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This paper deals with two broad issues: the formulation of a mathematical framework for con-
centrated sources in general relativity and its application to strings. We isolate a class of those
metrics whose curvature tensors are well defined as distributions. It is shown that shells of
matter —but neither point particles nor strings —can be described by metrics in this class. This
conclusion is examined in more detail for the case of strings. We estimate the errors inherent in

certain determinations of the mass per unit length of a cosmic string, and in certain calculations of
the gravitational radiation from such a string.

I. INTRODUCTION

A useful idealization in physics is that in which some
smooth distribution of sources is replaced by a "concen-
trated source. " One might have in electromagnetism,
for example, some charge distribution which is confined
to a region of space small compared with other distances
in the problem, and whose internal structure is ir-
relevant. It can be replaced by a point charge. One thus
avoids introducing internal structure that is only to be
ignored anyway.

There is in the case of electromagnetism a natural
mathematical framework for this idealization. Let both
the Maxwell field and the charge-current density be,
rather than smooth tensor fields, distributions. Recall
that linear operations, including diff'erentiation, make
sense when applied to distributions. Hence Maxwell's
equations, by virtue of their linearity in both fields and
sources, make sense as equations on these distributions.
As an example, let the charge density in electrostatics be
the distribution of strength o. confined to some two-
dimensional shell in space. Then these Maxwell equa-
tions require of the electric field distribution that the
jump in the normal component of the electric field on
crossing this shell be equal to o. . This mathematical
framework means that the machinery of distribution
theory is available in electromagnetism. For example,
this framework provides a detailed sense in which a
smooth charge density must approximate our surface
charge distribution above in order that the electric field
it produces be close to the corresponding field distribu-
tion. This framework is our guarantee that distribution-
al Maxwell fields with distributional charge-currents
make physical sense.

A similar idealization to concentrated sources would
be useful in general relativity. But here the mathemati-
cal framework' cannot be as simple as for electromagne-
tism, for Einstein s equation, being nonlinear, does not
make sense as an equation on a distributional metric and
distributional stress-energy. We shall be concerned in
this paper with two broad issues: the formulation of a

mathematical framework for concentrated sources in
general relativity and its application to strings. We shall
isolate the class of metrics appropriate to such sources
and discuss the fact that metrics for strings do not fall
within this class.

There have been attempts to introduce into general
rel- ativity sources to represent gravitating point parti-
cles, i.e., sources concentrated on one-dimensional sur-
faces in space-time. One goal of this work was to find
equations of motion for such point particles. To this
end, there was introduced a class of metrics, specified by
their behavior on approaching a singular world line, to
describe the near-field of such a particle. It now ap-
pears, however, that the metrics in this class may not be
physically realistic, for one expects that such a concen-
tration of matter would result in collapse through a hor-
izon, and that inside this horizon there will be further
structure. Indeed, it now seems likely that there is in
general relativity no mathematical framework whatever
for matter sources concentrated on one-dimensional sur-
faces in space-time.

More successful has been the introduction into gen-
eral relativity of sources to represent thin shells, i.e., of
sources concentrated on three-dimensional surfaces in
space-time. Fix a smooth three-dimensional submanifold
S of a smooth four-dimensional manifold. Introduce a
Lorentz metric that is smooth up to and including S
from each of its sides and is continuous across S; but
they may there have a discontinuity in its first deriva-
tive. The resulting space-time is regarded as having cur-
vature, and therefore stress-energy, concentrated on S.
To obtain the formula giving the magnitude of the con-
centrated curvature in terms of the jump in the first
derivative of the metric on crossing S, one writes out
and interprets the usual formula for the components of
the curvature tensor in terms of the components of the
metric and their first two derivatives. For S timelike,
this arrangement represents a thin shell of matter. The
concentrated stress-energy acts, through its relation to
the jump in the first derivative of the metric, as a source.
For S null, this arrangement can represent a thin shell
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(Ily)sin(yrll), r &I,
p(r) = .

[r —l + ( I ly )tany ]cosy, r & l, (2)

where 1&0 and y&(0, ~/2) are constants. This metric
is C' across r =l, and C elsewhere (including the axis).
For r &I, the Einstein tensor, and through Einstein's
equation, the stress energy, have a mass density in the t
direction, —T'„and pressure in the z direction, T'„
given by

Tt Tz 2y(2 (3)

with all other components zero. For r ) l, the space-
time is flat, consisting of a position of Minkowski space-
time with P-angular deficit of 2~(1 —cosy). Thus, this
space-time consists of a static, massive fluid cylinder
with a flat, "conical" exterior metric. Note that the
mass per unit length of the cylinder, defined as the in-
tegral of this mass density over the two-surfaces of con-
stant t, z, is also 2m(1 —cosy) —the same as the angular
deficit.

Now fix y, and consider the limit l~0. Then the ex-
terior metric becomes Minkoski space-time with
angular deficit 2'(1 —cosy); and one can think of the
source as approaching a "line mass density" of mass per
unit length also 2'(1 —cosy). One might thus regard
this limit as representing a source in general relativity
concentrated on a two-dimensional surface in space-
time. The equality here between the angular deficit and
the mass per unit length would be analogous to that, in
electrostatics, between the jump in the normal com-
ponent of the electric field and the surface charge densi-
ty. Both relate the external field to the strength of the
source.

This example certainly does suggest that sources con-
centrated on two-dimensional surfaces in space-time will
be meaningful in general relativity. In fact, such string
sources have been introduced in certain applications.

of gravitational radiation. The Weyl tensor concentrat-
ed on S yields the amplitude of the radiation field, while
the concentrated stress energy is required to vanish.

To summarize, while there is apparently no viable
treatment of point particles as concentrated sources in
general relativity, there is a satisfactory treatment of
thin shells of matter or radiation. In the case of the
latter, there has been isolated a class of metrics
sufficiently broad to encompass the phenomena of in-
terest, yet sufficiently narrow that the curvature tensors
of these metrics make sense.

