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Local and global gravitomagnetic effects in Kerr spacetime
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The integral shift in orientation of a gyroscope in closed polar orbit in the Kerr spacetime is exam-
ined as an example of a global gravitomagnetic effect. The exact dependence of this effect on the
mass and angular momentum parameters of the Kerr field is determined and the well-known weak-
field slow-motion limit pertinent to forthcoming experiments is analyzed. The precession of the spin
vector of a gyroscope stationed at a given point of the Kerr spacetime's symmetry axis is presented as
a local counterpart of the above gravitomagnetic effect.

I. INTRODUCTION

According to the theory of general relativity (GR), the
gravitational field of a rotating body contains magneticlike
components which give rise to a set of characteristic
effects coming under the heading of "frame dragging. "

For example, the spin vector of a gyroscope placed at
Earth's north pole is expected to rotate relative to the
"fixed stars" at a rate which differs from the angular ve-
locity of Earth itself relative to the same asymptotic
frame. In this case, the test gyroscope is kept at a fixed
point of the terrestrial field of gravity by forces acting on
the gyroscope's center of mass. We are dealing, therefore,
with a local gravitomagnetic effect.

An example of a global gravitomagnetic effect is ob-
tained by considering a gyroscope carried by an artificial
satellite in polar orbit around Earth. If the radius of the
orbit is assumed to be constant, then the satellite returns
to the same point of the polar axis periodically and one
can compare the gyroscope's orientation at the end of one
revolution with that at its beginning. Again, a difference
is expected to be observed as a result of Earth's rotation.

Recent technological advances seem to have rendered
both of the above effects measurable. Thus, various
ground-based experiments have been proposed' in order
to measure the local effect of the terrestrial field, while
satellite gyroexperiments designed to measure the global
one will soon be attempted. ' As a result, theoretical in-
terest in gravitomagnetic effects is and will be growing.

In this paper an exact analysis of the two examples de-
scribed above is presented in the context of the Kerr
field of gravity. Of course, this choice of a model space-
time and the exact treatment of the corresponding effects
are not suggested by the direct demands placed on the
part of the theory by experiments associated with the
terrestrial field. In this case, the pertinent physical pa-
rameters are so small that a first-order approximation to
both the spacetime geometry and the equations of
motion and parallel transport is quite satisfactory. We
believe, however, that the exact solution presented in
this paper does not lack in theoretical interest. Not only
because it applies in the case of a rotating black hole,
but also because, as it is hoped to emerge from the fol-
lowing discussion, it sheds light on certain aspects of the

corresponding approximate treatment.
The structure of the paper is as follows. In Sec. II the

Kerr metric is expressed in terms of the systems of coor-
dinates used in our analysis. Section III is devoted to a
short presentation of the results regarding the local effect
first obtained by Urani and Carlson. The principal part
of the paper consists of Sec. IV, where the global gravi-
tomagnetic effect is analyzed. Lastly, in Sec. V, the local
and global effects are examined in the limit cases where
the source's angular momentum parameter is either van-
ishing or very small compared to the orbit's coordinate ra-
dius. This is done with the purpose of making clear the
role played by the angular momentum in both the local
and global gravitomagnetic effects.

II. THE KERR METRIC

where

+(2/b, )dr +X dO +(A /X) sin 8 dy, (2.1)

X—=r +a cos 0

Q =@2+a2 2MI-

A =(r +a ) —b,a sin 9,
(2.2)

and M, a are real parameters. This was shown by Boyer
and Lindquist (BL) and the coordinate system (t, r, 8, &p)

bears their name. In this system of coordinates the axial
symmetry and time independence of the Kerr spacetime
is made explicit, as the metric coefficients in (2.1) do not
depend on the spacelike coordinate y which takes values
in the range 0 & y & 2~, or on the timelike coordinate t,
where —ap &t & ~.

The gravitational field represented by the spacetime of
Kerr is assumed to correspond to an object of total mass
M and angular momentum J=Ma. When M )a, this
object is referred to as a rotating black hole. In such a
case the coordinate t is timelike in the region r ~ ro(0)
—:M+(M —a cos 9)' but becomes null when the hy-
persurface ro(6), known as the static limit, is reached.

