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Colliding plane gravitational waves: A class of nondiagonal soliton solutions
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Using the inverse scattering method we construct a general class of nondiagonal solutions of the
vacuum Einstein field equations describing the collision of two plane-fronted impulsive gravitational
waves accompanied with gravitational shock waves with the same front. It is a two-parameter class
of solutions: the first represents the angle between the directions of polarization of the two waves; the
second determines the wave profile.

I. INTRODUCTION

It is well known that in the general theory of relativity
one can construct plane-fronted gravitational waves' as re-
gions of nonzero Riemann tensor, confined between two
parallel planes, propagating at the speed of light in the
direction of the normal to the planes. These waves trans-
port a finite amount of energy per unit area and therefore
if the distance between the two planes goes to zero, one
gets an impulsive gravitational wave, namely, a wave with
a 6-function profile in the curvature. Impulsive waves can
be regarded as the most "elementary" gravitational waves.
The existence of impulsive gravitational waves as exact
solutions of Einstein's vacuum equations is a remarkable
fact: on the contrary, no impulsive waves can exist in
Maxwell's theory, because a 6-function profile in the elec-
tromagnetic energy will imply a square root of a 6 func-
tion in the field variables, which is not permissible for
physical descriptions. In addition, because of the non-
linearity of the Einstein equations, the interaction of grav-
itational waves exhibits properties and characteristics
different from the interaction of electromagnetic waves.
Therefore, exact solutions describing interaction of gravi-
tational waves provide a scenario in which essential new
features of the general theory of relativity can be revealed.

In 1971 Khan and Penrose found an exact solution of
the vacuum Einstein equations describing the collision of
two impulsive gravitational plane waves with collinear po-
larization and they showed that the final result of the col-
lision is the creation of a space-time singularity. Szek-
eres ' showed that the occurrence of the singularity in no
way depends on the amplitude of the incoming waves.
The generalization of the Khan-Penrose solution for the
case of waves with noncollinear polarization was accom-
plished by Nutku and Halil in 1977.

The question whether the collision of gravitational
waves necessarily produces a singularity was first
answered by Bell and Szekeres in 1974. They considered

the collision of two pure electromagnetic waves with con-
stant profile, and they showed that if the metric functions
satisfy the O'Brian-Synge conditions, then the elec-
tromagnetic waves must necessarily be accompanied by
two impulsive gravitational waves, the interaction of
which, unlike the case of pure gravitational impulsive
waves, do not produce a curvature singularity.

Only recently a variety of new solutions describing the
interaction of gravitational waves has been obtained, fol-
lowing the investigation done by Chandrasekhar and one
of us (V.F.) on the connections existing between the
mathematical theory of black holes and the mathematical
theory of colliding waves. The crucial point of this inves-
tigation is that in both cases the Einstein equations are re-
ducible to the same Ernst equation. Thus it has been
shown that the Nutku-Halil and the Kerr solutions have
the same Ernst potential, and in this sense we say that
they are "equivalent. " This analogy has been generalized
to the interaction of gravitational-electromagnetic plane
waves and to the interaction of impulsive gravitational
waves in a Auid background ' and the solution
"equivalent" to the Kerr-Newman metric has been found.
Following this approach, a solution which is "equivalent"
to the "distorted-black-hole" solution" has also been
found.

All these solutions possess a common feature: the
creation of a curvature singularity following the collision,
due to the mutual focusing of the two waves, though the
singularity can be considerably weakened by coupling
with acoustic waves of sufficient amplitude, as shown in
Ref. 10.