The intermediate case is that of strings, i.e., of sources
concentrated on two-dimensional surfaces in space-time.
Is there, or is there not, a satisfactory treatment in gen-
eral relativity of such concentrated sources? Are strings
more like shells or like point particles? The following
example ' will illustrate these issues. Let the metric be

dt +d—z +dr +P (r)dP

where t and z range from —oo to + oo, P from 0 to 2'
(identified), and r from 0 (the axis) to + oo. This space-
time is static and cylindrically symmetric. Now let p(r)
be given by

However, such isolated examples can be misleading, as is
illustrated by the following. Consider Newtonian gravi-
tation, so we have, in Euclidean three-space, mass densi-
ty p and gravitational potential U, satisfying V' U = —p.
Let p vanish outside some so1id cylinder. Then one
might expect that the mass per unit length of the
cylinder will be reflected in the behavior of U outside the
cylinder. But, we claim, there exists an example with
positive mass per unit length —in fact, with p) 0 every-
where in the cylinder —and yet U=O everywhere outside
the cylinder. To obtain such an example, fix a positive
constant 1 and a smooth function f (r), defined for r & 0,
so is positive for r &l and zero for r ) l. Set, in cylyindr-
ical coordinates z, r, P, U =e 'f (r), where a is a con-
stant, so this potential vanishes outside the cylinder of
radius l. One now checks directly that the correspond-
ing mass density, p= —V' U, satisfies p) 0 everywhere
provided the constant a is chosen sufficiently large. By
using a limiting family of such examples, one might con-
clude that a line distribution of mass in Newtonian grav-
itation results in zero external field. What is needed for
this example —as well as for that of Eqs. (1) and (2) in
general relativity —is detailed rules as to the allowed
limiting behavior of sources and fields.

In Sec. II we introduce a mathematical framework for
concentrated sources in general relativity. The key step
is the introduction of a class of metrics, called regular
metrics, for which the curvature tensor makes sense as a
distribution. It is the regular metrics that can arise from
a distributional source. The definition requires that the
metric be locally bounded with locally bounded inverse,
and have locally square-integrable weak first derivative.
In turns out that the metrics for thin shells of matter or
radiation, described above, are regular. But the class is
much more general than this, admitting, e.g., certain
metrics that are not even continuous. The main theorem
asserts that, for a regular metric with source concentrat-
ed on some submanifold of space-time, that submanifold
must be of dimension three. Thus, point particles and
strings —which correspond to dimensions one and
two —are not permitted as sources. This result is closely
related to the fact that the energy density of the
Newtonian gravitational field of a massive shell is locally
integrable, but not for a point partic1e or string. We
also obtain an approximation theorem, which gives the
sense in which a smooth metric must approximate a reg-
ular metric in order that the curvature tensor of the
former be close to the curvature distribution of the
latter.

In Sec. III we consider in more detail the case of
strings, i.e., of sources in general relativity concentrated
on two-dimensional surfaces in space-time. Minkowski
space-time with angular deficit —the space-time that re-
sults as the limit of the family (1) and (2) of static, cylin-
drically symmetric solutions —turns out not to be regu-
lar in the sense of Sec. II. Thus, we cannot in any natu-
ral way regard this as the external metric for a distribu-
tional source. What happens, then, if we introduce some
general source for the external metric consisting of Min-
kowski space-time with angular deficit, and then take the
limit as that source becomes concentrated on the axis?
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The Newtonian example above suggests that, if we wish
to recover in the limit a fixed relationship between
source and external field, then we shall have to impose
some restrictions on the character of the source or the
nature of the limit. We argue, however, that there are
no such restrictions that are fully satisfactory. If, for ex-
ample, one merely imposes an energy condition, then for
given angular deficit one can obtain in the limit a variety
of values for the mass per unit length of the source.
Even fixing an equation of state for the matter will not
do. It turns out, for example, that for almost every
choice of equation of state there exists no source whatso-
ever made of that matter and having for its external
metric a portion of Minkowski space-time with angular
deficit. Even when there does exist such a source —e.g. ,
for the matter of Eqs. (1) and (2)—further difliculties
arise. For example, if one relaxes the static and cylindri-
cal symmetries, then it is questionable whether one can
recover any simple relationship between source and field.

In Sec. IV we consider applications to cosmic strings.
There are at least two situations, in work on cosmic
strings, in which the string is idealized as a concentrat-
ed, gravitating source. The first is that in which the
mass per unit length of a string is inferred from external
geometrical e8'ects, e.g., from the formation of a double
image of a quasar. The second is that in which the
amount of gravitational radiation from such a string is
computed. Both of these situations involve precisely the
idealization that appears to be problematic in general re-
lativity. We attempt, for these two situations, to esti-
mate the errors resulting from this idealization.

II. METRICS WITH DISTRIBUTIONAL CURVATURE

A smooth metric in general relativity gives rise to a
smooth curvature tensor, and hence requires for its
source a smooth stress-energy tensor. But concentrated
sources are anything but smooth. So, if we wish to ad-
mit concentrated sources in general relativity, we shall
have to admit metrics less well behaved than smooth.
The wider the class of metrics thus allowed, the wider
will be the class of sources with which one is able to
deal. But we cannot, on the other hand, admit metrics
so badly behaved that their curvature tensors are not
meaningful. So, we are led to seek the widest class of
metrics whose curvature tensors make sense. ' We shall
find an appropriate class, called the regular metrics, in
this section. The curvature tensor of a regular metric
will turn out to make sense in general only as a distribu-
tion. Hence, the source for a regular metric is a distri-
butional stress-energy. It will turn out that not every
distributional stress energy is permitted as a source.
Disallowed, in particular, is any such stress energy con-
centrated on a submanifold of space-time of dimension
less than three.

We first recall a few facts about distributions. Fix a
smooth (C ), four-dimensional manifold M. By a test
field on M we mean a smooth tensor density,t' 'b. . . d, of weight —1, having compact support on
M. Note that this weight' is such that the integral over
M of a scalar test field can be carried out without any

additional volume element on M. The test fields of given
index structure form a vector space. The contraction of
a test field, its outer product with any smooth tensor
field, and its derivative via any smooth derivative opera-
tor all yield, again, test fields.

A distribution on M is a linear mapping from the vec-
tor space of test fields of a given index structure to the
real numbers satisfying the following continuity condi-
tion. The result of applying this linear mapping to each
of a sequence of test fields, ;t' 'b. . . d (i =1,2, . . . ),
must converge to that of applying it to t' ''b. . . d pro-
vided (i) these test fields all have support in a common
compact set and (ii) the; t converge uniformly to t, as do
all the corresponding derivatives. We shall adopt the
following index notation for distributions: A distribu-
tion a applicable to test fields of the form t'
will be denoted a, . . . , ", and the action of a on t will
be denoted a, . . . , ' "+t' 'b. . . d. Note that this is a
number, not a field.