The spacetime metric which represents Kerr's solution
of Einstein's field equations can be written in the form

ds = —(1 2Mr /X )dt ——2(2Mr/X)a sin 9 dt dg
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This is clear from (2.1), where the coefficient of dt is neg-
ative as long as r) ro(0) and it vanishes when r becomes
equal to ro(0). However, the particle orbits, considered in

the following, lie outside the static limit. Thus, t will re-
tain its timelike character independently of the values tak-
en by the parameters M and a.

Polar orbits are, by definition, curves which reach the
symmetry axis of the spacetime under consideration. This

axis consists of the points where sin0=0, and at such
points the coordinate cp is undefined. Since the particle
orbits examined in this paper are polar ones, it follows
that the BL system of coordinates will not suffice for our
purposes. We will also have to use the coordinate system
(t,x,y, z) of Kerr and Schild (KS) which is well defined
on the symmetry axis of the Kerr spacetime. In the KS
coordinates, the Kerr metric takes the form

2Mr
ds = dt +d—x'+dy +dz'+ dt+ — [r(x dx+y dy)+a(x dy —y dx)]+ —dz

r4+a 2z2 r +a r

2

(2.3)

where the function r(x,y, z) is implicitly defined by the
equation

x +y z+ =1.r+a r
(2.4)

(r +a )6

x =(r +a )' sin8cosg,

y =(r +a )'~ sin& sinit,

z =r cos19,

(2.5)

and can be made to be a one-to-one mapping from
(t, r, 9,y) to (t,x,y, z) by a well-known process of restrict-
ing the overlapping coordinate patches.

It should be noted that on each r =const hypersurface
the coordinates t and g differ only by an additive constant
from t and y, respectively. This follows from the first two
of Eqs. (2.5) and it will be utilized in the following sec-
tions where particle orbits with constant r are examined.

The relation between the BL and KS systems of coordi-
nates is determined by the equations

dt =dt —2Mr dr,
(3.3)

where the dot above the equality sign denotes the fact that
the given equation holds only when condition (3.1) is
satisfied.

Let us now assume that a particle is forced to remain at
the point z =r of the symmetry axis. The world line of
such a particle consists of events for which (t, x,y, z)
=(t(rz), 0,0, r), where rq denotes the particle's proper
time. Thus, its four-velocity uz is equal to

—1/2
dt 2Mr

U = a = 1 — a
R r

This follows from Eq. (3.2) and the fact that uji
.uz ———1.

The particle under consideration could represent a
gyroscope carried by a rocket ship which fires its engines
so as not to fall under the pull of the object that pro-
duces the Kerr field. Alternatively, it could represent a
gyroscope used in a terrestrial experiment which is
designed to measure the effect of the rotation of Earth
on the spin of a gyroscope placed at the north pole. In
the latter case it is obviously assumed that the Kerr
metric gives a satisfactory approximation of the gravita-
tional field of Earth.

In either of the above cases, one has to choose a frame
of reference along the gyroscope's world line in which to
measure the effects of the gravitational field. Such a
frame can be chosen to be the set (B-„,B-„,B-, ), where

III. GYROSCOPE ON THE SYMMETRY AXIS

According to Eq. (2.5), the symmetry axis of the Kerr
field consists of points where

a„=a., a„=-a, ,

2Mr
r +a

1/2

az ~

(3.4)

z/=r,x =O=y, (3.1) since, according to Eq. (3.2), this triad of spacelike vectors
forms with uz an orthonormal tetrad along the
gyroscope's worldline.

The frame just defined can be identified with the walls
of the rocket ship carrying the gyroscope. In that case,
the rocket ship is not rotating relative to the distant stars,
since the base vectors given by Eq. (3.4) point permanent-
ly in the direction of the coordinate axes (x,y, z) which are
defined in terms of the asymptotic flat region of the Kerr
field. It is not the same with the gyroscope's spin Sz,
however. One finds that ' inside the rocket ship and,
therefore, with respect to the asymptotic frame the vector
Sz precesses according to the equation

in the KS system of coordinates. In then follows from
Eqs. (2.3) and (2.5) that on the axis of symmetry the Kerr
metric takes the form

2Mr
dt +dx +dy

r +a

2Mr+
r +a

dz', (3.2)

ds = —dt +dx +dy +dz + 2 &
( dt+dz)—2Mr

r +a
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dS
dt

=g XS~, (3.5)

2Mar
(r2+g 2)2

(3.6)

The gyroscope precession described by Eqs. (3.5) and
(3.6) is a local effect, since the gyroscope was assumed to
have a fixed position in the Kerr field. Obviously, it is the
gravitational analog of the precession of a magnetic dipole
placed on the symmetry axis of an axially symmetric,
time-independent magnetic field. For this reason, the pre-
cession of the inertial gyroscope described above is re-
ferred to as a gravitomagnetic effect.