The analogy based on the Ernst equation has been
developed further: it is well known that the
Schwarzschild metric (as well as the Kerr metric) can be
obtained by using the soliton method developed by Belin-
skii and Zakharov. ' ' The soliton technique is applied
to the equations which, in a different gauge, lead to the
Ernst equation. The Schwarzschild metric can be ob-
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tained by using the Minkowski metric as a seed, and as-
suming that the space-time is stationary and axisym-
metric. In a similar way, the Khan-Penrose solution
(which is "equivalent" to the Schwarzschild solution) can
be found by using as a seed the Kasner metric:

ds =t (dt —dz ) —t (dx ) —t (dx )

with s~+s2 ——1, (1.1)

in the case s~ ——sq ———,', and assuming that the space-time
has two spacelike Killing vectors. Then the question
whether the class of diagonal solutions derived in the case
of arbitrary s~ still represents the collision of gravitational
waves, naturally arises. This question has been answered
in a preceding paper' (this paper will be referred to here-
after as paper I). It has been shown that this class of
solutions represents the collision of two linearly polarized
impulsive gravitational waves of the same polarization,
each supporting a gravitational shock wave. All members
of this class develop a curvature singularity after the col-
lision, with one exception: when s~ ——0 the metric in the
region of interaction is isometric to a part of the
Schwarzschild interior (1 & r & 2,M= 1) and there is a
coordinate singularity, corresponding to the Schwarzschild
horizon, on the surface where the other solutions possess
the curvature singularity.

Many other confirmations to the fact that a horizon can
be created, as an alternative to the curvature singularity,
by the collision of gravitational shock waves followed:
Chandrasekhar and Xanthopoulos' ' have found a non-
diagonal solution describing the collision of two
impulsive+ shock gravitational plane waves such that the
interaction region is isometric to a part of the Kerr interi-
or, and a class of two-parameter nondiagonal solutions
describing the collision of electromagnetic + gravitational
shock waves+ impulsive gravitational waves which gen-
eralizes the Bell-Szekeres solution. All members of this
class form a horizon in the region of interaction.

In this paper we discuss the solution already presented
in a recent communication' which generalizes the results
of paper I to the nondiagonal case. By using the inverse
scattering method and the Kasner metric as a seed, we
obtain a class of nondiagonal solutions of the vacuum
Einstein equations describing the collision of two plane-
fronted impulsive gravitational waves accompanied by
gravitational shock waves with the same fronts, approach-
ing each other from —ao and + oo . The complete
description of the space-time prior the instant of collision
has been accomplished by making a proper extension of
the metric across the null boundaries corresponding to the
wave fronts at the instant of collision. The metric de-
pends on two parameters: the first represents the angle
between the directions of polarization of the two waves
and the second determines the wave profile. When
s~ ——sq ———,

' it reduces to the Nutku-Halil solution; when, in

addition, p = 1 it reduces to the Khan-Penrose solution.
A subclass of the present solutions corresponding to in-
tegral values of the "wave profile parameter" has recently
been found by Ernst, Diaz, and Hauser. ' The solution
presented in this paper is the most general solution for the
collision of pure gravitational waves obtained so far. All

members of the present class of solutions develop a curva-
ture singularity after the instant of collision, except the
case s~ ——0, as in the diagonal case discussed in paper I.

The plan of the paper is the following. In Sec. II we
shall give a brief review of the basic equations and of their
soliton solution. In Sec. III we shall use this technique to
obtain the solution corresponding to two real poles. In
Sec. IV we sha11 extend the metric to the space-time
preceding the instant of collision, in Sec. V we shall dis-
cuss the occurrence of the singularity on the surface
u + U = 1, and in Sec. VI we shall discuss the behavior of
the complete solution.

II. THE BASIC EQUATIONS
AND THEIR SOLITON SOLUTIONS

Consider a space-time which admits globally a pair of
commuting, spacelike Killing vectors, say 0/Bx and
8/Bx . The metric of this space-time, which is said to be
plane symmetric, can be written in the form

ds =f(dz dt )—+g,bdx'dx", (a, b =1,2), (2.1)

where t =x and z =x, the metric functions depend only
on t and z, and the gauge freedom has been used to put

det(g) = t (2.2)

The Einstein equations in vacuum decomposes into two
groups of equations:

( tg, t g ), ~
—( tg, .g

(lnf), = t '+(4t) —'tr(U'+ V'),

(lnf), =(2t) 'tr(U. V),

where g denotes the matrix g,b, and

(2.3)

(2.4)

(2.5)

pk =cok —z+[(cop z) t ]'~ (k = 1—, . . .—, n) (2.6)

and &uk are arbitrary real or complex constant, the new
solution is given by

(2.7)