There is an important class of distributions, a class
which motivates the definition above as well as those
that will follow. Let p, . . . c be any smooth tensor
field on M. Then this field gives rise to a distribution,
which we write p, . . . ," ", with the following action:

b . d a . . c
b d= P dt'

C b . . d

(4)

a, e t 'b ——a„e( t 'b o'd ) .

The outer product of a distribution and a smooth tensor
field is defined similarly. Fix any smooth derivative
operator V~. Then, for a, . . .c, a distribution, its
derivative, V~o, c ", is defined by"

Cb. d

6 d~ (V

trna

b. . . d)

All of these operations on distributions —addition, con-
traction, outer product with a tensor field, and
derivative —reduce, for a distribution arising via (4)
from a smooth tensor field, to the corresponding opera-
tors on the tensor field. For example, for p, . . . , d a
smooth tensor field, we have

~ml a . c (~mPa . c
d ),

Note that the integral on the right-hand side makes
sense (since t is a density of the appropriate weight) and
converges (since t has compact support). The mapping
on text fields so obtained is linear, and satisfies the con-
tinuity condition —and so does indeed define a distribu-
tion. Thus, every smooth tensor field on M gives rise,
via (4), to a distribution —and, indeed, it was to make
this true that we defined a distribution as we did. Of
course, not every distribution arises in this way.

Linear operations on tensor fields can generally be ex-
tended to operations on distributions. The sum of two
distributions with the same index structure, defined as
the sum of the corresponding linear maps, is again a dis-
tribution. We define the contraction of a distribution
thus. For example, for a„a distribution, its contrac-
tion a,™is the distribution with action
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1"(.= —,'g' (2~((g. ) (10)

and p, b,
" is the curvature tensor of V . The idea is to

continue to use Eqs. (9) and (10) to define the curvature
tensor even for a less-well-behaved metric g,b.
Specifically, we shall require of g,b, not that it be
smooth, but rather only that it be such that each term
on the right-hand side in (9) can be interpreted as a dis-
tribution. The first term on the right-hand side as a
smooth tensor field, can always be interpreted as a dis-
tribution. The second term can be interpreted as a dis-

i.e., that the derivative of the distribution defined by p
equals the distribution defined by the derivative of p.
Indeed, it is to make such things true that the operations
are defined as they are. Furthermore, these operations
on distributions generally satisfy the same properties as
do the corresponding operations on smooth tensor fields.
But note that there is no operation on smooth tensor
fields not available for distributions: There is no such
thing in general as the outer product of two distribu-
tions.

A tensor field p, . . . , '' " on M is said to be locally
integrable if, for every test field t' 'b. . . d, the scalar
density p, . . . , ' t' ' '&. . . ~ on M is (Lebesque)
measurable, and its (Lebesque) integral converges. Since
our test fields have compact support, this is truly a local
property of p. For example, any continuous tensor field
is necessarily locally integrable. Equation (4), defining
the distribution associated with smooth tensor field

p, . . . , '", works also for p merely locally integrable
We again denote the resulting distribution by

p, . . . , ". The weak derivative of locally integrable
tensor field p, . . . , is a locally integrable tensor field

vm~ g 7 if one exists, such that
b. . d b . d

+ma . e "mpa . . c

That is, the weak derivative is a tensor field v giving rise
to the distribution that is the derivative of the distribu-
tion defined by p. For example, for the tensor field

p, . . . , C', its weak derivative does exist, and is in
fact precisely the tensor field V' p, . . . , ' . But, the
weak derivative exists also for far less-well-behaved ten-
sor fields p.

We now return to the issue at hand: to find the widest
class of metrics whose curvature tensors make sense as
distributions. One might be tempted to conclude that
any distributional metric should be acceptable, for the
curvature tensor involves the second derivative of the
metric, while the second derivative of any distribution
makes sense. However, this argument fails, for the cur-
vature tensor is also nonlinear in the metric, and prod-
ucts of distributions do not in general make sense. So,
the appropriate conditions on the metric should require
more than that it be a mere distribution, but less, e.g. ,
than that it be C .

Fix a smooth derivative operator V' . For g,b a
smooth metric, its curvature tensor R,b,

" can be written

d d d m dR,b,
——p,b, —2r [,rb], —2V'[, rb), ,

where

tribution provided the square of I is locally integrable.
The third term can be interpreted as the derivative of a
distribution —and so as a distribution in its own right—
provided only that I itself can be so interpreted. Thus,
the right-hand side of Eq. (9) becomes a distribution pro-
vided only that the square of I is locally integrable and
I can be regarded as a distribution. But this I b„ in
turn, is given in Eq. (10) as the product of the first
derivative of the metric and an expression algebraic in
the metric. These considerations motivate the following
definition.

A symmetric tensor field g,b on M will be called a reg-
ular metric provided (i) its inverse g' exists everywhere,
and both g,& and g' are locally bounded, and (ii) the
weak first derivative of g, b exists and is locally square in-
tegrable. The first condition means that, for any test
fields t'" and u, b, the scalar densities g,bt'" and g' u, b

are bounded. The second means, writing p,b, for the
weak derivative of gb„ that p, b, pd, & is locally integrable.

Let g, b be a regular metric. We define its curvature
distribution as follows. Interpret the derivatives on the
right-hand side of Eq. (10) as weak derivatives, so this
equation defines a tensor field I 'b, . From regularity and
the fact that the outer product of a locally bounded field
and a locally integrable field is locally integrable, it fol-
lows that this I'b, is locally square integrable and local-
ly integrable. Now interpret the first term on the right-
hand side of Eq. (9) as the distribution resulting from a
smooth tensor field, the second term as the distribution
resultng from a locally integrable tensor field (for 1 is lo-
cally square integrable), and the third term as the distri-
bution resulting from the derivative of I regarded as a
distribution (for I is locally integrable). The result, the
curvature distribution of the regular metric g,b, is of
course independent of the choice of the smooth deriva-
tive operator V

We emphasize that a regular metric g, b is to be
specified as a tensor field —i.e., as an assignment of a
tensor to each point of M —and not as a distribution.
Thus, for example, one is not permitted to have the
metric g,b already "concentrated on surfaces. " It is only
in this way that one can negotiate the products in Eqs.
(9) and (10). One could as well have required merely
that the tensor field g, b be specified almost everywhere,
and then, in the first condition, that the inverse exist al-
most everywhere and that g,b and g'" be merely almost
everywhere locally bounded. Note that regularity treats
the metric and its inverse on an equal footing. From
regularity of g,b it follows that the weak derivative of
the inverse metric g'" exist and is locally square integr-
able.

