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The time evolution of a massless particle satisfying the Weyl equation is described as a stochastic
process on a space of Grassmann variables, in close formal analogy with the use of Brownian motion
for Schrodinger evolution. The Grassmann process is then combined with a Poisson process previ-

ously used for the evolution of Dirac electrons. (In that process electrons propagate as massless left-
or right-handed particles with random changes in direction occurring at an average rate given by the
particle mass. ) Electron motion is thus given as an expectation over the two processes and spatial po-
sition supersymmetrically acquires contributions from sums of products of Grassmann variables.

I. INTRODUCTION

Several publications have recently proposed definitions
for a Feynman path integral for the Dirac equation, in
particular, in the case of 1 space and 1 time dimen-
sion, ' in momentum space for any number of dimen-
sions, and also a spinor chain formalism for 3 space and
1 time dimension. Besides these articles there is an ex-
tensive literature on the subject taking many imaginative
and interesting approaches (for example, Refs. 6 and 7).
In this article we aim to extend the Feynman "checker-
board" approach, in particular, along the lines initiated
in Refs. 1 and 2. Our method will be to define a new
kind of mathematical object which provides for the
Dirac equation a natural generalization of the classical
path integral.

Using Ref. 1, one can describe the Dirac electron in
the following way. For a short time it proceeds as a
massless particle at the speed of light, subject to the
Weyl equation. Then it flips, reversing direction by 180'
and now obeys the other (parity-reversed) Weyl equation.
It continues to flip at random times with an average flip
rate given by the particle's physical mass m. This ran-
dom flipping is the Poisson process of Refs. 1, 2, and 5
and some physical speculations about it are given in ear-
lier papers. The intervening massless propagation ac-
cords with the fact that the electron velocity operator
only has eigenvalues of magnitude 1 (in units c= 1).

In the present article we also express the intervening
massless motion as a "sum over paths. " From Ref. 1

there is already a path or a history of flips; that is, the
overall development of the particle involves a sum over
functions N(t), each N(t) being an integer-valued Poisson
process giving the number of flips up to time t. Between
flips the particle satisfies the Weyl equation and our goal
is to express this evolution too as a sum over paths. For
our purposes the latter concept is taken to mean that the
particle is imagined to undergo some stochastic process
and its propagator is obtained from a coherent sum over

paths of that process. As will be seen below the way in
which we achieve that goal is by allowing the process to
take place on a space of Grassmann variables. A path is a
Grassmann-variable-valued function 8(s) and the sum
over paths employs Berezin-type integrals over the
Grassmann variables. In fact we also rewrite the usual
path integral in a slightly idiosyncratic form so as to bring
out the way in which our Grassmann path sum parallels
the standard formalism. Finally, in the last two sections
we combine the massless propagator stochastic process
with the Poisson process of Ref. 1 to obtain a process for
the full Dirac equation.

Historically, associating a stochastic process with the
Schrodinger equation has been one of the most fruitful
developments in mathematical physics. Whether some
of the advantages gained there will carry over to the for-
malism proposed in this paper remains to be seen. We
also mention that although our approach is different
from that of Jacobson, the resemblance is sufficient to
suggest that some of the interesting ideas he has on
space-time structure apply to our Grassmann processes
as well. That is, for Jacobson pairwise products of spi-
nors are elementary spatial steps; for us they are pair-
wise products of Grassmann variables (consistent with
general supersymmetric ideas). Moreover, for us as well
as for Jacobson the flipping due to the mass and the
massless propagation are conceptually distinct so that
one would not expect to combine our two stochastic pro-
cesses into a single one.

II. FEYNMAN-KAC RECAST

We begin by giving a new proof of the classical
Feynman-Kac formula for the heat equation, stressing as-
pects that will be useful later. We start from the Trotter
formula giving the heat propagator of

1K=— —V,
2 dx
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1 —V
dx

Thus by introducing the random variable G, we have
managed to take the "square root" of d'/dx'. lt follows
that

lim exp
1 t d'

V exp
n 2ndx

n

where the product is time ordered. The Feynman-Kac
formula gives a way to separate the kinetic-energy part
and the potential-energy part in the Trotter formula. For
any 1(k (n, let G, be normalized independent Gaussian
variables; we then have
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However, within the averaging (angular) brackets it is easy
to commute exp( —tV/n) and exp[(tin)'"G„dldx] since
the latter is simply a translation operator; for example,
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and finally
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III. GRASSMANN VARIABLES

Following Refs. 9 and 10 we shall first introduce three
Grassmann variables 0, o. = 1,2,3, with the relation
0 0p+0~0 =0. We also define the Berezin integral of
polynomials in 0 by