The integrability conditions for Eqs. (2.4) are automati-
cally guaranteed if g satisfies Eq. (2.3). The system of
Eqs. (2.2) and (2.3) can be solved by using the inverse
scattering method. It has been shown by Belinskii and
Zakharov that a couple of linear differential operators
depending on a complex spectral parameter A, can be as-
sociated with Eq. (2.3) and that the solution of the origi-
nal equations for the matrix g will be determined by the
analytic structure of the eigenvalues A.„ in the X plane.
Once the number of poles has been fixed, a procedure for
generating a new solution of Eqs. (2.2) and (2.3) from a
known "seed" solution has been defined. The details of
the procedure are extensively illustrated in Refs. 12, 13,
and 19. We shall write here only the equations we have
used to obtain our solution.

If (go),b is the seed metric and A, k =p, k are the poles,
where
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where

Dkl m (gO )c md (gO )db
(k) (I)

gab = (gp )ab
k, l PkPt

(2.8)

This choice of the constants cok defines the solution in the
region outside the two light cones:

(1 —z) —t =0 and ( —1 —z) —t =0 .

Dqt = (1 l, l ) and 1 kl is an n X n matrix,

mc (gp )cb mb(kj (I)

PkPI —t 2
(2.9)

and the vectors m,' ' are constructed from the matrix
(40),l, associated with the assigned seed metric:

From Eqs. (3.1) it is apparent that

2cokpk =pk +2zpk+t

and therefore, from Eq. (2.12) we get

m, "'= (mp ), '[40 '(pl„t, z)]„, (2.10) 1

2~kpk

Sl

0

(mp),'" being arbitrary real or complex constants depend-
ing on the nature of the poles. The matrix +o is obtained
by solving the linear eigenvalue equations associated with
the original equations (2.2) and (2.3) [see, for example,
Ref. 19, Eqs. (2.7)]. Once 40 has been found, the com-
pletion of the solution for the matrix g requires only alge-
braic operations. Finally, the solution for the metric
coefficient f is obtained explicitly by direct integration of
Eqs. (2.4). The general result is

n+]

@0 (pk, t, z) =
1

2~kpk

m'" =
2~kpk

Sl

(mp)l and m2k (k) 1

2~kpk

From Eq. (2.10) it follows that

Sp

(3.2)

(mP)2,

(3.3)

f f t
—n2/2

k, tt =1
k)i'

(Pk Pl )—detl kI, (2. 1 1)
and from Eq. (2.9)

1 2S )

2
PkP( —t

1 1

2COk pk 2&Ip~

Sl

(mo)l(mo)l

where n is the number of poles.
In the next section we shall study the two-soliton solu-

tion that can be obtained by using the Kasner metric (1.1)
as seed. The matrix No associated with this metric is

(t2+2zk+A, 2) '

+t '
2mkpk

S2
1

2cui pi

Sp

C&p(l, , t,z) = (2.12)
(t2+2ZA, +A, 2) ' X (mp)2(mp)2 (3.4)

III. THE NONDIAGONAL TWO-SOLITON SOLUTION

Pl =M 1
—Z —[(Col —Z) —t ]

2 2 ]/2

P2 &2 Z+[(&2 Z) —t ]2 2 1/2

ct) ] = —cop = 1

(3.1)

We shall evaluate the solution (2.7)—(2.11) in the case
of two real poles (n =2):

If we introduce the quantities

1a=
2p &co&

b= 1

2p2c02

the determinant of the matrix I kI is

2 =p] —t, B =pq —t, C =p&p2 —t2 2 2 2 2
(3.5)

2

detl =
2 I (pl —p2) [t '(ab) '(p —1) +t '(ab) '(p +1) ]+q [(a 'b '+a 'b ')C2+2abAB]I

4ABC

At this point we make a choice of the constants (mp),' '.