A regular metric is not suitable for raising or lowering
the indices of a general distribution, for the outer prod-
uct of a regular metric and a distribution is not in gen-
eral well defined as a distribution. Nonetheless, we can
interpret as a distribution the outer product of any num-
ber of metrics and inverse metrics with a single curva-
ture tensor. This is done by writing an equation analo-
gous to Eq. (9), but with the term involving the second
derivative of the metric expressed as a total derivative.
For example, we have, from Eq. (9),
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RE b
——V[, [(Vb], —r b], U )E vd(4/g U U )] . (12)

For g,b smooth, this formula holds (and so, in particu-
lar, the right-hand side is independent of the choices of
V, and v, ). But, the right-hand side makes sense as a
distribution whenever the vector in brackets does, while
this vector is locally integrable, and hence interpretable
as a distribution, under the conditions above on g,b. We
thus define Re,b as a distribution. Note, however, that
this argument does not work to make distributions out
of other curvature combinations, such as R, RE', or

dR,
Let g,b be a regular metric. We wish to introduce the

derivative operator V compatible with this metric. Its
action, e.g. , on the vector field pb, is to be

VaPb =VaPb —~ abPm ~ (13)

where V is our fixed smooth derivative operator and I
is the locally square-integrable tensor field given by Eq.
(10). How well behaved must the field pb be in order
that the right-hand side of Eq. (13) make sense as a dis-
tribution? The answer is that p must be locally square
integrable. Indeed, p locally square integrable implies
that the second term on the right-hand side of Eq. (13) is
locally integrable, and hence that this term can be inter-

g R,b,
"——g Pabc" —2g 1 dm

La I™b)c
—2V[, (g 'rb], )+2(V'[,g ')r b], .

Each term on the right-hand side can now be interpreted
as a distribution. (For the last term, we must use the
fact that the weak derivative of g~~ exists and is locally
square integrable, and that the outer product of two lo-
cally square-integrable tensor fields is locally integrable. )

So, this equation defines g R,b, as a distribution. Us-
ing the fact that any contraction of a distribution is a
distribution, we now obtain the Einstein tensor, Weyl
tensor, etc. , as distributions. These distributions have
the expected symmetries. In particular, then, it is mean-
ingful with a regular metric to write Einstein s equation
with distributional stress-energy.

It is hard to see how one could find any conditions on
a metric weaker than regularity that would still yield a
distributional curvature tensor. It is hard to see how the
individual terms in Eq. (9), while failing to be distribu-
tions, could conspire to cancel to yield a sum that is a
distribution. Yet, there may be other routes to defining
a curvature distribution. Consider, for example, a
positive-definite metric g,b on a two-dimensional mani-
fold M, such that (i) the inverse g'" exists everywhere
and both g,b and g' are locally bounded, and (ii) the
weak first derivative of g,b exists. These conditions are
strictly weaker than regularity, for we do not now re-
quire that the derivative of g,b be square integrable. The
metric of a cone, for instance, satisfies these conditions,
but is not regular. Under these conditions on the metric
g,b, one can define as a distribution the curvature com-
bination Re,b, i.e., the combination that appears in the
Gauss-Bonnet formula. To see how, fix, in addition to
the smooth derivative operator V, , a nowhere vanish-
ing' vector field U, , and consider the formula

preted as a distribution. In addition, p locally square in-
tegrable implies that p is also locally integrable —thus,
interpretable as a distribution —and hence that the first
term on the right-hand side of Eq. (13) can be interpret-
ed as the derivative of a distribution. Thus, our operator
gV can be applied to any locally square-integrable ten-
sor field, yielding a distribution. In particular, the equa-
tion V g,b ——0 makes sense —and, in fact, holds. In the
case in which the field pb is smooth, the distribution on
the right-hand side of Eq. (13) arises from some locally
square-integrable field. Hence, in this case the second
V derivative of p makes sense. Thus, for p smooth

both sides of the equation

dV [a Vb]Pc 2
R abc Pd (14)

make sense as distributions. It follows directly from Eq.
(9) that this equation does hold. We could in fact have
employed (14) from the beginning as our definition of the
curvature tensor. But note that the Bianchi identity,

V [a Rbc)de
——0 (15)

does not make sense. Since the curvature of a regular
metric is a distribution, and not a locally square-
integrable tensor field, we cannot apply the operator V
to it. Of course, one could impose further conditions on
the metric to force a meaning for the left-hand side of
Eq. (15).

The following will illustrate the nature of the condi-
tion that a metric be regular. Fix a submanifold S, of di-
mension d (=0,1,2,3), of the four-dimensional manifold
M. Consider a metric field g, b that is smooth at points
other than on S, but some of whose components become
infinite, on approaching S, at rate r ', where r is some
characteristic distance from S (defined, e.g. , using a
smooth, positive-definite metric on M). Now the deriva-
tive of g, b has behavior r ' ', while the volume element
has behavior r "dr. Hence, the weak derivative of g,b

will exist and be locally square integrable provided'
s &1—d/2. Note that the metric is allowed to grow
more quickly on approaching a lower-dimensional singu-
lar surface than a higher-dimensional one.

For d=0 (an isolated singular point), the limiting al-
lowed growth rate is r '. A metric with components
growing at nearly this rate would, while having locally
square-integrable weak derivative, not be locally bound-
ed. But we can obtain examples that are locally bound-
ed by "replacing growth by oscillation. " Thus, the
metric'

ds2=[2+sin(t +x +y +z )
' ]

X( dt +dx —+dy +dz ) (16)

is regular. Note that this metric is discontinuous at 'the

origin. For d= 1 (a singular world line) the limiting rate
is r ' . This rate is such that, e.g. , the Schwarzschild
metric, with a world line attached to the space-time
manifold at either r =2m or r=0, is not regular. '

Thus, one apparently cannot treat a point particle as
satisfying Einstein's equation with a distributional
stress-energy confined to a world line. For d =2 (a
singular string), the limiting rate is r . We shall show in
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the following section that the metric consisting of Min-
kowski space-time with angular deficit is, though just
barely, not regular. ' Thus, we cannot assign to this
metric a distributional stress-energy to represent the
"string. " Finally, consider d=3 (a singular shell). The
metrics for shells, described in Sec. I, are seen immedi-
ately to be regular. Indeed, regularity admits metrics in
this case somewhat more badly behaved than these.