A global gravitomagnetic eAect is described in the
next section. Before we turn to it, however, let us note
that, according to Eqs. (3.5) and (3.6), a frame of refer-
ence stationed at the point z=r of the symmetry axis
which is nonrotating relative to inertial guidance gyro-
scopes accompanying it is given by the triad (L„,L~, L, ),
where

K= Y'Y Y'—= Y' u (4.3)

4=0, E)a (4.4)

On the other hand, the orbit will remain on a hypersur-
face of constant r only if r is a double root of the equation
R(r)=0. These observations allow us to write Eqs. (4.1)
in the form

i= AE/AX,

0=[@(0)/X](K—a cos 0—a F. sin 0)'

j=2MaEr/AX,

(4.5)

where E(0) denotes the sign of 0 and E,K are now given
by

In the following, it will be assumed that p=1, since this
implies no loss of generality.

Let us now demand that our satellite follows an orbit of
constant r which crosses the symmetry axis of the Kerr
field. According to the third of Eqs. (4. 1), the necessary
and sufficient condition for a timelike geodesic to cross
the axis reads

L, = cos(f1~ t)d„+ sin(Q~ t)B-„,

L~ = —sin(Q~ t )t)-„+ cos(fez t)B-„, (3.7)

E =rb, l(r +a )(r —3Mr +a r+Ma ),
K =r(Mr +a r 3Ma r+—a")

(4.6)

L, =B-, .

IV. GYROSCOPE IN POLAR ORBIT

Let us consider a gyroscope carried by an artificial
satellite orbiting the source of the Kerr field of gravity.
If we denote the gyroscope's proper time by ~, then its
center of mass follows a timelike geodesic, C(r), in the
Kerr spacetime. The image of C(7 ) in the BL system of
coordinates is given by the functions x'(r), where
x'=t, r, O, cp for a =0, 1,2, 3, respectively. Thus the
gyroscope's four-velocity u can be written as u = u '3, ,
where u'=x '=—dx'/d~.

Carter" has shown that the equations satisfied by x'(r)
admit the following first integrals:

)& (r —3Mr +a r +Ma )

Since E must be positive, Eqs. (4.4) and (4.6) imply
that spherical polar orbits exist for any r such that
r(r 3Mr +a—r+Ma ) &0 and r ~a . If it is re-
quired that the orbit is stable then the range of its coor-
dinate radius is restricted further by the condition
[d R(r)/dr ] &0. As an illustration, consider the case
of an extreme Kerr black hole where a =M . Then
spherical polar orbits exists for any r in the open interval
r

& & r & ~, where r ] =2.415M, but stable ones can be
found only for r & r2 =5.275M. In order to keep the ar-
gument physically credible, the timelike polar orbit C(r)
which appears in the following will be assumed to be
stable.

Combining the first and third of Eqs. (4.5) we find that

t =(bX) '( AE —2Mar@), d(pldt =2Mar/A . (4.7)

Y~b;~+ Ygc;b =0
~ (4.2)

where the semicolon denotes covariant differentiation.
Y,b is known as a Killing- Yano tensor and Carter's
fourth constant is equal to

X r =R(r)—= [(r +a )E —a@] —5(p2r2+K),
(4.1)

2 0 =K —p a cos 0 —(aE sin0 —@/sin0)

jt =b, '[(2Mr/X)aE+(1 —2Mr/X)@Isin 0] .

The constants p, E, and N represent the rest mass, en-
ergy, and projection of angular momentum along the
Kerr spacetime's symmetry axis, respectively, of the par-
ticle following C(r). The fourth constant, K, appearing
in Eqs. (4.1), corresponds to the fact that in the space-
time of Kerr there exists a skew-symmetric tensor field
Y,b satisfying the equation

e;—= (3 /Xb, )' t), +2Mar/(AXb )' 8

~=(a/r)'"a„,

e-=(X/3 sin 0)'~ 8

(4.&)

We then obtain a locally nonrotating frame (LNRF); i.e.,
a frame where Coriolis-type effects are absent. The con-
struction of LNRF's is due to Bardeen' and some of
their most interesting properties are discussed in Refs.