(mo)2(mp)2+(mp)l(mp)l =p, (mp)2(mp)2 —(mp)l(mp)l ——1,
(mo)2(mo)l —(mo)I(mo)2=q (mo)z(mo)l+(mo)I(mo)2

It follows that

(mp)2(mo)2 = —,
'

(p + 1), (mo) l(mo ) l = —,
'

(p —1), (mo)2(mo ) l
= —,'q, (mo ) I(m0 )z = ——,'q

(3.6)

(3.7)

(3.8)
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and

+p (3.9)

The matrix Dkt can now be calculated and the final form of the metric components, written in terms of the poles p~ and

P2, 1S

2s i

g~~ = t '
1 — '(p —1) (tab) '(a AC+2abAB+b BC)

ABC detI

2t 2$2a 2p 2

2$ i

a
2$ )

AC —2AB + b BC (3.10)

2sp

g22 =
p

t '
1 — '

(p + 1) (tab) '(a AC +2abAB +b ~BC)
ABC detI

+q2] la 2b 2

25p
a

2sp

AC —2AB + — BCb
(3.1 1)

2

g&z= — I(p —1)t '[a b 'AC b'a 'B—C+(a b ' ba—' )AB)
t2

+(p+1)t '[ —a b 'AC+b a 'BC —(a b ' ba ' —)AB)I,
3—2s i s

&
—2 (P [P P )f=t

z
detI

(vi —s ~)'

With the change of coordinates

t =singsinO, z=cosgcosO, 0&/&~, 0&8&sr,

our solution takes the form

ds =f (dP dO )+g,bd—x'dx (a, b =1,2),
where

(3.12)

(3.14)

(3.15)

2s i

si +s& —i p 1+cosf =const&& (siniti sinO) ' ' 4(1 —cosP) pi
1 —cositi

2$p
1+cosP

+P2
1 —cosP

+q 2(cos p —cos 8)+(1+cosO)
~ 2$(

1 —cosO

1+cosO
}—cosO+ 1+cosO

2$&

(3.16)

2$i 1 + cos(5
g» ——(siniti sinO) 2(1+cositi) p&

1 —cosP

2s
1

1 —cosP
+P2 1+cosP

2s i

—2(cos P —cos 8)+sin 8q 1+cos
2 1 —cosP

' 2$i
1+cosO
1 —cosO

2$1
1 —cosO+
1+cosO

(3.17)

P

2$p 1 —cosp
gqq = —(sing sinO) ' 2(1+cositi) p i 1+cosi))

2$p
1+cosP

+P2
1 —cosit

2$p

—2(cos it —cos 8)+sin 8q 1+cosd
2 1 —cosP

2sp
1+cosO

1 —cosO

2$2
1 —cosO+ 1+cosO 7 (3.18)

2$1
(sing sinO)

g&z
———2q sin 8(1+cositi) +pi

(1—cosP)

(sing sinO)

( 1 —cosP)

cositi
—cosO

( 1+cosO)( 1 —cosO)

cosP —cosO

(1+cosO)(1 —cosO)

cosP+ cosO

( 1 —cosO)( 1+cosO)

cosP+ cosO

(1 —cosO)(1+ cosO)
(3.}9)
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1+cosP
8

f (3.20)
S l +S2const X (sing sinO) '

0&u &1 and 0&v &1 .

We shall divide the space-time into four regions:

(4.3)

and

grab

( 1 —cosp )

4K

(p —1)' (p + 1)'
P1= 4, P2=

(3.21)

(3.22)

region I u &0, U &0,
region II u &0, U &0,
region III u &0, U &0,
region IV 0&u &1, 0&U &1 .

Notice that the change of coordinates (3.14) restricts the
solution to the region between the two light cones.