There is a simple and precise result that reflects the
behavior of the regular metrics illustrated above. Let
g, b be a regular metric, so its Einstein tensor and,
through Einstein's equation, its stress-energy source T,b,
makes sense as a distribution. The essence of the distri-
butional character of T,b is its ability to represent
sources concentrated on surfaces of lower dimensions.
What "lower dimensions" are possible? Restrictions
may arise from the fact that the curvature distribution is
of the special form (9). Indeed, this distribution is the
sum of one distribution arising from a locally integrable
field [first two terms on the right-hand side of (9)], and
another the derivative of a distribution arising from a lo-
cally square-integrable field [third term on the right-
hand side of (9)]. At issue is what restrictions this form

a(t)= f (pt+v'V', .t),
M

(17)

where p is a locally integrable scalar field and v' is a lo-
cally square-integrable vector field. Fix any test field t
and any positive-definite metric g,+b on M. For any
sufficiently small e&0, denote by U, the neighborhood
of S of g+ radius e; and let h, be a smooth, non-negative
function on M that vanishes in a neighborhood of S, has
value one outside U„and whose gradient has g + norm
not exceeding 2/e in the support of t. Then we have

imposes on a distribution. The answer is provided by
the following.

Theorem 1. Let S be a submanifold, of dimension d
( =0, 1,2,3), of the four-dimensional manifold M. Let
a, . . . , b ~ be a nonzero distribution which (i) has sup-
port' on S and (ii) is the sum of one distribution arising
from a locally integrable tensor field and another the
derivative of a distribution arising from a locally
square-integrable field. Then ' d =3.

Proof. Let, without loss of generality, a be a scalar
distribution. Then by (ii) the action of a on test field t is

f (pt +v'V', t)h, = a(h, t) —f tv'V', h,
M M

tv'V. h, & t v'v'g, +b t V.h, Vbh, g+'b
E

1/2

t ' g,+„— t (18)

In the first step we used the definition of a, in the second
that n has support on S, in the third the Schwarz in-

equality, and in the fourth the bound on V, h, . Now let
a~0. The left-hand side of Eq. (18) approaches

~

a(t)
~

.
The first factor on the right-hand side approaches zero
(since v' is locally square integrable), while the integral
in the second factor is bounded by a multiple of e
Hence, were d &3 then the right-hand side of Eq. (18)
would approach zero, which would yield a =0. ~

We conclude that a regular metric in general relativity
can have its curvature concentrated on a submanifold
only of dimension three (a shell of matter or radiation).
It appears that neither a point particle nor a string has a
general formulation with distributional source. Of
course, the curvature distribution of a general regular
metric can be quite complicated. It need not be "con-
centrated" on any submanifold at all.

The key feature that makes this theorem work is the
requirement that the vector field v' on the right-hand
side of Eq. (17) be locally square integrable. With the
weaker condition of local integrability this equation
would still define a distribution e, but the conclusion of
Theorem 1 would fail. In the proof, local square in-
tegrability is used near the end to bound the first factor
on the right-hand side of Eq. (18). Local square integra-
bility is the appropriate condition on v' because v in Eq.
(17) plays the role analogous to I in the last term on the
right-hand side of Eq. (9), and I is locally square integr-

able as a consequence of regularity.
As an example, consider the case in which the dimen-

sion of the manifold M is two. Then the theorem would
require d=1, i.e., it would permit line, but not point,
concentrations of curvature. But, we remarked earlier
that one can have, via Eq. (12), certain point concentra-
tions of curvature in two dimensions, provided one in-
troduces a weaker version of regularity. This weaken-
ing, in turn, consists essentially of allowing I to be
merely locally integrable instead of locally square integr-
able.

This feature also has the following physical interpreta-
tion. Think of the metric g,b as analogous to the
Newtonian gravitational potential, so I is, by Eq. (10),
analogous to the gravitational field. The requirement of
local square integrability of I, and so of v, is analogous
to the requirement that the integral for the energy of the
gravitational field converge locally. Thus, the special di-
mension d = 3 singled out in Theorem 1 can be regarded
as arising because the integral for Newtonian gravita-
tional energy converges locally for a shell of matter, but
not for either a string or point particle.

These remarks can be made more concrete. Fix a
smooth metric g,b for space-time, and consider a con-
served test stress-energy, i.e., a symmetric tensor field
T'b satisfying VbT'"=0. Since this equation of conser-
vation is linear, it clearly makes sense when T'b is an ar-
bitrary distribution. That is, a test stress energy can be
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concentrated in any way we wish. Suppose next that we
try to solve the linearized Einstein equation for the first-
order perturbation in the metric, 'h, b, with this T' as
source perturbation. Since this equation is linear, it will
in general admit a solution 'h that is also a distribution.
That is, even linearized general relativity imposes no re-
strictions on how sources may be concentrated. We next
attempt to pass to second order in perturbation theory.
Einstein s equation, at this order, equates a linear opera-
tor acting on the second-order metric perturbation h, to
an expression quadratic in the first derivative of h. But,
for h, a distribution, this expression involves a product
of distributions, and so does not in general make sense.
To force this expression to be meaningful, we must re-
quire that 'h be a tensor field (not merely a distribution),
and that its weak first derivative exist and be locally
square integrable. That is, we must require that 'h be a

perturbation that is "to a metric that is regular to first
order. " This requirement on 'h, in turn, imposes on the
original source T' essentially the conditions of the hy-
pothesis of Theorem 1. Thus, it is at second order in
perturbation theory —the order at which "the energy
density of the field contributes to the field" —that our
conditions on sources in general relativity arise.

One regards regular metrics and distributional sources
as idealizations, i.e., as approximations to fields and
sources that are more well behaved. It is of interest,
therefore, to understand how these approximations
operate. This is the subject of the remainder of this sec-
tion.

