the gauge field is
governed by Maxwell's equations, and we neglect some
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novel features which would appear in the kinetic equation
in the case of non-Abelian gauge field theories, such as
@CD 24

In Sec. III we shall take a hydrodynamic limit and
reduce our kinetic equations to hydrodynamic equations
which couple to Maxwell's equations. In doing this, we
include the dissipative effect due to finite electric condi-
tion, but neglect the effect of viscosity. The resultant cou-
pled equations described the hydrodynamic evolution of
the plasma produced from a strong electric field by the
pair creation, which we call electrohydrodynamics. The
equations of electrohydrodynamics are then reduced to
four coupled differential equations imposing cylindrical
symmetry for the charge distribution on the nuclear disks.
This implies that we consider only head-on collisions with
zero impact parameter and neglect random fluctuations in
the charge distribution which one expects in a more realis-
tic situation from the random-walk process. At the end
of this section, we present solutions for one-dimensional
longitudinal expansion neglecting transverse motion.

Numerical solution for full cylindrically symmetric ex-
pansion will be constructed in Sec. IV, and we shall ex-
amine how much energy is deposited as transverse collec-
tive flow energy of the plasma during the formation stage.
In the present work, we calculate only free expansion into
the vacuum and leave a proper treatment of the effect of
confinement and hadronization for future studies. Hence
the boundary conditions at the transverse edge of the sys-
tem is zero pressure. This causes the edge of the system
to expand radially at the velocity of light. It is shown,
however, that the transverse expansion is significant only
near the transverse edge of the system and only a small
part of the original field energy can be converted to the
collective tranverse-flow energy of the plasma fluid com-
pared to its internal thermal energy. In Sec. V we sum-
marize our results and conclude with some remarks on
the many remaining problems.

Throughout this paper we use the units fi=c =k~ ——1.

II. MODEL KINETIC THEORY

antiparticle) in an infinitesimal volume element d x d p in
the one-particle phase space at time t.

The one-particle distribution function obeys the
Boltzmann equation, which in the absence of the pair
creation is expressed as

a a af;+—v. V'f;+F; f;+F; v f; =
dt Bp Bpo

(2. 1)

where v =Bpo /i)p =p/po. The left-hand side of (2. 1)
represents the temporal change of the distribution func-
tion taking into account particle drift in the phase space
under the influence of the external force F; acting on the
particle of species i, while the right-hand side gives the
rate of the sudden change of the distribution function due
to collisions. In the usual plasma problem where the
external force originates from the Abelian gauge field, F;
is just the Lorentz force:

F, =g, (E+v&&B), (2.2)

where g; is the charge of the ith particle, and E and B are
the electric and magnetic fields, respectively. When the
background field is determined self-consistently by the
distribution of the charged plasma constituents, the trans-
port equation (2.1) with (2.2) is usually referred to as the
Boltzrnann-Vlasov equation.

The manifestly covariant expression of the Boltzmann-
Vlasov equation is obtained from Eq. (2. 1) by multiplying
both sides by the single-particle energy po ——(p +m )'
which yields

p "8J'; g;p "F„„ —f; =C;(x,p),a
P (2.3)

where F" is the antisymmetric field tensor (E; =F' and
8; =F 'o where F"'= ,'0" ~F ti) and C;(—x,p) =po(df;/
Bt)„~i is the scalar collision integral. On the other hand,
the self-consistent background field is governed by
Maxwell's equations

r)„F"'(x)=j,'„(x), B„F"(x) =0, (2.4)
In this section we shall derive the basic equations which

determine the dynamics of the plasma of massless charged
particles being produced in the (nonstatic) Abelian back-
ground gauge field. For this purpose, we start with a
semiclassical kinetic equation, known as the Boltzmann-
Vlasov equation, and then incorporate particle formation
due to pair creation by the expanding background field.

A. Extended Boltzmann-Vlasov equation

The semiclassical kinetic theory assumes that the sys-
tem is composed of well-separated excitations (quasiparti-
cles) which are on their mass shell [po=(p +m )' ] and
that there are no strong many-body correlations among
these quanta ("molecular chaos hypothesis"). Under
these assumptions, the space-time evolution of the system
is described in terms of the one-particle distribution func-
tion f; (x,p); here f; (x,p) is a Lorentz-scalar function
which is defined so that f;(x,p)d x d p gives the number
of particles of species i (spin, color, fiavor, particle-

where the field source is given by the sum of the external
current and the current induced in the plasma:

J tot(x) =Jext(x)+ J md(x) (2.5)

(2.6)

where we have introduced an abbreviated notation for the
phase-space integral.

Equations (2.3)—(2.6) constitute a closed system which
may be solved with arbitrary initial conditions for the
one-body distribution function f;(x,p). In the collision-

Here the induced current is just the conduction current
which arises due to the convective flow of the charged
plasma constituents:

d3
J"-.~(x) = g g f, p "f (x p)(2'�)'pp
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less limit, the above equations describe the self-organized
adiabatic motion of the plasma (plasma oscillation) due to
the long-range interaction among the plasma constituents,
while in the presence of the collision term, they describe
the relaxation of the plasma towards complete therrno-
dynamic equilibrium.

To implement the feature that the particles are continu-
ously produced by pair creation from the background
field, we add a particle source term on the left-hand side
of the Boltzmann-Vlasov equation:

p"dg; g;p "—F„, f; =C;(x,p)+S;(x,p) .
c}

" ap.
(2.7)

The source term S;(x,p) gives the phase-space distribution
of the particles of species i when they are produced. We
shall determine the structure of this particle source term
according to the WKB formula of the pair-creation rate.