IV. THE EXTENSION OF THE SPACE-TIME
PRIOR TO THE INSTANT OF COLLISION

cosP=u+1 —v +v+1 —u

cosO=u+1 —u' —u+I —u' .
(4.1)

The resulting metric is

ds = ', +g,b (u, u)dx'dx4f (u, v)du du

[(1—u )(1 —u ))'i (4.2)

The region of the (u, u) plane where the collision takes
place is

The solution (3.15)—(3.22) is defined inside the circle
cos P+cos O= l. When we put s~ =s2= —,

' and cosP and
cosO range from 0 to 1, our metric reduces to the metric
describing the interaction region, respectively, of the
Nutku-Halil solution, if q&0, and of the Khan-Penrose
solution, if q=0 [see Ref. 8, Eq. (80)]. According to the
usual interpretation of the coordinates, cosP measures the
time from the instant of collision, and cosO measures the
distance normal to the planes (x', x ) spanned by the two
Killing vectors (in Chandrasekhar's notation g=cosP and

p =cosO).
In order to see if the requirements for a consistent

description of colliding gravitational waves are satisfied by
our solution, it is convenient to introduce a system of null
coordinates u and u, which are related to P and O by the
equations

As usual, the extension of the metric to regions I, II, and
III is accomplished by the Penrose-Khan substitution:

u~uH(u) and v~uH(v),

where H(u) and H(v) are the Heaviside functions. This
algorithm for the extension ensures that the resulting
metric is C and that the curvature scalars behave con-
sistently with the assumed character of the colliding
fronts: for example, if in regions II and III we have
gravitational shock waves, we expect that the corre-
sponding metric is Petrov type N, and only the Weyl
scalars %4 (in region II) or 0'0 (in region III) are different
from zero. Thus, on the null boundary u =0 and
0 & U & 1 which separates one of the incoming waves
from the interaction region, 4'4 must be continuous,
while +0 an 4'2 have in general a H-function discontinui-
ty. In addition, if we assume that across the null boun-
daries the metric functions satisfy the 0 Brian-Synge
conditions, permitting some normal derivatives of the
metric to be discontinuous across them, gravitational im-
pulse waves, exhibiting a 6-function profile in the curva-
ture, must necessarily accompany the shock waves. As a
consequence, on the null boundary u=0 and 0&V&1,
the Weyl scalar %0 has 5-function discontinuity. (For a
detailed discussion of the behavior of the metric func-
tions and of the Weyl scalars on the null boundaries see
paper I.)

The extended metric in region II is obtained by the sub-
stitution

cosP=u and cosO= —u

in Eqs. (3.15)—(3.20). The resulting extended metric is

2s 2(s —1) 2$ 2 2(s —1)f =const/[at(1+u) ' (1 —v) ' +a2(1 —u)
' (1+v) ' ], (4.4)

g)) = —(1+u)
a~(1 —u) '(1+u) ' +a2(1 —u)

' (1+v)

+
a~(1 —u) '(1+v) ' +a2(1 —u) ' (1+v)

(4.5)

4s2
g2z = —(1+v)

CX2

a~(1 —u) '(1+u) ' +a2(1 —v) ' (1+v)

+
a~(1 —v) '(1+u) ' +a2(1 —v) ' (1+v)

4qu «pi —&p2)g&2=-
a~(1 —v) '(1+u) ' +a2(1 —v) ' (1+v)

(4.6)

(4.7)
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where

a] ——2p]+ and a2 ——2p2+q q
2 2

(4.8)

ds =4e "du dv

Because our general solution is symmetrical in u and v,

the extension to region III is obtained by interchanging v

with u in expressions (4.4)—(4.7). The only diff'erence is
that g[2 changes sign, but this is equivalent to a change of
the coordinate x' to —x', or x to —x in region III.

It is convenient at this point to write the metric in re-
gion II in an alternative form:

very difficult. Thus, we concentrate our attention on the
Weyl scalar %2, which is different from zero in the region
of interaction, and which has two important properties:
(1) it involves only first derivatives of the metric functions,
(2) it is the only Weyl scalar which is invariant under a
simultaneous rescaling of the tetrad vectors I and n. It is
therefore plausible to think that if +2 is singular, the
metric will be singular and vice versa.