We first introduce a kind of "distance" between fields.
Let p' 'b. . . d and v' 'b. . . d be locally square inte-
grable tensor fields. For t, . . .„.. . f" " a test
field, set

p, (p, v)= J (p' ' C a
b 'b

h )ta . be f dg . h (19)

noting that the integral converges. We say that a se-
quence of locally square integrable fields, p&, pz, . . . is lo-
cally Cauchy if, for every e) 0 and every test field t,
there exists number N such that

~ p, (p;,p~ )
~

(e when-
ever i,j )X. We say that the p, converge to p locally in
square integral if, for every test field t,
lim; p, (p, p;)=0. Thus, for example, every locally
Cauchy sequence converges locally in square integral by
the standard proof in analysis of completeness of L .

The following theorem merely gives the sense in which
a sequence of regular metrics must converge to another
in order that their curvature distributions also converge.

lim ( R d+rabcd) g d+rabc
1 ~ oo

(20)

Proof. Fix the text field, and rewrite Eq. (9) in the form

Theorem 2. Let;g, b (i =1,2, . . . ) and g,b be regular
metrics. Let (i) the;g, b and;g' be locally uniformly
bounded, ' and (ii) the;g, b, ;g', and V'„gb, (weak
derivative) converge locally in square integral to g,b, g',
and V,gb„respectively. Then the corresponding curva-
ture distributions, ;R,b, ", converge to R,b, ", in the fol-
lowing sense: For any test field t' 'd,

M
(21)

where; "b, is given in terms of;g, b by Eq. (10). We see
from this expression, using the Schwarz inequality on
the last term on the right, that it suffices to show that
the;I converge to I locally in square integral. It fol-
lows from the conditions given on the;g, b and;g' that,
in the support of t, these fields converge in measure' to
g,„and g, respectively. Using this and condition (i) we
conclude: the result of taking any smooth function of
;g b and;g' is a locally uniformly bounded sequence
that, in support of t converges in measure to the corre-
sponding function of g,b and g' . But any product of a
uniformly bounded sequence of fields converging in mea-
sure with a sequence converging in square integral is a
sequence converging in square integral. Equation (10),
however, represents the;1 and I as precisely such prod-
ucts. Hence, the;I converge locally in square integral
in I . ~

We remark that the conclusion of the theorem —that
the;R, b,

" converge to R,b,
"—holds also after taking

any outer products with the metric or its inverse, and
after any contractions. Hence, this conclusion holds as
well for the Weyl tensor, Einstein tensor, etc. So, for ex-

ample, if one wishes to approximate a regular metric
with its distributional source by some smooth metric and
source, then the approximation of metrics should be in
the sense of Theorem 2.

Suppose that one is simply given a sequence of regular
(or even smooth) metrics. How can one tell whether this
sequence converges, in the sense of Theorem 2, to some
regular metric?

Theorem 3. Let;g, b (i =1,2, . . . ) be a sequence of
regular metrics. Let (i) the;g, „and;g' be locally uni-
formly bounded and (ii) the sequences;g, b, ;g', and
V„gb, be locally Cauchy. Then there exists a regular
metric g,b to which this sequence converges in the sense
of Theorem 2.

Proof Denote by g, b .and g' the respective fields to
which the Cauchy sequences;g, b and;g' locally con-
verge. Then each is locally square integrable by this
construction, and each is locally bounded by condition
(i). Replacing our sequences if necessary by subse-
quences converging almost everywhere, and again using
condition (i), we have that g' is the inverse of g, b al-
most everywhere. From the construction of g,b and the
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fact that the V„gb, are locally Cauchy it follows' that
the weak derivative V,gb, exists and the V„gb, converge
to it in square integral. We have now verified all the
conditions for g,b to be regular, and for the;g, b to con-
verge to it in the sense of Theorem 2. ~

So, for example, let there be given a distributional
source T' . Suppose we find a sequence of smooth
sources that converges, as distributions, to T'", and a se-
quence of smooth metrics, ;g,b, for these sources. When
can we guarantee the existence of a regular metric with
source T'b? When the;g, b satisfy the conditions of
Theorem 3.

For both of these approximation theorems, the normal
case will be that in which the approximating metrics are
actually smooth. This leads to the question of which
regular metrics can be suitably approximated by smooth
metrics.

Theorem 4. Let g,b be a continuous regular metric.
Then there exists a sequence, ;g,b (i = 1,2, . . . ) of
smooth metrics that converges to g, b in the sense of
Theorem 2.

Proof. Take the convolution of g,b with a sequence of
mollifiers, and denote the resulting sequence of fields

;g,b (i =1,2, . . . ). Then from this construction it fol-
lows ' that each;g, b is smooth, and the;g, b and V„gb,
converge locally in square integral to g, b and V,gb„re-
spectively. But, since g,b is continuous, these;g, b actu-
ally converge locally uniformly to g,b. It now follows

immediately that the; g,b are locally uniformly bounded,
and that their inverses, ;g', exist for all sufficiently large
i, are themselves locally uniformly bounded, and con-
verge locally in square integral to g' . We have thus
verified all the conditions for convergence in the sense of
Theorem 2. ~

Thus, those regular metrics that are continuous—
probably the most interesting class physically —can be
approximated in a suitable sense by smooth metrics.
There do, of course, exist discontinuous regular metrics,
such as that of Eq. (16). We do not know whether or
not continuity can be omitted in Theorem 4. With this
omission, the present proof fails badly.

To summarize, we have introduced a class of metrics
whose curvature tensors make sense as distributions, and
have discussed their properties. These three approxima-
tion theorems, in particular, deal with the sense in which
metric fields must be close in order to guarantee that the
corresponding source distributions will be close.

III. STRINGS

In this section, we consider in more detail the status
of strings —of sources in general relativity concentrated
on two-dimensional surfaces in space-time. The idealiza-
tion to concentrated sources is generally useful only in-
sofar as one can relate source to field, i.e., obtain a rela-
tionship analogous to that in electrostatics between the
jump in the normal component of the electric field and
the surface charge density. We shall therefore focus on
the possible existence of such a relationship in the
present case of string sources for gravitation. We shall
find that it is difficult to introduce such sources, and re-

late them to the external field, in any physically realistic
way.