If we consider the family of timelike curves along which
r =const, 0=const and p, t vary according to Eq. (4.7) we
obtain a congruence which is orthogonal to the t =const
hypersurfaces of Kerr's spacetime. With each member of
this congruence we can associate an orthonormal tetrad
[e-,], where
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13—15 among others. For our purposes it suffices to note
that Eqs. (4.5)—(4.8) imply that

u=Oe;+Pe&, (4.9)

e(0)
——u,

e(2)
——Pe;+ Oe&, e(3) e-,

(4.11)

where

O = ( A /X & )
' E P =e(8)(O —I )

'~2 (4.10)

This means that our satellite moves in the 0 direction of
all the LNRF's it meets while in orbit around the source
of the Kerr field. As a result, the orthonormal tetrad

Ie(„},where
~ a be= =e= .-u e-= —Qz)&e-.(i) (i);b a (i) ' (4.12)

where

suggests itself as a natural choice for a frame comoving
with the satellite.

However, the spatial legs e(-,-), i =1,2, 3, of the tetrad

just defined are not parallel transported along C(r). As
a result, the gyroscope carried by the satellite will not
retain a constant direction with respect to the vectors
e(-,.). Specifically, one can use the rotation coefficients
I'-,b-, of the locally nonrotating base (4.8) given by Bar-
deen, Press, and Teukolsky' to show that

Qz" ——I &--,——2Ma rh' sin OcosO/AX

O' '=OI -„=OMa sin8[(3r —a )(r +a ) —(r a)a—sin 8]/AX ~

QzI ' ——OP(I „,+I ~so)=OP(r +a )[M(3r —a ) —(r +a )r]/A(bX)'~

(4.13)

In order to obtain a frame which is parallel transported along C(r) one can follow Marck' s' construction which starts
with Penrose's' observation that the vector Y' defined by Eq. (4.3) is orthogonal to u and parallel transported along
C(r). The nonvanishing components of the Killing-Yano tensor Y,z in the base Ie-, } are given by

Y„=—Y = —(r +a )a cos8/A '

Y-,z
———Yy;=ar(b, /A )' sin8,

Y, = —Y--, = —a (5/A )' sin8 cos8,

Y& ———Y-& r(r +a )/A '——
It then follows that the vector

A~3~
———Y/K'~ = —O(r +a )a cos8(KA) ' e~;~+ar sin8(b, /KA)'~ e~a~+P(r +a )r(KA) ' eI-I

(4. 14)

(4.15)

is a unit timelike vector normal to u and parallel transported along C(r). It is not hard to verify, on the other hand,
that the unit vectors

A, '~&~
——O(r/P)(r +a )(KA) '

e~-, ~+Pa sin8cos8(5/KA)' e~e~+PPa cos8(r +a )(KA) '
er-I (4.16)

A, '~z~ PP(r +a }[X——/A(K+r )]' e~e~
—Pa sin8[XE/A(K+r )]' eI-~, (4.17)

where and

P =(K+r )/(K —a cos 8) (4.18) A, , z
——sin+(r)A, '~-, ~+ cos%'(r)A, '~z~ (4.22)

where

(2) (1)' (1) (2) (4.19)

O'=EK' (K —a )l(r +K)(K —a cos 8) . (4.20)

It then follows from Eq. (4.19) that the vectors

A,
~ & ~

—COS%'(7 )A,
I & ~

—Sin P(1 )A.
~2~

(4.21)

are orthogonal to A, '(3) A much longer calculation
which makes use of Eq. (4.15) shows that

are parallel transported along C(r). Together with A~3~

defined by Eq. (4.15) they form an inertial frame whose
origin is identified with the center of mass of the gyro-
scope carried by our satellite.

So far the polar geodesic C(r) and the comoving
frames [e~",. I} and [A,~",

.
~} have been specified only locally,

i.e., in terms of the coordinates r and 0 that correspond
to the satellite's position at a given instant. Thus we are
not in a position to determine the shift in the
gyroscope's orientation each time the carrier satellite
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completes a revolution around the source of the Kerr
field. This requires a complete integration of the equa-
tions of motion and parallel transport such that the geo-
desic under consideration and the frames defined along it
return to the same point in space from which they
emanate.