To compute 4'2 we started from its expression given in
Ref. 9 in terms of the Ernst potential:

1 2 2 (E P Eo)—(E*~+E*11)
(cot P —cot 0)+

gf 2f (1—
~

E 2)~

(5.1)

—(1 —v ) X(v)(dx ) + [dx' —q2(v)dx ]Y(v)

where the functions g (v), X(v), and qq(v) are

g (v) = ln
f(v)

1 —v

1 —v

g 1 1 (v)

(4.9)

(4.10)

In terms of the metric components the Ernst potential is

—sing sin0 —g 1 1 ig12-
—sinp sin0+ g 1 1 ig12—

(5.2)

When g] i and gi2 are written explicitly, E is a very com-
plicated expression of the coordinates, and its derivatives
are very difficult to handle, even with the help of a com-
puter. It has been easier to write the expression (5.1)
directly in terms of the derivatives of g» and gi2 which
are not too difficult to evaluate. The final result is

gi2

g»

cos 0—cos P
gf sin /sin 0 gfA gll

(5.3)

1—e ,g'+, [%')' +(q2)']
(1 —v ) 1 —v 2X

=0 (4. 1 1)

where the prime indicates differentiation with respect to v.
This equation is satisfied by our metric when extended

into regions II, as well as the corresponding equation in
terms of u is satisfied by the extended metric in region III.

We conclude that our class of solutions represents the
collision of gravitational shock waves of different wave
profile and of different polarization: the angle between
the two directions of polarization is defined by the param-
eter p, as in the Nutku-Halil solution, and the wave
profile is defined by the parameter si. Each shock wave is
accompanied by an impulsive wave with the same front
and with the same polarization.

In order to be acceptable as representing a single plane
wave, the metric (4.4)—(4.7) must satisfy the following re-
quirements: it must not be degenerate, it must be free of
curvature singularities, and it must be a solution of the
Einstein vacuum equations. In Ref. 15 all these condi-
tions have been summarized into a single equation involv-
ing only the metric functions and its first derivatives:

where

4 sing sinl9

1 —cosP
(5.4)

2s l 4si . —2sl P2 . 6sl
gll = —sin 0 8 p12 sin p+ sin

4s l

+2q sin ' Pf, (0) (5.5)

where

f, (0)= —2(cos P —cos 0)

0+ =gl 1 ( A y + A g +

Igloo

y+lglg g)

( A + ig12 )(g 1 1,g +g11,9 )

Remembering that, according to the definitions (4.1),
u +v ~1 implies that $~0 and therefore sin1t ~0, it
is easy to check that the first term appearing in %2 is al-
ways singular when P ~0. In order to analyze the
second term of %2, we notice that all functions appearing
in Eqs. (5.3) and (5.4) can be expressed in terms of poly-
nomials (or ratio of polynomials) in sing. For example,
the expression (3.17) for g 1 1 can be written as

V. THE OCCURRENCE OF A SINGULARITY
ON THE SURFACE u +v =1

+sin 0 1+cosO

1 —cosO

2s l
1 —cosO+ 1+cost9

2s l

(5.6)

We shall analyze in this section the nature of the singu-
larity on the surface u +v =1. The complexity of the
metric coefficients makes the analysis of the Weyl scalars

If we write all the metric functions and their derivatives in
a similar way, at the end we see that the second term of
%'2 can be written as
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-30-1.5

30--

I 1

0.5
H2

2. 5

const && (3p —5)2
2 2 2

4
2

(1+cosP)g»=—

(5.10)

(5.1 1)

(3p —5) 1+cosP
~ ((

8 1 —cosP

+qk sin P] sin 8

+4qq sin P cos 8I (5.12)

giq =q (3p —5)(1+cosP coso, (5.13) —1.5 —1 -0.5 0.5
H3

1.5 2.5

[(1+pkcosP) +qk sin P],32

x in E . (5.7) are plotted versus s1.FIG. 1. The exponents of x in q.
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where

3 —Sp 4q
3p —5' "

3p —5

In this region the only nonvanishing Weyl scalar is

1 s& —s2+4=—, , [3+3(s ~
—s2 )u

When q&0 the solution (5.10)—(5.14) in the interaction
region is isometric to a part of the Taub-Newman-Unti-
Tamburino (NUT) solution (see, e.g. , Ref. 20) in the non-
stationary region inside the horizon. The explicit coordi-
nate transformation is

t' —mcosP=, x =cry,
0

and the constants appearing in the Taub-NUT solutions
m, l, o are related to our parameters by the relations

po. =m, qo. = —I,
0. =(m +l )', const=o.