1d0 =0,

Ieye. =S.,
(4)

Call d0:d 01d 02d 03 and let 0 be the vector of com-
ponents 0 . Let o.„o.„o., be the three Pauli matrices
which anticommute with each other and have square uni-

ty. We have o.
, o2o. ,=iI and by expanding the exponen-

tial we can check that

which is exactly the discretized version of the Feynman-
Kac formula. The term

l /2

G,
j=k

is identified with the discretized version of the Brownian
path at time s =ktln [In Ap. pendix A we relate (3) to
the form of the functional integral more commonly used
in the physics literature. ]

Iexp(ie o )exp(8M8)de=I +i ge ts~cr m~r,

where M =(m&~ ) is an antisymmetric 3 && 3 matrix. Let
us take m~~

——,'grt E ts~ (e —~r is the Levi-Civita sym-

bol). Then Eq. (5) becomes

exp(i g.o' ) =I +i(oq) = 'exp(ie o )exp(8M8)de
cosh',

(6)

with tanhA. =
~ g ~

. Equation (6) is a fundamental identity
analogous to (1). In (1) we take a square root by intro-
ducing an auxiliary integral. In (6) we separate factors o.
and g through another sort of integral.

IV. GRASSMANN STOCHASTIC PROCESSES

For any time s let us introduce Grassmann variables
8 (s), a = 1,2,3, satisfying the relations

0 (s)0~(s')+0&(s')0 (s)=0 for any a, p, s,s' .

This family gives a Grassmann-valued path; for any s we
can also introduce the Berezin integral with respect to
de(s) as above and define a path integral of a function
F(8( )) by

Jl)8( )F(0(.))=I g de( )F(0( )) .
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Let us now write the Weyl equation

. Bgi =Hg: g—cr i +eA
C}t a=1 ~+a

exp[to' (t) —ie A)]= g [I +o (8—ie A)ds]
s(t

lim I +-o (t) —ie A)— (10)

The propagator is given by the Trotter formula with
time ordering understood:

Using (6), each factor in the second member of (10) can
be written as

I + cr .( d —ie A ) — =jd 8 kt
n
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n

kt kt
exp 0 MI, 0

n n

where the index 1 (k ( n denotes the kth term in the chronological product (10) and where

(Mi. ) p
—=(V'k ) p+ (Ak ) p,

(12)

1 t
(Aq) p
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and in the limit n ~+ ~, we obtain

e' = lim I+o. (tl ieA) ——
kt kt

lim g dg Q expio. g
n

kt kt
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In this way, the analogy between Eqs. (1) and (6) has been carried forward to an analogy between (2) and (13).

V. WEYL PROPAGATOR AS EXPECTATION OF GRASSMANN STOCHASTIC PROCESS

Now, we disentangle the second member of (13) in the same way that we did the Feynman-Kac formula. First we
remark that any operator-valued function which is even in the 0's commutes with any function of the 0's containing
no spatial operator and using the Trotter formula to separate A and V' we can rewrite the integrand in (13) as

n kt
exp icr 8

k=1

kt kt
exp 8 %kg

n

kt kt
exp 0 V'~ 0

n n
(14)

where the first product is time ordered with earlier times
on the right. The commutation relations for the o. can
be used to show that

kt
n
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but we shall continue to write the left-hand side of (15)
as a time-ordered product. Moreover, we have

All the 5g are even functions of the 8(kt ln). By the su-
persymmetric rules of Berezin" (or by the definition of
supermanifold) they define spatial variables. More pre-
cisely, if g is function of an even number of Grassmann
variables and f (x) is an indefinitely differentiable func-
tion, we have, by definition,

[exp(g. t) )f](x)=f (x+g ),

where

(16)
where the second member is defined by Taylor's formula
around x. If we now define
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kt
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we obtain
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and in the limit n ~+ ~, the propagator for the Weyl equation can be written as

e xp[t cr. (a ie~—)]=f90( )exp io f 0(s) exp —e f '
A(x —ig(s))5((s) exp[ t'r) —g(t)]. ,

0 . . 0

(21)

(22)

(where the first exponential is understood to be a time-
ordered product.