This modification in the Boltzmann-Vlasov equation
must also be accompanied by a change in Maxwell's equa-
tions. The successive pair creation causes a time-
dependent dipole creation which generates a polarization-
current flow. We thus expect that the induced current
will acquire an additional element

In the absence of the transverse expansion of the sys-
tem, the problem can be treated essentially as a one-
dimensional problem where only one component of the
electric field appears. In this case, one may utilize the
above WKB formula for the pair creation rate in a uni-
form electric field directly in order to determine the parti-
cle source term in the kinetic equation. Unfortunately,
the formula (2.9) is not complete for our purpose since it
still lacks the information about the longitudinal-
momentum distribution of the particles. Although it is
implicit in the WKH calculation that a tunneling particle
possesses zero longitudinal momentum when they become
on-shell, we cannot apply this picture to all pairs pro-
duced in a certain specific frame: If we were to do so,
then we would immediately violate the Lorentz-boost in-
variance of the original electric field.

To incorporate the Lorentz-boost invariance, we write
the particle source term as

7Tp T
2

S;=+ Ig E(r) ln 1+exp

(2. 1 1)

J lnd =J cond +J pol
'P 'P P (2 g)

where

where the first term on the right-hand side is the usual
conductive current generated by the motion of the plasma
constituents as given by (2.6), while the second term is the
vacuum-polarization current which accompanies the pair
creation process. The structure of the latter current is
closely related to the source term added into the
Boltzmann-Vlasov equation.

B. Particle source term

We now construct the particle source term in the kinet-
ic equation according to the WKB formula for the
differential pair-creation rate in a uniform Abelian back-
ground field. The pair creation rate for the ith particle
(and its antiparticle) which couples to the uniform electric
field E with charge g; may be given by'

g, E ~(pT +m; )

P; =+
2 dPTPTln 1+exP

4~2 IgE
I

(2.9)

where the upper sign refers to bosons and the lower sign
to fermions. The exponent rr(pz. +m; )/

I
g;E

I

is just
the WKB action for the tunneling of a virtual pair with
the transverse momentum pT through the potential barrier

r = ( t z) ' ~,—g = —,
' ln

pp+p3
y = —,'ln

po —p3

(2.12)

Here the transverse-momentum distribution has been
chosen according to the WKB formula (2.9), while the
factor 5(g —y) has been introduced to produce a
longitudinal-momentum distribution which does not break
the Lorentz-boost symmetry. This is an analog to the
Thomas-Fermi approximation and is done by assigning a
definite longitudinal momentum to each space-time point.
Then the Lorentz-boost invariance requires that if a parti-
cle is formed at t and z, it must appear with the longitudi-
nal velocity U, =zlt (Ref. 26). We have determined the
normalization of (2.11) so that J dI S;(x,p) coincides
with the formula (2.10) for the integrated pair-creation
rate.

To generalize the above source term for the case of an
expanding background field we note that the expanding
field can be generated by a space-time-dependent boost of
the constant uniform field. In fact, we can express the
general form of the Abelian gauge field as

V(z) =2(pz- +m )'~ —
I
g;E

I

z . F" =A(s"t s t") ,'X»"' ~(s tp—sgt —), ——(2.13)

pi=
gE

I

- (+1) +
exp

Sm „) n
(2.10)

Upon integration over the transverse momentum p~ of the
produced particle, this formula gives

where the spacelike vector s"(x) and the timelike vector
t "(x) are defined so that they always satisfy s = —1,
t2=1, and s. t =0. The I.orentz scalar 6'(x) and the pseu-
doscalar Q(x) are related to the two relativistic invariants
constructed from the field tensor by

Note that this formula differs from Schwinger's formula'
by a factor of 2 since the latter contains the sum over the
electron's spin.

F„F"'=—2(E —B )= —2(8 —g2),
F„F"= —4E B=—4D .

(2.14)
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The physical meanings of these quantities become clear if
one sets t "(x)= (1,0,0,0), and s "(x)= (0,0,0, 1). In this
case, the field tensor becomes antidiagonal:

0 0 0
0 0—
0 X 0

0 0
0
0

(2.15)
where

Tg = y f d r I "I ~f,

=B„TI,';"n F"—ttJ'"eood, (2.19)

(2.20)
Hence we see that t (x) denotes the proper elastic field
strength and Q(x) the proper magnetic field strength at x,
while the vectors s"(x) and t"(x) determine the directions
of the field orientation (polarization) and the field propa-
gation at this local point.

In the following we set %=0. This would be the only
case relevant to our problem since the external current
caused by the longitudinal motion of the nuclear capacitor
plates does not contain transverse rotational component
because of the Lorentz time-dilatation effect. In this case
there is a local moving frame at every space-time point x
where the local field tensor becomes purely electric, and
in such a frame the formula (2.9) for the differential pair
creation rate is valid to within the approximation that we
may neglect the gradient of the field. Thus the particle
source term for the case of an expanding background field
would be given by

is the kinetic energy-momentum tensor of the particles
and the second term which involves the conductive
current j"„„ddefined by (2.6) is obtained through integra-
tion by parts. The moment of the right-hand side is

X'= g f dI p'S; (2.21)

because energy-momentum conservation in the collision
terms implies g, f dI p C;=0. Hence we find

&„TIln
——F'y "eood+ & (2.22)

It is clear that X is an energy-momentum source for the
plasma due to quantal pair creation, while F'p ",„„d'
represents an extra source due to Joule heating.