Let us, therefore, assume that our satellite is launched
into a near miss orbit by the rocket ship of the previous
section which is stationed at the point z =r of the sym-
metry axis. The satellite s initial direction is identified
with the x axis of the KS coordinate system and the
y=0 direction on the r =const hypersurface in the BL

(e;,e,, es, e ) [, =(8;,B-,, B-„,B„),
where ~=0 is the value of the proper-time parameter at
the initial point-event C(0) of C(r). Noticing that Eqs.
(2.2) and (4.10) imply that

Ot) o ——[(K+r )l(a +r )]'~~ (4.24)

and taking into account Eq. (3.2), we conclude that the
initial conditions

coordinates. By continuity, this choice implies the
identification

(r,x,y, z), o
——(0,0,0,r),

(r x y, z) o
—([(K+r )/b, )', [(K—a )/(a +r )]',0, 0)

(4.25)

where K is determined by r via Eq. (4.6), guarantee that
the satellite launched by the rocket ship will follow the
polar orbit described in terms of the BL coordinates ear-
lier in this section.

Integrating the equations of motion (4.5) one finds
that' the satellite completes one revolution in coordi-
nate time T„where

(air) (r Mr +2a—r +a )

(r +2a r —4Ma r+a )
(4.28)

which is obtained by combining Eqs. (4.6) and (4.27).
The satellite's proper time period, on the other hand,

turns out to be equal to T, where

T, =4E(r/b Q'~ )[r +a (2 M+r)] K(k)

+4EQ'~ (1 E) '[K(—k) —E(k)] . (4.26)

T=4(r IQ' )K(k)+4Q'~ (1—E2) '[K(k) E(k)] . —

(4.29)

In this equation

Q—:K —aE, k =—a(1 —E)/Q, (4.27)

and K(k) and E(k) denote the complete elliptic integrals
of the first and second kind, ' respectively. In terms of
the parameters M, a, and r which characterize our prob-
lem the argument of the elliptic integrals is given by the
expression

Similarly one finds that the satellite's angle of longi-
tude increases by 5y, where

5y=8MaE(r/hQ' )K(k) (4.30)

during a complete oscillation in latitude. This implies
that at ~= T our satellite crosses the symmetry axis mov-
ing in the (cos5yB-„+ sin5q&B-„) direction, and by the
same argument that led us to Eq. (4.23) we conclude that

(e;,e,, es, e-), z- ——(8;,8-,, cos5cpB-„+ sin5yB-„, —sin5yB-„+ cos5yB-„) . (4.31)

Thus, at the end of the first revolution the satellite frame
[e~;) I is found to have rotated by 5y about the polar
axis. Of course, the smooth evolution of [eI-,)] along
C(r), which projects on a smooth curve on the r =const
hypersurface, and the spherical topology of the latter,
imply that the base vectors e[-,}

and e[&] have undergone
a rotation of 2~ in the time interval T.

We are now in a position to determine the change in
the spin vector S, of a gyroscope carried by our satellite
in the period of one revolution. Since the vector S,
remains constant in the inertial frame [A, )-, )(r) ) all that is
required is to calculate the difference between [A.)",)(r)]
and [A(-,. )(0) I.

To this effect, let us assume that %(0)=0. It then fol-
lows from Eqs. (4.15)—(4.22) that the frame [A, ~-,

. )(0)I is

given by

[A)-, )(0)I = cosZe)-, )(0)+ sinZe-(0),

f A,(,-)(0) J =ea(0),

[A)3)(0)( = —sinZe-, (0)+ cosZe)-)(0),

(4.32)

where the angle Z is such that

tanZ=(a/r)[(K+r )l(K —a )]' (4.33)

From the same equations it also follows that Eqs. (4.32)
and (4.33) express the relation between the vectors
( A, '~ ) )( T), A, ') z)( T), A ~3)( T) } and the frame [ e)",. )( T) I .
Then, according to Eqs. (4.21) and (4.22) it suffices to
calculate 4(T) in order to obtain the inertial frame
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j A, ~-,
.

~( T) j in terms of [ e~-,. ~( T) j .
The angle 4( T) is obtained by integration of Eq.