Consider the metric

ds = dt—+dz +dr +r (cos y)dP (22)

where t and z range from —oo to + oo, r range from 0
to + oo, and P range from 0 to 2' (identified); and
where y&[0,n/2) is a constant. This is Minkowski
space-time with a P-angular deficit 2'(1 —cosy). As we
have seen in Sec. I, this metric results as the limit of the
family (1) and (2) of static, cylindrically symmetric
metrics, each with source confined to a neighborhood of
the axis. We interpreted these sources to give, in the
limit, a source concentrated on the axis, with mass per
unit length the same as the angular deficit:
2m(1 —cosy ).

By contrast, we proved in Sec. II a theorem to the
eA'ect that no regular metric in general relativity can
have a source confined to a two-dimensional surface in
space-time. How is this example, which seems to have a
source concentrated on a two-dimensional surface, and
this theorem, which seems to deny the possibility of such
sources, to be reconciled? At one level, the reconcilia-
tion is quite simple: We merely check to see whether
the metric (22) is regular. This metric is indeed locally
bounded, with locally bounded inverse; and, further, its
weak first derivative does indeed exist. However, this
derivative turns out not to be locally square integrable,
for it has behavior r ' on approaching the axis, while

(r ') r dr diverges logarithmically as e~O. Thus,
the metric (22) is not regular: This example is simply
not one to which the general theorem applies.

Lack of regularity of the metric (22) means only that
we cannot apply to it the general framework of Sec. II to
assign a distributional source and to relate that source to
the external field. Yet there may well be some other
framework —one more specially adapted to this type of
problem —that is applicable. There may well be some
other way to extract physics from a metric such as (22).

We might, for example, seek some procedure by which
one can assign to the metric (22) a number p, , its mass
per unit length, and can relate that number to the exter-
nal field, characterized in this example by the angular
deficit 2vr( 1 —cosy ). One promising procedure is that
suggested by the example of Eqs. (1) and (2): take the
limit of a family of well-behaved sources. In more de-
tail, introduce, for each ro ~0, a metric that agrees with
(22) for r &ro and is smooth for r &ro. This metric
represents a choice of source, confined to a neighbor-
hood of the axis, for (22) as external field. Next, com-
pute from Einstein's equation the stress-energy of this
metric and integrate over cross sections of the string.
Finally, take the limit as ro~0. This limit we take as
our source for the external metric (22).

One particular instance of this procedure is of course
that of Eqs. (1) and (2) themselves, with constant mass
density in the interior. In this case the limiting mass per
unit length, p, turns out to be precisely the angular
deficit, 2n.(1—cosy ).

Suppose now that we apply the above procedure—
introduce a family of well-behaved sources, keeping the
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external metric fixed, and take the limit —but now using
some different family of internal metrics. Do we then
still obtain, for the mass per unit length in the limit,
p =2'(1 —cosy)? In general, we do not, as the following
example shows. Let, for each I ~ 0, the metric be
exp[2A f (r ll)]g,b, where g, b is the metric of Eqs. (1) and
(2), A, is a constant, and f is any fixed smooth non-
negative function vanishing for its argument outside the
closed interval [—,', 1]. This metric agrees with that of
Eq. (22) for r ) I, and so we do have an interior metric
for (22). For the mass per unit length —defined as the
integral of the mass density in the t direction over the
two-surfaces of constant t, z—we obtain

pt ——2~(1 —cosy) —2vrk. f [f'(x)] dx . (23)
0 X

Now take the limit l~0. Fixing A. in this limit, we ob-
tain a "source" for the external metric (22) with limiting
mass per unit length p, strictly less than the angular
deficit. Alternatively, one could vary A, in the limit in
such a way that the p~ approach no limiting value at all.

This example shows, then, that our procedure—
taking the limit of a family of well-behaved sources—
does not in general yield a unique relationship between
mass per unit length and deficit angle. So, if we are to
have any hope of recovering by our procedure the "nor-
mal" relationship, @=2'(1—cosy), then we shall have
to impose some conditions on our allowed internal
metrics.

A candidate for such a condition is suggested by the
case of a shell —a source in general relativity concentrat-
ed on a three-dimensional surface S in space-time. The
external metric for a shell is required to be continuous
across S, but may have there a discontinuity in its first
derivative. One can in this case formulate a procedure,
similar to that above for a string, involving introducing
a well-behaved source in a neighborhood of S and taking
the limit. But one can also in this case construct exam-
ples, similar to that above, in which a variety of values
of the mass per unit area of S arise in the limit for given
external metric. In this case of a shell, however, there is
a simple condition that will rule out all such examples.
We merely demand that the first derivative of the interi-
or metrics be locally bounded, uniformly as the thickness
of the shell of matter approaches zero. This condition
guarantees that the limiting surface stress-energy density
on S will be given by the discontinuity in the first deriva-
tive of the metric across S, no matter what is otherwise
done with the sources in the limit. This result suggests,
then, that one impose a similar condition in the string
case. Unfortunately, this condition is not appropriate
for the externa, l metric (22), because of the following:
For @&0, there exists no choice of internal metrics hav-
ing first derivatives locally bounded, uniformly as the
thickness of the string approaches zero. This follows
from the fact that the first derivative of the metric (22)
itself is locally unbounded, near the axis. We remark
that the fact that the above condition suffices in the case
of a shell to yield a unique source in the limit is a special
case of Theorem 2 of Sec. II. That the same condition is
not available for the string is a special case of Theorems

3 and 1. In short, one can trace these difFiculties in
"building" concentrated sources for strings to the fact
that our general mathematical framework excludes such
sources.