On the other hand, from Maxwell's equation we have

S; =+
/

g;6'(x)
i
ln 1+exp

tr(Jtz- +m; )

/g;t (x)
/

5(g —y),
t-)pTfietd F pJ tot

(2.23)

(2.16) where

where p~ and y are the transverse momentum and the
longitudinal rapidity of the particles, measured in the
frame where the field becomes purely electric, and thus
are related to the particle momentum in the fixed collision
frame by

7 ~y )d
—Fi jv '+ gt

4 (2.24)

t)tt( TIttin + T field ) F pJ ext F ttJ poi +~

is the field energy-momentum tensor. Summing up (2.22)
and (2.23), we obtain

F) = —,'ln
x"'t —x "s

P P

x "t„+x "s„

tp —p sp
y = —,'ln

pet +pcs

Pr +m; =(P"t„)'—(P "s„)',

(2.17)

F'g~p, i =X" (2.25)

so that the local energy-momentum-conservation law

Since in our problem the external current vanishes in the
region where the induced current is nonvanishing, we
demand

B„(Tg;"„+Tg;,„)= Fp",„, — (2.26)

C. Vacuum-polarization current

Having seen a covariant expression for the source term,
we now seek the corresponding expression for the
vacuum-polarization current. Since t" and s" are the only
four-vectors associated with the background field, we may
expect that the vacuum-polarization current j~p, ~

is given
as a linear combination of these two vectors:

is satisfied.
Inserting (2.13) (with %=0) and (2.18) into (2.25),

&(J poit +Jp P)=oX' . (2.27)

Since t" and s" are orthogonal to each other, this implies

jp,i=t' 'X"t,=t 'g f dI p't„S;,

.&pol jppl s +jpp] tP 'S p .f p (2.18) jp, i =t 'X's, =t ' g f dl p's S; .
(2.28)

where the two unknown coefficients jpp] and jp, ~ will be
determined by the energy-momentum-conservation laws
in what follows.

To do this we calculate the first moment of our model
kinetic equation (2.7). The left-hand side is transformed

Using the source term (2.16), this leads to

jp, i =at ~ (cosh' s"+sinhg tl'),

where for massless particles

(2.29)
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(2.30)

with the Riemann g function given by g( —,
'

) = l. 341. Here

yb (yf ) and gb (gf ) stand for the degeneracy factor and
the coupling constant of bosons (fermions), respectively.
It is interesting to note that the vacuum-polarization
current is always spacelike: j~,~ &0, corresponding to the
assumption that the plasma is neutral.

III. ELECTROHYDRODYNAMICS

The kinetic equation (2.7) and Maxwell's equations
(2.4) form a closed set which in principle can be solved
numerically for given initial conditions. However, in this
section we shall cast these equations into a much
simplified form by taking the hydrodynamic limit and im-
posing cylindrical symmetry.

A. The hydrodynamic limit

When the collision time and the mean free path of the
plasma constituents are suKciently short in comparison
with the characteristic time and length scale, the distribu-
tion function f;(x,p) will quickly relax to the local equi-
librium distribution function

1

exp(Pp "u„)+1
(3.1)

T" = Pg""+(e+P)u" u— (3.2)

where P and e are the local pressure and local energy den-
sity, respectively. This result can be derived by inserting
(3.1) into the distribution function f; in (2.20). Note that
this derivation also leads to the ideal-gas relations for the
pressure and the energy density. For the ideal gas of yb
massless bosons and yf massless fermions,

2

P = —'e= (yb+ —'yf)T7 4
3 90 8 (3.3)

On the other hand, the use of (3.1) in the formula (2.6)
leads to zero conductive current j"„„d——0. In order to ob-
tain a nonzero conductive current we must take into ac-
count small deviations of the distribution function from
(3.1) due to the finite collision time and the finite mean

where the parameters p(x) = I/T(x) and u" are the local
temperature and the local flow velocity of the fiuid, re-
spectively. In (3.1) the upper sign refers to fermions
(quarks) and the lower sign to bosons (gluons). The above
expression assumes that the system is in complete local
thermodynamic equilibrium and locally neutral with
respect to any conserved charges such as baryon number
or color charge. If these conditions are satisfied, then the
bulk evolution of the system can be described in terms of
a few collective variables, namely, T(x) and u", which are
determined by solving the hydrodynamic equations.

As usual, the hydrodynamic equations can be obtained
from (2.22) by doing a near equilibrium expansion for the
energy-momentum tensor Tg and the conductive current
j"„„d. The leading-order term of the energy-momentum
tensor is given by that of a perfect fluid

free path. ' In the single relaxation time approximation
to the collision integrals (see the Appendix) we find a co-
variant form of Ohm's law:

J cond —~c~ u v
P ~P~ (3.4)

In the massless limit, the scalar "color" electric conduc-
tivity cr, is given by

o., =
,', (2y—bgb +yfgf )r, T (3.5)

where ~, is the relaxation time.
The deviation of the distribution function from (3.1)

causes other nonequilibrium transport effects, such as
viscosities. In this work, however, we neglect such
effects and only take into account the effect of the electric
conduction.

