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Positivity of total energy in general relativity
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A simple argument for energy positivity is given.

I. INTRODUCTION

The positivity of the total energy is a well-established
subject due to Schon and Yau' and Witten. Recently
one of us gave a simple proof of energy positivity which is
based on special 2+ 1 foliations of the three-dimensional
spacelike Cauchy surface X (Ref. 3). This proof gives the
energy in terms of manifestly positive expressions, each of
them depending on canonical variables describing degrees
of freedom of the gravitational field. In the present paper
we give an important improvement and generalization of
the above argument. The idea of the proof is based on the
observation that the energy plays a double role in general
relativity. It is a "gravitational charge" defined by a sur-
face integral (similar to the one defining the electric
charge in electrodynamics). On the other hand, the ener-

gy is a Hamiltonian. It is given by a three-dimensional
volume integral. This way we obtain the energy (surface
integral on the left-hand side) as a sum of manifestly posi-
tive expressions (volume integral on the right-hand side).
The equivalence of these two expressions is given by the
constraint equation.

We assume that the Cauchy surface X has a topology of
R . We will consider 2 + 1 foliations of X. Two topolog-
ically different situations will be considered:
R =R &&R' and R —IxoI =S &&R+, the first being re-
ferred to as "topologically flat foliation" and the second
as "nested spheres" or "radial foliations. " For the sake of
calculational convenience let the coordinates x
(k =1,2, 3) on X be adapted to the foliation in such a way
that two-dimensional leaves of foliation correspond to
x =const. [x "(A =1,2) are coordinates on each two-
dimensional leaf separately. ] The foliation together with
parametrization of leaves is thus given by a real function ~
on X, where r(x', x,x )=x . In the topologically fiat
case x is an "asymptotically Cartesian" coordinate and
in the case of nested spheres x is a radial coordinate.
The surface X is equipped with the Riemannian (positive-
definite) metric g~. Let M' be a unit vector field on X or-
thogonal to the leaves of the foliation. There are two such
fields and our construction does not depend on the choice
of one of them. Define the "acceleration" field

where M'~~ denotes the covariant derivative of M' with

respect to the metric connection on X. Moreover let k~z
be a second fundamental form (external curvature) of
two-dimensional leaves of our foliation as embedded in X
(i.e., minus one-half of the Lie derivative of the induced
two-dimensional metric gzz with respect to the vector
field M'). Let k=g" k„s be the two-dimensional trace
of this object. (g" is a two-dimensional inverse of g„it
on each leaf separately. )

There is a Gauss-Codazzi formula relating the three-
dimensional scalar curvature % at each point x in X with
the internal and external geometry of the two-dimensional
leaf passing through x:

(detg)' %=(detg)' (R+k —k~jtk )

+2(), [(detg )
' (M'k+ a ') ], (2)

where R is the two-dimensional Riemann scalar curvature
of the leaf. We have

(detg )
'~ =k 7'r

~

(3)

where
~

V'r
i
=(g )' and A. =(detg„jt )'~ is a two-

dimensional volume element on each leaf. One can easily
prove that

a ' = —,
' (g "—M'M')t), P, (4)

II. TOPOLOGICALLY FLAT FOLIATIONS

For the sake of simplicity of calculations we assume
that our metric g;~ is asymptotically flat in the following
strong sense:

gij =fyij

where f behaves like ( I +2Er ') for r~ oo:

y j ——5j+0( I lr'+'), t)i, yj ——0( 1lr '), e & 0 .

The left-hand side of formula (5) is the total divergence

where P= lng . Multiplying both sides of (2) by
i

V'r
~

we obtain the result

28;(AM'k+Aa')+kR =~+A(kqjtk" ——,'k )
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(A) 'g P'iPJ = Ai &0,
16~(g' )' 8 „=Ap &0,
7 (kggk" —

—,'k )= 33 &0,

—,'xg"'(a, y)(a, y) = ~, & o .