VI. ANALOGY WITH OTHER FORMS

T, & Tz & be the times of the jumps of N(t) so that
T],T, —T„.. . , T& —T&, , . . . are independently dis-
tributed stochastic times with exponential law

Prob(r & t) =e™ (24)
If we compare this formula with the one given, for ex-

ample, in Ref. 12 for the imaginary time propagator of
the Pauli equation, we see that —i g'(s) is the Grassmann
analog of Brownian motion. The last term in the in-
tegrand of (22) is the usual translation operator by
—if(t). The middle exponential is the analog of the
nonanticipating Ito integral of the electromagnetic field
along the Cirassmann Brownian path; the first exponen-
tial is the spin contribution which has been separated as
an odd function of the 0's (the last two terms are even
functions of the 0's). We also note that the integral

f 08(s) is taken without ds; in some sense g(s} is the
Cxrassmann analog of white noise.

where P+ and g are two-component spinors. We em-

ploy the Weyl representation of the Dirac equation, so
that g satisfies

o (it)+e A)
0

0 0 m
—o (it)+e A) ~ m 0

where m is the mass of the particle (we have taken fi= 1,
c= 1). Multiply the equation by —i and define
4 =e 'g to obtain

o"(8 ie A)—
0

0
tr (t) ie A)— —

VII. THE DIRAC EQUATION: POISSON PROCESS

We now turn to the Dirac equation; an electron is
represented by a four-component spinor

Finally we define the random variable

e(t)=( —1)' "'e (25)

where eo is + 1 or —1. Then the value of N+(x, t) is
given by the formula

N, (x, t)=F. ( —i)' '"exp e(s)o"(8 ie A)ds—)
0

&&4&,(,)(., t =0)
~

e(0)=eo (26)

where the notation

exp e(s)o. (B—ie A)ds @,~, ~(, t =0)
0

means that the 2& 2 matrix-valued operator

exp e(s)o. (t) —ie A)ds
0

acts on the two-component spinor N„, j
(., t =0) (taken at

time t=O) and the symbol F. denotes the expectation
over the realizations of the Poisson process. The factor
( —i)' ~" takes into account the fact that at each jump of
N(s) we have to multiply by the phase factor —i; this is
due to the term —im in the matrix (; '

) appearing
in (23). This fact was absent in Ref. 1 because we were
writing the formula in imaginary time, so that —im was
m. Formula (26) reduces the computation of the propa-
gator of the Dirac equation to that of the Weyl equation.

Remark When A de.pends on t explicitly, Eq. (26) is
no longer true as it stands. We have to interpret

exp f e(s)o"(8—ie A(, s))ds
0

—m
—lm

—lm
—m

as a chronological product.

We assume that A does not depend on time t. Let us
now recall the method for solving (23) presented in Ref.
1. We introduce a Poisson process with Aipping rate m.
Call N(t) the value of the process at time t [N(t) is an
integer-valued process starting at time t=O from 0]. Let

VIII. THE DIRAC EQUATION:
DOUBLE STOCHASTIC PROCESS

We combine formula (26) with the previous formalism
of Grassmann-valued paths. Let us fix a sample of the
Poisson process. Then
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exp e(s)o"(t} —ie A)ds =exp{(—I)"eo(t —T„)[o.(t} —ie A)]jexp[( —1)" 'eo(T„—T„,)o.(B—ie A)]X '

0

X exp{ —eo(T2 —T, )[o (t}—ie A) ] ] exp{coT& [o .(8—ie A)] I

where n =N(t) is the number of jumps up to time t of the Poisson process and T& & T2 & are the times of the
jumps.

Now we introduce the Grassmann variables: as before, for each time t, we define 8(t) satisfying the relations

8 (s)8 (s')+8 (s')8 (s)=0 (28)

for any a, a'=1,2,3, and s,s' &0. In (27), we rewrite each block using the Grassmann path integral (22): more pre-
cisely we write

k k

exp[ok ( Tt,. —Tl, )o .(t}—ie A)]= 98(.)exp i o . 8(s) exp —e Ek A(x —izing(s) ).g'(s)
Tk —1 - - I —1

X exp{ 'e t}'[4(Tk } 4( Tk —1)]I

where el,. ——( —1)
'

'eo and g(s) is constructed as in (17) and (20). The symbol

denotes the Grassmann path integral over the Grassmann path 0 between time T& ] and time T&.
We now combine all the factors in (27) rewritten as in (29). Using the fact that an even function of Grassmann

variables commutes with anything and commuting the Hamiltonian operators as in (21) and (19), we obtain

exp j e(s)o. (t}—ie A)ds = fXle(. )exp io f 8(s) exp —e f A(x —if(s})5$(s) exp it} —f '5$(s), (30)
0 . . 0 0

where as usual the factor involving o.O is a time-ordered product and we have denoted