When q=0 the interaction region is isometric to a part
of the Schwarzschild solution inside the horizon (see pa-
per I). It is therefore clear that when s~ ——0 the solution
in the interaction region is Petrov type D. In addition, in
both cases (q&0 and q=O) the isometry maps the surface
u + v = 1 onto the horizon of the Taub-NUT and
Schwarzschild solutions; therefore we conclude that when
s~ ——0 the collision of pure gravitational plane wave does
not end in a singularity, but develops a horizon on the
surface u + v = 1 and the metric can be extended to the
future. These "degenerate" solutions (s~ =0 or s~ = 1) are
of particular interest and will be analyzed in a separate
paper.

VI. THE BEHAVIOR OF THE COMPLETE SOLUTION
AS FUNCTION OF si

It remains to analyze the behavior of the complete solu-
tion (metric in the interaction region + extension) when s ~

assumes different values. The analysis is quite complicat-
ed, but it can be simplified by considering the diagonal
case (q=O) as a reference, and by making graphics of the
metric functions, to give a visual picture of the situation.

First of all let us write the metric in the diagonal case
both in region IV and in region II.

—4sispu ]
2 (6.9)

The metric in region III is obtained from Eqs. (6.6)—(6.9)
by substitution u~u. From Eq. (6.1) it is clear that the
exponent of (1—cosP) is positive for s~ & —1 and s~ ~0,
and it is negative for —1 &s~ &0. Therefore, when $~0,
or u + u ~1,f has two possible types of behaviors: (a) it
goes to zero if s~ & —1 or s~ ~0 and (b) it diverges if
—1 &s) &0.

In region II we have the "critical" surface v ~1, where,
if s~&0, f goes to zero. Notice that all the metric func-
tions (6.6)—(6.8) tend to 1 when u~O, where region II
matches with the flat space-time preceding the collision
(region I). The behavior of g~~ and g2q in regions IV and
II follows.

Region IV u +v ~1:
g))~0, s) ) —1, gp2~0, s) &0,
g])~m, s] & —1, g22~m, s] )0

Region II, v~1:

g]]~0, s1 ) 2 ~ g22~0, S]

g11 0& 1 & 2 ~ g22~0& s] )
In any event the Weyl scalars are singular both on
+ v —+ 1 and on v —+ 1 if s ~ &0. A similar situation

arises when we consider the behavior of the metric func-
tions in the nondiagonal case q&0. The analysis is only
more cumbersome, because there are some more inter-
vals of s& to take into account, but the result is qualita-
tively the same: depending on the value of s&, some of
the metric functions (or all of them) diverge, and some

Region IV:

ds =f(dP —dH')+g()(dx') +gqq(dx ) (6.1)

f =sinH ' '(I+cosP) ' (1—cosP) ' ', (6.2)

g~~ = —sinO '(I+cosP) ' (1 —cosP)

g2q = —sin6) '( I+cosP) '(1 —cosP)

Region II:

ds = 2, &2
+g~~(dx ) +gqq(dx )

f (u)du du 1 2 2 2

( 1 2)1/2

f(u)=(1+u) ' (1—u)

(6.3)

(6.4)

(6.5)

(6.6)

g))(u) = —(1+u) ' (1—u)

g2q(u) = —(1+u) ' (1—u)

(6.7) FIG. 2. Regions I, II, III, and IV expressed in terms of p,
representing the direction of propagation of the waves, and t
representing the time.
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(or all of them) tend to zero, but there is always a curva-
ture singularity on the surface s + v = 1, except for
s

&
——0 as shown in Sec. V. In the extended regions, when

v~1 (or u~1) the situation is similar, and the ex-
istence of a curvature singularity on that surface is a
consequence of the fact that the metric is singular on
u=O and v= 1 (or on v=O and u=l), as stated by a
theorem proved by Matzner and Tipler in Ref. 21.