Moreover, we have the manifestly negative term

B) = —
—,'(A, ) 'g "P

(9)

(10)

(13)

and another term

B2 =A,kM'a;p —
—,
' l,k

There is however a gauge freedom consisting in (asymp-
totically trivial) changes of X and of coordinates on X.
The terms 3 and B„are not gauge invariants, but the
total integral over X is invariant due to the fact that the
integral of the left-hand side is a surface integral at
infinity. To prove that this integral is positive it is
sufticient to choose a gauge which leaves only manifestly
positive terms. The situation is like in linear algebra
where the proof of positivity of a quadratic form consists
in choosing coordinates (i.e., a "gauge") which diagonal-
izes the form. The form is positive if and only if there is a

due to the 6-auss-Bonnet theorem. We integrate it over
X.

Theorem. Under the above assumptions on the behav-
ior of g;; the integral of the left-hand side of (5) over X is

equal to 16'. The theorem is true in the general asymp-
totically flat case but our strong condition makes the
proof easier (see the Appendix).

We will show in a future work that the total integral of
the right-hand side of (5) is positive when calculated for
Cauchy data satisfying the constraint equation

(detg)'~ A=(detg) '~ (P"P;, —,'P )+—16~6'„, (8)

where P'J is the Arnowitt-Deser-Misner (ADM) momen-
tum, P=g;~P'~, and 8 „=(detg)' T„,,nn" is the ener-

gy density of the matter fields interacting with the gravita-
tional field. Here n" is a unit timelike vector orthogonal
to X.

Inserting (8) into (5) we obtain on the right-hand side
the following manifestly positive terms:

"gauge" which leaves only manifestly positive terms. Us-
ing this analogy we could call our method a "diagonaliza-
tion" of the total energy. To eliminate the term B] we
use the maximality condition for X(P=O). To diagonal-
ize the term B2 we propose to use any of the following
gauge conditions:

~,=k pM—a, y=o,
where P is a real number. Now

Bp = —,'/3(2 —p)(M'a;p)

(15)

(16)

=0 (17)

We see that our gauge condition (15) is equivalent to the
elliptic equation for the function ~. This equation can be
derived from the variational principle

sf r=o, (18)

where X = (detg )' Vr
~

~+ '.
There follow special cases. For P= 0 our equation

reduces to k =0 which means that the leaves of our folia-
tion are minimal surfaces of the metric g;~. For /3= —,', Eq.
(17) is linear (b.r=o) and our coordinate r=x is a har-
monic function. For P= 1, Eq. (17) is conformally invari-
ant as a consequence of conformal invariance of L given
by (18) and the condition wt ——0 is precisely the one used
in previous papers. This equation was thoroughly inves-
tigated by Chrusciel. In all other cases we do not know
at the moment whether or not Eq. (17) has appropriate
solutions.

We re~rite our energy formula in a more explicit way.
Because of Eq. (15) the right-hand side of (5) reads

Choosing p&[0,2] we obtain B2 &0. (The method used
in Ref. 3 corresponds to the special choice /3= 1.)

This ends the proof of the positivity provided we are
able to show that the condition u)p ——0 actually may be
satisfied.

Because of the formula —k =M' i; and M'
=g '(g' )

' we have

(g-' )~(detg)' wan=a;[(detg)' (g )~ '~ g']

=(detg)' &;(
~

«
~

'~ '&'r)

E=(16~) ' f [g "(A) 'P"P;, +A(k" k —,'k')+ —,'kg" (a„p—)(a (5)+ —,'p(p —2)(M'a, p)'+(g")' (, „] . (19)

It is worthwhile to notice that E=O implies that P'~=0, /=const (and therefore g '=1 due to boundary conditions at
infinity). Moreover k~~ =0. This means that g;~ is flat. Therefore our space is flat and empty (6 „=0).