Now let us consider the following set of equations:

"r)„T""=F'g~d,

~pF =Jext+J lnd

(3.6)

(3.7a)

(3„F"=0, (3.7b)

where j;„d——j„„d+jz,~. If we use the hydrodynamic
forms (3.2) and (3.4) for the energy-momentum tensor and
the conductive current, and (2.29) for the vacuum-
polarization current, (3.6), (3.7a), and (3.7b) form a closed
set of equations. Equations (3.6) are the hydrodynamic
equations which describe the hydrodynamic evolution of
the plasma being produced by the pair creation and the
Joule heating, while Eqs. (3.7a) and (3.7b) govern the evo-
lution of the background field which is first created by the
external current and attenuates gradually due to the
current induced by the pair creation and the conductive
current (electrohydrodynarni es)

It is instructive to decompose the hydrodynamic equa-
tions (3.6) into the entropy equation and the acceleration
equation. The entropy equation is obtained by projecting
(3.6) into the direction of the fiuid motion given by u,

u "BEE+(e+P)dpu" = u pF"~g [gd, (3.8)

and then using the thermodynamic relations (at zero
chemical potential),

de=Tds, dP =s dT, e+P =Ts,
where s is the entropy density. This results in

Td„(su")=upF"j;„d .

(3.9)

(3.10)

The acceleration equation is derived by subtracting (3.8)
multiplied by u' from (3.6):

H"'d„P+(e+P)u "r)„—u =H"'F„j;„ (3.1 1)

We see from the entropy equation (3.10) that
u&F" j;„d/T is the entropy production rate per unit

where H" =g" —u "u is the transverse projection opera-
tor with respect to the direction of the fluid motion. Us-
ing the thermodynamic relations (3.9) this acceleration
equation can be rewritten in terms of the temperature as

(3.12)
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B. Cylindrically symmetric expansion

To proceed with the calculation further we assume that
the external current is created by the left-moving disk
with the surface charge density o (p),

jg'=o( p)5(t +z)(1,0,0, —1),
and by the right-moving oppositely charged disk,

(3.13)

volume. On the other hand, the acceleration equation
(3.11) implies that F„j;„qplays the same role as the local
pressure gradient B„P, the driving force of the hydro-
dynamic expansion. It is not difticult to show that
H "F„j;„d——0 when u"=t". Hence this force arises only
when there is a relative motion between the background
field and the plasma fluid. This is an analog of the fric-
tion force. This force causes further acceleration of the
plasma into the transverse radial direction if the back-
ground field expands faster than the plasma.

lowing useful relations:

u "0„=cosho. + sinho.
a7- Bp

() t"=
P

1 a a
(rp cos/3)+ (rp sinhP)

7p B7 Bp

a . a
t "3„=coshP + sinh/3

a7. Bp

B„s"=0,
& as~a„=—
~an '

x"s„=0,
where in the last equality

a a
(rp cosha)+ (rp sinha)

7p O'T Bp
(3.18a)

(3.18b)

(3.18c)

(3.18d)

(3.18e)

(3.18f)

(3.18g)

jg = —o (p)5(t —z)(1,0, 0, 1) . (3.14) x"= (r coshr/, p cosP, p sing, r sinhg) .

We have assumed that these disks are moving with the ve-
locity of light and hence infinitesimally thin due to the
Lorentz contraction. This choice of the external current
ensures that the solution will be invariant to a Lorentz
boost in the longitudinal direction and to rotation around
the collision axis. We have ignored possible fluctuations
in the charge density and thus the expansion is radial and
is not accompanied by rotational motion. These are the
idealizations of a head-on collision at ultrarelativistic ener-
gies.

For scalar quantities, such as the local temperature
T(x) and the local proper field strength 6'(x), these condi-
tions imply that they are the functions only of the proper
time r = ( t —z )

' and the radial coordinate
p=(x +y )'~ and do not depend on g= —,'in[(t +z)/
(t —z)] or the azimuthal angle P (y/x =tang).

For the four-fluid velocity we take

u" = (cosha(r, p)cosh', sinha( r,p )cosP,

sinha( r,p )sing, cosha(r, p )sinhr/ } . (3.15)

This form gives the scaling relation v, =z/t for the longi-
tudinal fluid velocity, no rotational flow v ~

——0, and
vT ——tanha for the transverse radial velocity at z =0. We
call a =a(r, p) the transverse rapidity of the plasma fiuid.
We may take a similar form for t",
t"=(cosh/3(r, p)cosh'/, sinhP(r, p)cosg,

sinh/3(r, p) sing, cosh/3(r, p)sinhq }, (3.16)

with

With these symmetry constraints on the solutions, the
equations of electrohydrodynamics are greatly simplified.
We first note that (3.18g) gives g=0 so that the vacuum-
polarization current (2.29) becomes proportional to s":

j~p, )
——~@ ~ s" .

Also using (3.15)—(3.17) one can show

j~«„z =o,F"'u, =o, 8 cosh(a /3)s" . —

(3.19)

(3.20)

Hence the total induced current is written in the form of

J lnd =~ indS
7 P

where

(3.21)

J;„q——~6' +o., 6 cosh(a —P) (3.22)

and the constants Ir and o, are given by (2.30) and (3.5),
respectively.