(4.20). With the help of the second of Eqs. (4.5) we find
that22

qi(Z)=4Er'[(K —a')/(KQ)' (K+r )]K(k)

4F[(K a2)/(KQ)' ][K(k)—II(n, k)],
(4.34)

where

E =(r —2M)/[r(r —3M)]'~2,

K =g =Mr /(r —3M),

0 =(r —2M)/(r —3M), P =M/(r —3M),
n~"= —i= —(M/r')'",
6g= tanZ =0,
4=2~(1 —3M/r )'

(5.3)

n=a /K (4.35)

and H(n, k) denotes the complete elliptic integral of the
third kind. 2'

On the basis of the above results, we can describe the
total shift of the gyroscope's spin vector S, in the follow-
ing terms. At the end of each revolution about the
source of the Kerr field of gravity, the satellite returns to
the point z =r of the symmetry axis with its comoving
frame [e~-i] rotated by 5y, as given by Eq. (4.30) about
the symmetry axis itself and in the same sense in which
the source is rotating. Relative to the satellite frame,
the vector S, is found rotated by 4'(T), as given by Eq.
(4.35), about an axis lying in the e~-, ~-ei-~ plane and mak-
ing an angle Z, as given by Eq. (4.33), with the negative
e- axis.

The last three of these equations, together with the
subset of Eqs. (4.15)—(4.23) which define the frames of
reference used in our analysis, lead to the following
well-known result. The orbit of the satellite is confined
in the x-z plane and the spin vector S, of the gyroscope
precesses with angular velocity —(M Ir )' ~3 relative to
the carrier satellite. Thus, in one revolution the vector
S, rotates by the angle ~p given by the last of Eqs. (5.3).
During the same time, however, the satellite frame ro-
tates by 2~ relative to the fixed stars, since at each in-
stant its axes correspond to the r-0-y directions. As a
result the gyroscope's spin rotates by 2' —6+ relative to
the fixed stars which amounts to 3~M /r when

(M Ir) « 1. For a satellite in near-Earth orbit
(M/r) —7X 10 ' in units where c = G = 1 and the gyro-
scope precesses at a rate of —8 arcsec/yr.

V. THE SCHWARZSCHILD
AND LEASE-THIRRING

LIMIT CASES

Let us now consider two limit cases of the exact results
obtained in the last two sections. The first corresponds to
the vanishing of the parameter a which reduces the metric
of Kerr to that of Schwarzschild. The second case as-
sumes that (a/r) is very small. This allows one to con-
sider the line element

B. 0 ~ ( a /r ) && 1

It is of interest to obtain approximate expressions, valid
to first order in (a /r), for the exact results presented in
the last two sections. First, because in experiments
designed to measure the terrestrial gravitomagnetic field
(a Ir) is a very small quantity indeed, amounting to
—5&10 when r is set equal to Earth's radius. Second,
because such an approximation leads to a very clear intui-
tive picture of the exact results obtained above.

Starting with Eq. (3.6) for the local effect on the sym-
metry axis, we find that

ds = —(1—2MIr)dt +(1—2M/r) 'dr

+r (dB +r sin Bd&p ) —4M(a/r) sin Bdt dg (5.1)

2Ma
r3 (5.4)

as a first approximation to the one given by Eq. (2.1).
Since the metric (5.1) represents the Lense-Thirring
solution of Einstein's equations, we can say that the
second case to be examined in the following corresponds
to the Lense-Thirring region of the Kerr spacetime.

In the case of the satellite in polar orbit, on the other
hand, most of the parameters of the problem are of
second and higher order in (a/r). This holds for E,g
and the Lorentz-boost factors 0 and P for example.
From Eqs. (4.6), (4.28), and (4.35), on the other hand, we
find that

A. a=0

K(0) =E(0)=H(0, 0)=it/2, (5.2)

Equation (3.6) shows that no local effect on a
gyroscope's spin is found when the angular momentum of
the source vanishes. The nonvanishing of the mass pa-
rameter, however, is sufhcient to produce a global eAect.
Equations (4.28) and (4.35) show that the parameters k
and n vanish and, taking into account the fact that

K =Mr (r —3M) '[1+(a /M)(a Ir)],
k =(a/r)
n = (a /M )(a Ir)( 1 —3M /r ) .