III. RADIAL FOLIATIONS

We assume now that ~=x =r is a radial coordinate and surfaces r =const are topologically 2-spheres. The spherical
analog of condition (15) is

wf3=k pM'a;/+2 Vr~ /—r, '

where again
~

7'r
~

= (g )
' =M . Using this condition and constraint (8) we may rewrite Eq. (5) as

a;(2AM'k+2Aa')+22(1 P)M3M'(a, P)/r+2kg 33/r ~+—AR

=g (p"p;, —,'p )/K+A(k„k" ——,'k )+ —,'Ag (a„p)(a—p)+—,'/3(2 p)(M'a;p) +(g ) —6

(20)

(21)
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We will prove that the left-hand side gives 16ir)&(ADM
energy). For maximal surfaces X(P=0) and I3E [0,2] the
above equation implies the energy positivity. To analyze
condition (20) we observe that

—2( 33)P(d t )1/2 g [
—2(d t )1/2(g33)P —1/2 3i]

APPENDIX

Let metric g satisfy the condition (7). We perform the
conformal transformation of g. The left-hand side of (5)
may be rewritten as follows:

L =28; ( XM 'k + A.a ') + A,R

=(detg)'/~v;(r ~
~

Vr
~

V 'V'r)=0 .

(22)

=8;(2AM'k)+AR+B [/() 8 (lny )]

+28;(kM'M'3 iI/) —2B (Xy" ~3 4'), (A 1)

For P&0 and P&1 we introduce the function

p=P(13 1) '—(r'~ '' ~—1) .

The condition mp =0 now reads

V;(
i Vp i

~ 'V"'p)=0

(23)

(24)

where M, k, k, R are objects defined by the metric y in-
stead of g and ~I/= Inf. Asymptotic behavior of y and the
Gauss-Bonnet theorem imply that

f L d x = —2 f a, (X~'ja, 'Ii)d x =16irE . (A2)

We would like to stress that the function r which satisfies
Eq. (17) behaves asymptotically like

where F is bounded. To remove the freedom in the
choice of an additive constant we assume that p(x,y, z) =0
at the point where the first (Euclidean) part of (25) van-
ishes (i.e., at zero for P& 1 and at infinity for P& 1). We
may formally pass to the limit /3~1 and obtain, for P= 1,

p = lnr = —,
' In(x +y +z ) +F(x,y, z) (26)

which has to be satisfied outside the center xo (i.e., for

r&0). Equation (24) is identical with Eq. (17) but the

boundary conditions for the solution p are difT'erent. In
the case of Oat foliation we looked for a solution
r=z +F(x,y, z), where (x,y, z) are asymptotically flat

coordinates and F is a bounded function. Now we are
looking for

p=P(13 1) '[(x —+y +z )
~ '' ~—1]+F(x,y, z), (25)

r=z+E(1 —P) cosB . (A3)

The transition from coordinates (x,y, z) satisfying (7) to
new coordinates (x,y, z) where z =r, can be analyzed in
terms of spherical coordinates: (r, @,B)~(r,@,B) We.
obtain the following asymptotic behavior of the spherical
angles: 4& Ci=O(r —') and B B=O—(r '). This trans-
formation is a "supertranslation" and does not preserve
the form (6) of the metric g. Nevertheless, it can be easily
shown that after this supertranslation the first and the
third term of (Al) cancel when integrated over X. There-
fore (A2) remains valid even if we use new coordinates
(x,y, z ).