Using (3.18a) and (3.18b), the entropy equation (3.10)
and the temperature equation (3.12) are reduced to

a . a(T sinha)+ (T cosha) =
a7. Bp

6J;„gsinh(/3 —a )

(3.24)

C} rp 6'J;„qcosh(P —a )
(cps cosha)+ (rps sinha) =

a7. Bp T

(3.23)

s"= (sinhg, 0, 0,cosh'), (3.17)
Similarly, Maxwell's equations (3.7) are reduced to two
independent equations:

which expresses a radially expanding field. Indeed, using
(2.13) one finds E, =8 cosh/3, Bt,= —6 sinh/3, Ez Et, ——
=8& B,=0 at z =0. W——e may call P=P(r, p) the trans-
verse rapidity of the expanding background field in the
sense that if one observes the field at z =0 on the frame
moving with the tranverse radial boost velocity vs = tanhf3
it looks purely electric. These four-vectors satisfy the fol-

(8 sinh/})+ (8 cosh/3)+ —8 sinh/3=0,1

a7. p
(3.26)

a a(o cosh/3)+ (8 sinhP)+ —6' sinh/3= —J,„,—J;„q,a7. Bp P

(3.25)
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where

J,„,—= —s„j",„,= —o (p)5(r) . (3.27)

which gives, for a constant sound velocity c„
1/c —2

s =a(1+c, )T ', e=aT ' +b, (3.34)

To obtain Eq. (3.25) we have taken a contraction of Eq.
(3.7a) with s" and then used (3.18c)—(3.18f}. Equation
(3.26) can be derived from Eq. (3.7b). Recall that
E, =6 coshP and E =E» =0, B~= —6 sinhP at z =0.
Hence Eq. (3.25) is just the z component of

V~E+0B/Bt =0 .

The other two equations in Maxwell's equations are au-
tomatically satisfied owing to the symmetry in the solu-
tion.

The singular external current (3.27) can be eliminated
from the right-hand side of (3.25) by replacing 8(r,p)
with 6'(r,p)0(r) and then setting the initial condition as
A(O, p)=cr(p) and 13(r,p) =0 at r=0.

Before presenting the numerical solutions for full cylin-
drical expansion we shall first examine a one-dimensional
longitudinal expansion neglecting the transverse expan-
sion. In this case a simple analytic expression for the
solution exists.

C. A one-dimensional expansion

In the absence of the transverse expansion, T and 6' de-
pend only on r and a=P=O for all r and p. In this case
Eqs. (3.23) —(3.26) are further reduced to

~DJ;„d
(rs) =

d7

d 6'= —J;„d,d7.

and the induced current becomes

(3.28)

(3.29)

Jind =K~ +O c ~ ~ (3.30)

If we neglect the electric conduction in the plasma fIuid
by taking the short collision time limit o., ~~, T ~0, the
solution becomes particularly simple. In this case the
field equation (3.29) decouples from the hydrodynamic
equation (3.28) and hence can be integrated first. For the
initial condition 6'(0) =Ep, the solution is given by

6'=Epf (r/rp),

where f(x)=(1+x) 2 and

(3.31)

—aEZat+ V x B=j,„t+j;„d

while Eq. (3.26) is the P component of Faraday's induc-
tion law:

where a and b are the integration constants. For a mass-
less ideal gas, c, = —,

' and

(yb+ —', yf) . (3.35)

In this case, with the initial condition T(&=0)=0, we
find, for the energy density with b =0,

e=epg (rlrp), (3.36)

where ep ———,'Ep is the initial field energy density and the
dimensionless function g (x) is

4/3

g (x)—=4 f dy — [f(y)]' ' . (3.37)

This function possesses the following asymptotic behavior:

7x for x((1
r(-')r(-')

4 x -0.30x for x »1r(5)
and reaches its maximum at x-0.5 as shown in Fig. 1.
Note that the maximum value of the plasma energy densi-
ty is only ——, of the initial field energy density. The rest
of the energy goes to the longitudinal collective How ener-

gy. On the other hand, the entropy density becomes

s(r) =a ' Ep'» h (r/rp), (3.38)

where h (x) =(2» /3)[g (x)] . Since asymptotically
h (x) cc 1/x the entropy per unit rapidity dS/dy ccats ap-
proaches to a constant value.

The simple Ep dependence which appears in Eqs.
(3.31), (3.37), and (3.38) is just the consequence of the fact
that Ep is the only parameter which has a dimension [of
(energy) and (length) ]. The inclusion of the finite
electric conductivity of the plasma Auid may at first
glance seem to break this simple behavior since o., ~ ~, T
introduces another scale into the problem. However, the
collision time ~, may depend on the temperature as

c( T ~E', hence it is ultimately determined by Ep
and the overall Ep dependence should be preserved.
Hence the maximum energy density will grow in propor-
tion to the initial field energy density ep and the entropy
per unit rapidity in proportion to the initial field intensity
Ep. The inclusion of the electric conduction changes the
functional form off (x), g(x), and h (x). In Fig. 1 we plot
the numerical result of f (x) and g(x) for several different
values of the new dimensionless parameter:

2

E 1/2K p

(3.32) 1/4 (3.39)

2 dP s dT d (lnT)
de T ds d (lns)

(3.33)

sets the time scale for the attenuation of the field.
The hydrodynamic equation (3.28) can now be integrat-

ed using the equation of state:

It is seen that finite electric conduction accelerates the
heating process (Joule heating) and the plasma acquires
higher energy densities at earlier times. At large x, f (x)
attenuates exponentially and g(x) approaches the hydro-
dynamic behavior faster. Hence the plasma cools down
faster due to the longitudinal expansion. Figure 2 shows
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that sr (the entropy per unit rapidity) saturates faster at
lower values as the electric conductivity increases.