5$(s)=e(s+)5$(s), g(s)= j dg(s) .
0

g'(s) is given by (17) and e(s+ }=lim + e(s) is the value of e(s) immediately after s.
Remark. We can expand (31) as

(31)

(32)

with the convention To ——0, g(0}=0, el, —( —1) 'eo, and 0 & T& & T2 « T„&t are the n jump times before t.
We can combine (30) and (26) to obtain

te, (x, t) =F. f2)e( —i) '"exp iofe('s) exp —e f A(x —ig(s) }.5$(s) 4&,I,~(x —ig(t) }
~

e'(0) =eo
0 . . 0

where we have used the fact that

exp i d f 5$(s) f (x)—=f(x—ig(t)} .
0

Equation (33) gives the time evolution of the Dirac state
vector as an expectation over both the Poisson and the
Grassmann processes.

Remark The propag. ators (22) and (33) differ in all
the following ways: superficially, significantly, and cryp-
tically. Superficially because in one case [Eq. (22)] we
write the operator and in the other [Eq. (33)] we write
the solution of the initial-value problem. The significant
differences are the factor ( —i) '" in (33), the use of four
rather than two components and finally the cryptic
difference. The latter is the appearance of a factor e{.)
in the definition of g(. ), while for g( ) the concept of
flipping [hence e( )] is absent. We emphasize this point
because the expression for g( ) in terms of Grassmann
variables and flips [Eq. (31)] is essential to the space-spin
relation implicit in our formalism. Similar ideas have
been emphasized by Jacobson.
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APPENDIX A

k=1, . . . , n . (Al)

Thus

(("db")') = —G' = —="dt" .
n n

Equation (3) can now be written

We here relate Eq. (3) to the form of the functional in-

tegral more commonly found in the physics literature.
The sum of the 6's is a Brownian motion, so we define
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n de' = exp —— V x —b„+b, exp —b.
n dx

(A2)

To see that this is a propagator apply it to a function P(. )=g(,0) (the initial condition). The second exponential in

(A2) is simply a translation operator and we get

n —1

t((tet) =(e" t(t)( x) = (exp ——X V(x —b ~b, )tb(x. —b„)
j=1

which can be rewritten

(A3)

n —1

t(t(xt)= jd, y(exp ——g V( +yb, ) b(x —y —b„) t(t(y) .
j=1

The usual propagator is the kernel of this integral and denoting it by G (x, t;y) we have

n —1

G( x, ty)=(e xp X V(y ybt) b(x —y b„)) . —
n j=1

(A4)

(A5)

Let g(s) be a Brownian motion path beginning at the point y [g(0) =y and g(jt In) corresponds to y +b~ ]. Let E, be
the expectation over all such Brownian motion paths (Wiener measure). Then (A5) becomes

G(x, t;y)=E, exp —f 'ds V(g'(s)) 5(x —g(t))
0

(A6)

Finally, one can use the unnormalized conditional expectation E„, (see, for example, Ref. 13, Chap. 9) to complete the
identification

G(x, t;y)=E„, exp —f 'ds V[/(s)]
0

(A7)

since E, and E, are related by

E„,(Q)=E, [Q5(x —g(t))] .

As presented in Ref. 13, Eq. (A7) is the usual Feynman-Kac formula and analytically continues to the path integral.

B. Gaveau, T. Jacobson, M. Kac, and L. S. Schulman, Phys.
Rev. Lett. 53, 419 (1984).

2T. Jacobson and L. S. Schulman, J. Phys. A 17, 375 (1984).
I. Ichinose, J. Math. Phys. 25, 1810 (1984).

4B. Gaveau, J. Funct. Anal. 58, 310 (1984).
5T. Jacobson, J. Phys. A 17, 2433 (1984).
A. O. Barut and N. Zanghi, Phys. Rev. Lett. 52, 2009 (1984);

A. O. Barut and I. H. Duru, ibid. 53, 2355 (1984).
7F. Ravndal, Phys. Rev. D 21, 2823 (1980).
sR. P. Feynman and A. Hibbs, Quantum Mechanics and Path

Integrals (McGraw Hill, New York, 1965).
9J. Schwinger, Quantum Kinematics and Dynamics (Benjamin,

New York, 1970).
toF. Berezin, The Method of Second Quantization (Academic,

New York, 1966).
' F. Berezin, Analysis and Algebra with Anticommuting Vari-

ables (Nauka, Moscow, 1982).
B. Gaveau and J. Vauthier, J. Funct. Anal. 44, 388 (1984).

t3L. S. Schulman, Techniques and Applications of Path Integra
tion (Wiley, New York, 1981).