For radial foliations the proof is more complicated
since the left-hand side of the formula (21) depends on P.
For a metric g which satisfies our strong condition (7) in a
system of coordinates (x,y, z), the asymptotic behavior of
the solution r of (22) at infinity is

as a boundary condition for the same equation (24) which
now reads

r —(x +y +z )' '~(1 P)E . — (A4)

v, (
I
vp

I

V'p) =0 . (27)

Rewriting the metric in a new spherical coordinates based
on this solution we obtain the following expression for the
leading term (1+2Er ')5;/ of the metric g:

The above equation was investigated by Chrusciel who
proved that it possesses appropriate solutions. For /3= —,

'

we have r = —p ', where p is a solution of a linear equa-
tion

ds =(1+2Er ')dr

+r (1+2Er ')~(dB + sin Bd@ ) . (A5)

Ap =4~6O, (28)

Now we prove that the integral of the left-hand side of
(21) over X gives 16' We use the foll.owing identities
which follow immediately from the definition of M' and
k:

where 6O is a unit charge concentrated at the origin r =0
(a gauge condition of this type was also used by Jang ).
The function r is well defined outside of the origin be-
cause p&0. For i33=0 the equation wp=O gives a condi-
tion for external curvature of leaves:

—XM'M'a, y =(P—1)-'[XM'w~+ a, (XM'M')

—2Ar 'M M ],
XMt = (—P I) -'[Pa—, (XM'M')+ kM'w~

(A6)

/(, k = —2r '(detg )
' (29) —2/(, r 'M M ]. (A7)

In this case there is no "homogeneous" [i.e., analogous to
(24)] version of Eq. (22).

Inserting the identities into the left-hand side of (21) we
obtain the quantity
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L = —2/3(/3 1—) 't)3[r/~+" ~t)3(r '~+' ~~kg )]+8~(2AM "k+2Aa ")
—2/3(p 1—) 't)~ [r '~ " ~d3(r ~ " ~iEM M")] +27r 'M wis+AR —2(/3 1—) 't)3(AM w//) .

We use the identity

2P(P 1 )
—1 g [ I/3+ 1)//3g

(
—(/3+ ) /f3

) ]

(A8)

(A9)

We will integrate L with respect to the measure dr dgd4 over X—Ixo}=S &&R+. Let cr = sinH be a standard volume
element on a unit sphere. Using w/3

——0 and (A9) we obtain

L = —2P(P —1) t)3Ir ~+ ~()3[r ~+ ~(kg —r o )]]+gR —2o

+2r) „[gM"k + / "
/3(/3 1) ' '/ ' '~t i)3(r // "~/ gM3M ")] (A10)

L dr dOd+= lim I r —lim I e
l"~ cc e 0

where

I(r) = —2P(P —1) 'r'~+" ~B„

r '~+' ~ f (Ag —r o )dOd@
5(l )

(A 1 1)

(A12)

Because of the Gauss-Bonnet theorem all but the first
term vanish when integrated over each sphere r =const.
Therefore

f gL dr dOd&P= lim I(r),
I ~oc

where

(A16)

L =2 );t(kM'k+A 'a+Ar 'M M')+AR+2XM w~

=2t)3(XM Mjt)lp —Ar 'g +ro )+kR —2o

+2c)~(XM "k+/(a "+7 r 'M M") (A15)

(in the last equality we have assumed that w& =0). Again,
because of the Gauss-Bonnet theorem the integral of L is
given by the leading term in the metric

It is easy to see that I(e)~0 for e~O. The limit at
infinity is given by the leading term (A5) of the metric
[A, =r (1+2Er ')~o and g =(1+2Er ') ']:

I(r)=2 f [kg 'r);P+r(oAr . 'g'3)]dg—d@
S(r)

16' . (A17)

/(,g —r o=r cr[(1+.2Er ')~ ' —1]

= 2Eor(/3 1) . . —

Finally

(A 13)

For /3=0 similar calculations give

L = 2c); (XM 'we ) +2kr 'M wo

—2t);(kr 'g ' —ka')+kR .
Therefore

(A18)

I (r) =4E f, o d 9 d&= 16' . (A14)

The above calculations does not work for /3=1 and P=O.
For P= 1 we have =16' . (A19)

f L dr d0d+= lim 2 f r(cr —Ar g )dOd@
r~m S(r)
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