0 4 i

—r—-r-~

IV. NUMERICAL SGLUTIE3NS

We now construct the cylindrically symmetric solution
allowing transverse expansion of both the plasma fluid
and the background field. The numerical calculation can
be most conveniently performed by casting (3.23) —(3.26)
in characteristic form:

0.2

0. 1

j3

a7
+ tanh(a+y, ) a+- =I+ (a ~, b+ ),

Bp
(4.1)

0.0
0 0.5 1.5

b+ =I+(a+,b+ ),b

07 BP
(4.2)

where T, a, 6, and /3 have been transformed to a set of
new dimensionless variables, a+ and b+, according to

—21+c, +(c, +c, )a
e

TQ

FIG. 2. The time evolution of the entropy density multiplied

by the proper times s~. This quantity is proportional to the en-

tropy per unit rapidity dS/dy. We have set the scale by the unit
of (2' /3)a ' Eo 7.0. The labeling is the same as in Fig. 1.

Sp

1+c, +(c, +c, 1)a
e (4.3) Ep

(4.4)

1.0

wheIe Tp, sp, and Ep are some arbitrary constants which
set the scale for the temperature, the entropy density, and
the field strength, and we have used the thermodynamic
relation (3.34) for a constant sound velocity c, =tanhy, .

The inhomogeneous terms of the characteristic equa-
tions are given by

0.6

0.4

I+ =— sinhu cosh'+
P 7

] sinhy,
Cs + a+

c, cosh(a+y, )

0.2

J;„d6 1 sinh(g —a+y, )+ cs+ a+,
Ts c, cosh(a+y, )

(4.5)

0.0
0.5 I+ = ———+—(b+ b) — —(b+ b )

b 1 1 1 J111d

2 p
(4.6)

0.30 t i i i
~ ~ t i i ~ r i T

0.25

0.20

0. 15

(b)
respectively, where the first terms have arisen due to the
cylindrical geometry of the expansion and the second
terms are due to the source in the hydrodynamic equa-
tions and the sink in Maxwell's equations. These inhomo-
geneous terms give the changes of a+- and b+ along the
characteristic lines p+(r) and p+(r) defined by

0. 10

0.05

dp+ = tanh(a+y, ),d7
d"p+
d7

(4.7)

(4.8)

0.00
0.5 1.5

FIG. 1. The time evolution of (aj the field intensity and (b)

the proper energy density of the plasma in the one-dimensional
longitudinal expansion. The field intensity and the energy densi-

ty of plasma are measured in the units, the field intensity Eo and
the initial field energy density eo =—'Eo, respectively. Each
curve is labeled by the value of g defined by Eq. {3.38) which
parametrizes the significance of the electric conduction in the
plasma.

Clearly, the characteristic lines of the field equations are
just straight lines propagating in +p directions with the
velocity of light. The characteristic lines for the fluid
motion, however, must be determined by integrating (4.7)
self-consistently with (4.1) and (4.2).

In the actual calculation, we have used the variables
a(r, p) and b(r, p), which are defined on the extended
range —ao &p& ao by

a (rp) =a+ (rp) and b (rp) =b+ (rp) for 0 &p,
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2 1/2a(0 p)=0 an=0 d b(O, p)=[1—(p/R) ]

so that

(4.9)

and

T(O,p)=s(O, p)=0, a(,p =0 )=0, (4.10)

2 1/26(O,p)=o(p)=EO[l —(p/R) ]

P(O, p)=0,
(4. 1 1)
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of the field near the transverse edge of the cylinder as seen
in Fig. 3(b). It is seen that the derivative singularity in
the initial field-strength distribution at p=R propagates
inward at the velocity of light, while the field at the trans-
verse edge expands radially, also at the velocity of light.
This behavior, however, may be significantly changed if
the surface boundary conditions are properly imposed in-
corporating the effects of confinement and hadronization
which are absent in the present treatment.

In the meantime, the plasma energy density grows rap-
idly in the interior and reaches its maximum at ~=0.4~0
[see Fig. 3(c)], and then decreases monotonically mainly
due to the rapid longitudinal expansion. As seen in Fig.
3(d), the plasma collective transverse flow is gradually
built up at the transverse periphery. This is caused par-
tially by the hydrodynamic expansion of the plasma al-
ready produced, but also a part of the plasma flow results
from the fact that new elements of the plasma are con-
tinually being produced from the expanding field. From a
comparison of Figs. 3(b) and 3(d), one can see that the
field expands only slightly faster than the plasma fluid.
This implies that the effect of any "frictional" force be-
tween the plasma and the background field is probably
not significant.

The growth of the transverse expansion of the system
can be better illustrated by plotting the magnetic field
strength B~ = 6' sinhP, and the radial energy flux of the
plasma fluid T ~ =(e+P)sinha cosha. This is done in

Figs. 4 and 5. It is seen that the magnetic field strength
increases only up to one-tenth of the magnitude of the ini-
tial electric field strength before it fades away due to pair
creation, indicating that field expansion does not play a
major role. Similarly, the radial energy flux which the
plasma gains during its formation stage is about one order
of magnitude smaller than its internal excitation energy.
This implies that transverse expansion of the plasma fluid
will be mainly generated at a later stage of the hydro-
dynamic evolution.