Before discussing the graphics of the metric functions,
it is better to identify regions I, II, III, and IV, in terms
of p=cosO, representing the direction of propagation of
the two waves, and t =cosP, representing the time. The
new time coordinate does not coincide with the coordinate
t used in Secs. II and III. From Eqs. (4.1) it follows that,
in the region of interaction,

$+H
u =cos

2

and therefore

and v =sin H —P
2

(6.10)

2u = 1+cosP cosH —sing sinH

=1+tp—[(1—. t')(1 —p )]'

2v = 1 —cosP cosH —sing sinO

= 1 —tp—[(1—t ). (1—p')]'~

(6.1 1)

Now, in region IV 0 & u & 1 and 0 & v & 1; it follows that
region IV corresponds to the region

in the (p, t) plane. In region III 0&u &1, and the corre-
sponding region in the (u, v) plane is

—t &p& —t+2, t &0 .

Thus the situation which is illustrated in Fig. 2, is the fol-
lowing.

(a) t =t~ &0. The two waves are, respectively, confined

—t &p&t, 0&t &1

in the (p, t) plane. The instant of collision is t=O, the in-
stant when the singularity is created is t= 1.

If t & 0 the two waves are traveling one against the oth-
er in the p direction. They are single plane waves propa-
gating in flat space-time; therefore, according to the
definitions (4.1) and to the algorithm for the extension, the
null coordinate u and v are, respectively,

t+p t —pu = and v=
2 2

one wave will be a function of v only (in region II), the
other a function of u only (in region III). In region II
0 & v & 1, therefore it corresponds to the region

t —2&p&t, t &0,

in the two regions: t —2&p, &t (progressive wave) and
t—&p & —t +2 (regressive wave). The space-time is flat

for t &p & —t.
(b) t =t2&0. For t —2&p& —t there is the still in-

coming first wave. For —t & p & t the two waves interact.
For t & p & —t +2 there is the still incoming second wave.

As the time tends to 1, the region of interaction ex-
pands and it is maximum for t=1 when the singularity is
created on —1 &p & 1.

In Figs. 3(a) and 3(b) we illustrate the behavior of the
metric functions f, g~~, g22, and g~2 for s~ = —3 and
p=0.4, both for t &0 and for 0&t&1. Each function is
plotted for several values of time, and it is shown how the
two waves approach each other for t &0, they collide for
t=O, and they mix for 0 &t & 1. For this value of s~, f,
g22, and g~2 tend to zero as tin tends to 1, while g]]
diverges.

Before the collision (t&0) f, g~~, and gq2 tend to 1,
while g~2 tends to zero on p=t (corresponding to v=O
and u & 0) and on p = —t (corresponding to u =0 and
v&0). In fact on these surfaces the metric joins continu-
ously to the Minkowski metric. On p=t —2 (v= 1 and
u &0) and on p= —t+2 (u= 1 and v &0), f, gqq, and g~q
tend to zero, while g~~ diverges. Remember that on these
surfaces there is a curvature singularity, as well as on the
surface u +v =1, independently from the behavior of
the metric functions.

Finally in Figs. 4(a) and 4(b) f, g», g22, and g&z are
plotted for s~ =0.6 and @=0.4 In this case only f diverges
when t~ 1 (while it does not diverge in the diagonal case
p= 1), and the remaining metric functions go to zero.

VII. CONCLUDING REMARKS

We have obtained in this paper a two-parameter class of
nondiagonal solutions of the vacuum Einstein equations,
which describes the collision of plane gravitational shock
waves, each supporting an impulsive wave with the same
front. The solution reduces to the Nutku-Halil solution if
s ~

——s2 ———,', and to the Khan-Penrose solution when

s~ ——sq ——
—,
' and p=1.

It has been shown that the collision of pure gravitation-
al waves does not necessarily produce a curvature singu-
larity; in fact, in some cases a horizon can be created
when the two waves have parallel or nonparallel polariza-
tion. It is remarkable that when the horizon forms, the
space-time in the region of interaction is Petrov type D.
These particular solutions will be analyzed in a subse-
quent paper.

All the calculations presented in this paper have been
checked by using the symbolic manipulation program
SMP available on VAX 8600.
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