Since for small k and n

K(k) =(ir/2)[1+(k/2) ],
E(k) =(m. /2)[1 —(k/2) ],
II(n, k)=(~ 2/)[1 +(n/2)+(k/2) ],

(5.5)

(5.6)

we find that the rest of the equations of Sec. III give the last two of Eqs. (5.5) imply that to first order in (a /r)
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K(k) =E(k) =rr/2

and

II(n, k) = (~/2)[1 —(a /M)(a Ir)] .

(5.7)

Using the expressions for E and Q given by Eqs. (5.3),
(5.5), and (5.7) we find that Eqs. (4.30), (4.33), and (4.34)
take the form

5@= 4m.a (M Ir )
' ~

tanZ = (a /r)[(r —2M)/M)'

(5.8)

(5.9)

and

+( T ) = 2rr( 1 3M—Ir )
' ~ (5.10)

ns'-0,
Qs '= 3(Ma /r ) sin8,

Qj''I= —(M/r')'&'
(5.1 1)

where now the components of Qz refer to the usual
spherical polar coordinates of three-dimensional Euclide-

respectively.
From this point on let it be assumed that (M/r) is

also very small, being equal to -7)&10 ' in the case of
a satellite in near-Earth orbit. This assumption allows
us to adopt a Euclidean point of view with regard to
space relations and to interpret Eqs. (5.8)—(5.10) as fol-
lows. At the end of the first revolution the satellite
frame has turned into (B-„„B-„,, B;,) =( cos5yB-„
+ sinfiyB-„, —sin5pB-„+ cosfiyB-„, B-, ), where 5p is now

given by Eq. (5.8). According to Eq. (5.10) and the re-
marks at the end of the last section, on the other hand,
the vector S, has rotated by 3'(M/r) in the direction
N = cosZ B-„,—sinZ B,, relative to the satellite frame.
Equation (5.9) allows us to write cosZ = 1,
sinZ =Z = (a Ir)(r IM)' . Therefore, the overall change
of S, relative to the "fixed stars, " i.e., the frame
( B-„,B-„,B-, ) can be described as a rotation of
[5y —3'(rIM) sinZ]=tra(Mlr )'~ about B-, and a ro-
tation of 3rr(M lr) cosZ =3'(Mlr) about B-„,.

The same picture emerges from a different point of
view. Specifically, the assumption that (a/r) and (M/r)
are very small allows us to write Eq. (4.13) in the form

an space. The vector Q, represents the rate of rotation
of the gyroscope spin relative to the satellite frame
which is now identified with the base (B-„Bo,B-) at each
point of the orbit. Since the satellite frame rotates with
angular velocity w=pB-, +OB- relative to the Cartesian
base (B-„,B„,B,), we conclude that the spin vector S,
precesses relative to the "fixed stars" with angular veloc-
ity 0 where

Q=Q, +w=3( Ma/r ) sinOBo

(M—Ir')' "B +q B,+eB, .

It now follows from Eq. (4.5) that

0=(Mlr )'~ (1+3M/2r), @=2Ma/r

Thus, Eq. (5.12) can be written as

Q=(Ma/r ) si gnB&+(2Ma/r ) cosoB-,

+ —,'(M/ )(rMlr )'~ B

Equivalently,

Q =(1/r )[3(J B-,)B;—J]+—,'v X V(M/r),
where

(5.12)

(5.13)

(5.14)

(5.15)

J—:MaB, , v=(M/r)'~ Bo . (5.16)

According to Eq. (5.13), 9»jv. Therefore, the vector v
defined in Eq. (5.16) can be identified with the satellite s
velocity and the orbit can be considered to be planar dur-
ing each revolution. Then, the first term on the right-
hand side of Eq. (5.15) will represent the rate of rotation
of the component of S, normal to the plane of the orbit,
while the second will stand for the angular velocity of the
projection of S, in the orbit plane relative to the "fixed
stars. "

Equation (5.15) gives the well-known formula for cal-
culating the rate of spin precession in the weak-field and
slow-motion limit. ' Averaged over one period, the
first term gives rra(M/r )'~, while from the second we
obtain 3ir(M/r) for the integrated rotation of the gyro-
scope spin components normal to and in the orbit plane,
respectively. These values are the same with the ones
obtained earlier in this subsection and, for a near-earth
orbit, they amount to -4.2&10 " and 6.5)&10 per
revolution, or -0.05 and 8 arcsec/yr, respectively.
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