To show the large time scale evolution of the plasma
fluid, we plot the contour maps of e(r,p) and tanha(r, p)
on the ~-p plane in Figs. 6 and 7, respectively. One can
read from this plot, for instance, that the plasma element
with e&0. 1@0 exists only until ~/~0 ——1.8 in a limited

0.030

0.025
plasrn~r r~«3 n~ 1 one r. rly flu x

(no cor&dur t &vit i )

0.020

0.015

0.010

0.005

0.000

.2

6 8 10

FIG. 5. Profiles of the radial energy flux T ~ measured in the
units of the initial field energy density at p=0.

space-time region bounded by the curve marked by 0.1,
and there is no significant transverse-flow effect in this re-
gion. The region where the fluid has gained radial veloci-
ty greater than 0.4c exists only inside the very low energy
density contour corresponding to @=0.02@0.

These contour maps in the ~-p plane can be converted
to snapshots of the matter profile in the x-z plane at given
time t by making use of the relation r=(t —z )'~ . Fig-
ures 8 and 9 are the resultant snapshots of contour maps
for the plasma proper energy density and the radial flow
velocity, respectively, at several sequential times. Note
that the pattern change of the energy density contours in
Fig. 8 is caused mostly by the longitudinal expansion and
is not due to the transverse expansion except near the
transverse edge. The propagation of the transverse
rarefraction wave is more clearly seen in Fig. 9.

We would like to extract quantitative information about
the significance of the tranverse expansion. For this pur-
pose we calculate the total amount of energy which has
been converted to the collective tranverse flow energy be-
fore the fluid elements are diluted below a certain critical
energy density e, . This energy density e, may be con-
sidered as a threshold for the onset of the hadronization
transition beyond which our present description of the

0.20

0. 15

r i

[

i i r

magnet&c f« ld st.

rennet.

»

(no conductivit. yi

O

proper energy densit. y
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—0—0. 1-::—0.16

0—
0

I I I I I I I

10

FIG. 4. Profiles of the magnetic field strength B~ mea-
sured in the units of the initial field intensity at p=0.

FIG. 6. Isotherms in the ~-p plane. Each curve is marked by
the corresponding value of e/eo.
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matter evolution is no longer adequate. The points at
which the plasma elements reach this critical energy den-
sity form a three-dimensional hypersurface in the Min-
kowski space given by e(x) =e, .

The total energy on this hypersurface is given by

E, = T "do.„,
C

(4.13)

L

Q

0

(no c

10

where do.„ is the infinitesimal surface element on the hy-
persurface. This surface integral can be converted to the
four-volume integral by making use of the identity

~ (x)der„= f d x ~ (x)B„e(x)5(e(x)—e, ),
C

(4.14)

FIG. 7. A contour map of the radial velocity distribution of
the plasma in the ~-p plane. Each curve is marked by the corre-
sponding value of tanha.

where A (x) is a function of space and time. Using the
cylindrical coordinate system whose four-volume element
is given by d x =dr dridp dP rp, we find that
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FIG. 8. Snapshots of the isotherms in ~-z plane at y =0 at
several different times. The edge of the plasma where energy
density vanishes is drawn by a dotted line. The energy density
corresponding to each solid curve increases by 0.02eo in each
step as one goes from the edge to the interior.

FIG. 9. Snapshots of the radial velocity distribution of the
plasma in the x-z plane at y =0 at several different times. At the
edge drawn by the dotted line the plasma velocity is equal to the
velocity of light. The value of tanha for each curve decreases by
0.1 as one goes from the edge to the interior.
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E, =2ir di)[ (ecosh a+P sinh a)da p

+(e+P)cosha sinha dr]rp co h . '4.rpcos rj . '4. 15)

Since the longitudinal fluid rapidity y is e ual

unit fluid rapidity at y = =0 '

y =q= is given by

dE,
d y=p

=2ir dp pr(p)[e, cosh a(r(p), p)+P, sinh a(r( ) ))' 2~a r p, p ]+2~(e, +P, )

droop(r)cosha(r,
p(r))sinha r p r

s"do.„

where r and p are related by e(r, )=e and P

(4.16)

the same he hypersurface can be calculated by
~,p =e, and P, is the pressure at e =e . Siimilarly, the total entropy which comes out of

S, =
( j=

and a straightforward calculation yields

4. 1. 7)

ds,
d y=p

=2ms, dp ~ p p cosha ~ p, p + d~~p w sinha ~,p ~ ) (4.18)

where s, is the entropy density at e=e . We d fi h
quantity

e e ne the

(4.19)
(1+c, )(dE, /dy)»

T, (dS, /dy)»

This ratio is 1 in thhe absence of transverse collective flow,
namely, a=0, since e+P =(1+c )e=Ts. Hen

rom measures the significance of the col-
lective tran verse flowow energy in comparison with the
thermal energy of the fluid.

InFi . 10we l'g. p ot A as a function of the ratio eo/e for
several different values of R/~p with no

t is seen that the a
~p wit no electric conduc-

e to transverse-collective-flow energy increases as R/~

si nificant ev
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i ia e . is implies
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fast scalin ex an
'

pasma y t e
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dSc de' ' dN
d

-4
p dg 0

On the other hand, dE/dy will most likel by e a monoton-

dE d
y ecreasing function of time s' th he since t e change of

/ y is caused by the work done b fl de y ui pressure while

(4.20)

conductive current further p
transverse flow. Th

er suppresses thee generation of
se ow. is is so because the electric conduction

s ortens the plasma formation t h hime w ic results in the
enhancement of the coolin t dng ra e ue to longitudinal h-
drodynamic expansion.

Althou h wg we still lack a description of the hadroniza-
tion and freeze-out stage of th
su t as a significant implication for the observations. Wo servations. We

multi licit
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the system undergoes longitudinal hydrodynamic expan-
sion and it increases only when the fluid pressure becomes
negative by a significant supercooling:

dE,
dg p

dEI

p

(4.21)

It then follows that the above ratio A gives the upper
bound for the average transverse energy of hadrons creat-
ed in the central rapidity region:

( dEI /dy )& o ( dE /dy )& —o
(E& (4

(dN/dy)y =o (dSc /dy)y =o

4T, %=600% MeV,
1+c,

(4.22)

where in the last equality we have set T, =200 MeV.

V. CONCLUSION

In this paper we have presented a model for energy
deposition and plasma formation in ultrarelativistic
nucleus-nucleus collisions. We have assumed that at rela-
tivistic collider energies nuclear collisions produce an in-
termediate giant color flux tube by random color ex-
change between the colliding nuclei. The strong color-
electric field midway between the two receding nuclear
"capacitor" plates will immediately begin to polarize the
vacuum creating qq and gg pairs, and thus the energy of
the field will be deposited as a hot quark-gluon plasma.
In this paper we have elaborated on the basic formulation
to deal with the dynamics of the plasma produced in such
a way and have shown how one can set up the initial con-
ditions for the hydrodynamic expansion of the plasma.
For this purpose we have started with the semiclassical ki-
netic theory and derived a set of coupled differential equa-
tions which self-consistently determine the hydrodynamic
motion of the plasma fluid produced in an expanding elec-
tric field. These equations have been solved for the case
of cylindrically symmetric expansions.

Although we are not yet at the stage of making a
definite prediction for any directly observable quantity,
the results of our calculation are very suggestive. It is
shown that only a tiny portion of the original field energy
can be converted into collective-transverse-flow energy of
the plasma even if we start with a significantly large value
for the initial field strength. %'e have shown that the in-
clusion of the Joule heating process works to suppress
both the transverse expansion and the entropy production
per unit rapidity. In either case the rest of the energy is
transmitted to longitudinal motion by the fast scaling ex-
pansion. Hence in this model we cannot expect a large
enhancement of the transverse momentum of the secon-
daries although the multiplicity grows rather rapidly in
proportion to the initial field strength. This may account
for the observed feature of the central rapidity region of
high-energy pA collisions where the transverse energy of
the secondaries depends very weakly on the target size, '

while the increase in multiplicity is reasonably well repro-
duced by the flux-tube model.

In any case, a number of refinements still need to be

made before we can make quantitative predictions from
this model. Probably the most urgent one is to incorpo-
rate the effects of confinement and hadronization. In this
calculation we have not taken into account either of these
important physical effects. The transverse evolution may
be very sensitive to these effects as the previous stud-
ies suggest. It is also interesting to extend the
present formalism to describe the fragmentation regions,
taking into account the finite longitudinal extension of the
nuclei, and to study the slowing down mechanism of the
color charged nuclear capacitor plates. At a more for-
mal level, it is important to reformulate the problem with
a non-Abelian color charge. This may result in some fun-
damental modifications in the dynamics of the plasma for-
mation as well as the background-field evolution. ' ' In
particular, color charge fluctuations on the nuclear plates
may cause a nontrivial behavior in color field evolution
due to the nonlinearity of the Yang-Mills equations which
is absent in the present linearized (Abelian) treatment.
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APPENDIX: ELECTRIC CONDUCTIVITY OF A
RELATIVISTIC PLASMA

Here we shall present a derivation of Ohm's law (3.4) in
the relaxation time approximation.

In the single-relaxation approximation, the collision
terms are written as

p (f —f.q»
7 c

(A 1)

where ~, gives the time scale for the relaxation of the dis-
tribution function f; to the local equilibrium function f,q.

1f.q
=

exp(PP ~u„)+ I

Then, from the kinetic equation (2.7), we find

6f =f f.q——

(A2)

7c p"dJ gp "F,- f, ~—; (x,p)
(p u P

i"-.d(x)= yg y drp4[f (~,p) f.,(xp)i—(A4)

which, upon the insertion of (A3), becomes

p a
P.„,(x)= F..r, yg, ' I drp—P

(p u) Bp
(A5)

(A3)

Since g;g; jdrp"f, q
——0 which implies that the system

is locally neutral in equilibrium with respect to the charge
g;, the conductive current (2.6) can be rewritten as
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Now we make a near equilibrium expansion of the
right-hand side of (A5). The leading-order term is ob-
tained by replacing f; with the local equilibrium distribu-
tion (A2):

The electric conductivity o., is given by

. 2crc =&cp $ gi co . (A9)

j"„„d(x)=F.r, gg; f dI pu "f,„(1+f, ) .
(p u)

(A6)

The constant co can be calculated from (A6) by going
over to the fluid comoving frame, where u" = (1,0,0,0) and
comparing the p=v= 1 component of both sides of (A6).
This yields

Since u" is the only four-vector which survives after the
integral, the phase-space integral which appears on the
right-hand side can be written as

1 d p p
(2tr)' po

2
e~p(ppo)

(exp(Ppo )+ 1 j
(A 10)

p a
dI q 1+ q =g cp+0 0 ci(p. u)

(A7) In the massless particle limit, this integral can be carried
out analytically and we find

where co and c i are the scalars. Inserting (A7) into (A6),
we find Ohm's law:

jco n(d&) =Fav&c g gi Pu "(g co+ u u ci )

co ——
—,', P ' for bosons

= —,', P for fermions . (Al 1)

=r, g g; PcoF" u (A8) Inserting this into (A9) we obtain (3.5).
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