Thus, the condition that yields in the case of a shell a
unique relationship between source and field fails in the
case of a string. Is there, then, any condition on the in-
terior for a string that will force in the limit a unique re-
lationship between the source and the external field (22)?
One might think of imposing an energy condition on the
matter. This will not suffice. Indeed, our example above
satisfies the strong energy condition provided only that

is chosen sufficiently small (where this bound de-
pends on the fixed function f, but is independent of 1).
One might think of imposing the condition that the sym-
metries of the external field —the static character and
cylindrical symmetry —apply also to the interior. This
will not suffice either, for our example above manifests
all of these symmetries everywhere. (Note that this
feature distinguishes the present example in general rela-
tivity from the Newtonian example of Sec. I. The
Newtonian example relies in an essential way on a
source violating the cylindrical symmetry. )

We thus find no general conditions on the interior
matter that will allow us to regard the external metric
(22) as having for its source a line density of mass per
unit length p=27r(1 —cosy). If we wish to recover such
a relationship, we shall apparently have to impose very
severe additional conditions. We turn, therefore, to a
condition that is both specialized and severe: the impo-
sition of an equation of state on the matter. Let us
demand that the stress-energy of the matter be given by

T,b pt, t& +p——z, zb+rr(g, I, + t, tl, z, zt, ), — (24)

where t, is unit timelike and z, unit spacelike, and these
are orthogonal. Thus, the mass density is p and the
principal pressures are p, o. , and o.—so this fluid is not
in general isotropic. Expressed in terms of these quanti-
ties, the strong energy condition becomes that p )0,
p+p )0, and p+o. )0. To specify equations of state for
such a fluid, one could give, e.g. , the two pressures as
functions of the density: p(p) and cr(p). For example,
the equations of state for the material of Eqs. (1) and (2)
are

p(p)= —p, o(p)=O. (25)

The idea, then, would be the following. First fix some
equations of state. Then construct from such matter in-
terior solutions for (22), aligning t' along the static Kil-
ling field and z' along the Killing field of translation up
the cylinder. Finally, take the limit. Since we have now
given up our freedom to vary the choice of matter in the
limit, one might hope that now there will emerge in the
limit equality between mass per unit length and angular
deficit.

Unfortunately, this program is not as simple as sug-
gested above. Fix equations of state. To specify a static,
cylindrically symmetric solution of Einstein's equation
with source (24), one must fix one additional parameter,
say, the value of the density p on the axis. One obtains
the solution by integrating outward from the axis until
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one reaches the boundary of the body, at which the exte-
rior metric is attached. Now, the general static, cylin-
drically symmetric vacuum solution of Einstein s equa-
tion can be written

ds = r'—dt +r '' '(dr +dz )+r '' 'cos y dP

(26)

where t and z range from —ao to + ~, r from 0 to
+ oo, and P from 0 to 2n (identified); and where s and

y E [0,~/2) are constants. This space-time is flat if and
only if s=0 [in which case it reduces to the metric (22)]
or s=1. In attaching our interior solution to the exteri-
or metric (26), we use continuity across the boundary of
the value of the metric and of its first derivative to deter-
mine the parameters a and y in (26). In general, then,
we shall obtain s nonzero; i.e., we shall obtain an exteri-
or metric that is not even flat —and is certainly not Min-
kowski space-time with an angular deficit. Indeed, it is
not difficult to show, imposing only the strong energy
condition on the stress-energy (24), that s &[0,2] quite
generally, with s=O or 2 if and only if the first equation
of state is precisely p(p)= —p. Thus, it is only under
this further restriction on the equations of state that we
obtain any flat exterior metric at all. But even for equa-
tions of state that include p (p)= —p, there is a further
difficulty. The entire space-time —including the value of
the remaining parameter y, the size l of the source re-
gion, and the mass per unit length p& —is determined by
a single number, which we have taken to be the value of
p on the axis. We do not have the freedom to fix y, i.e.,
fix the exterior metric, and then consider a succession of
interior solutions with l ~0. In general, we shall have
to select difFerent material for each l value. We shall
have to introduce a family of equations of state, and
then impose some complicated and delicate conditions
on the limiting behavior of the equations of state in this
family in order to obtain in the limit a source for the
external metric (22).

Thus, even the use of matter with an equation of state
does not lead directly to a limiting source for the exter-
nal metric (22), unless one chooses a very special equa-
tion of state. Even if we do use such special matter-
for example, that of Eq. (25) —a further difficulty
remains. So far, we have been dealing exclusively with
space-times that are static and cylindrically symmetric.
Yet one would not expect this high degree of symmetry
to obtain in physically realistic situations. One may,
e.g. , have a "curved" string, or there may be incoming
gravitational radiation or some object external to the
string.

Let there be such an object or radiation. In its pres-
ence, construct, using fluid with equation of state (25), a
tubular body of characteristic radius l. What happens in
the limit l~0? There are really two questions here.
Does a limiting space-time exist? And, if it does exist,
then can one find and relate in a simple way quantities,
such as the limiting mass per unit length, characteristic
of the source and quantities, such as the limiting angular
deficit, characteristic of the external field? We discuss
these two questions in turn.

A complete answer to the question of whether there

exists a limiting space-time appears to be difFicult. There
is one, rather weak, piece of evidence suggesting that
such limiting solutions do exist: One can, in some situa-
tions, argue for a certain candidate for the limiting solu-
tion. Consider an axisymmetric space-time (neither cy-
lindrically symmetric nor static) that is smooth at its
axis, includes an axisymmetric matter distribution van-
ishing in a neighborhood of the axis, and may include
some axisymmetric gravitational radiation. One expects
on physical grounds that a variety of such solutions will
exist. Introduce into such a space-time a P angular
deficit, just as was done for the metric (22). The
result —an exact solution of Einstein s equation with a
"conical singularity" on the axis —is our candidate for
the limiting space-time in the case in which the gravita-
tional radiation and the external object are both axisym-
metric. Of course, the mere fact that such solutions
exist does not mean that these are the ones that arise in
our limit. It may be possible to obtain further evidence
on this issue by "linearizing in the external influences. "
Write down the linearized Einstein equation off Eqs. (I)
and (2) as background. Introduce fixed boundary condi-
tions at infinity, corresponding to given incoming radia-
tion, and a fixed external source, corresponding to a
given external object. The issue is whether one can find
a solution to this linearized system, for each l, such that
these solutions have a well-behaved limit as l ~0. Even
this linearized version of the question of the existence of
a limiting space-time appears difFicult.

Let us now suppose for a moment that we have
somehow obtained, in the limit l~0, our solution of
Einstein's equation. We may then turn to the second is-
sue: whether we may describe this situation by some
simple relationship between quantities characteristic of
the source and of the field. We were dealing previously
with just such a relationship: namely, equality between
the mass per unit length and angular deficit. But these
particular quantities as they stand do not make sense in
the absence of symmetries. Thus, we defined the mass
per unit length as the integral of a component, defined
via the static Killing field, of the stress-energy over a
two-surface in space-time orthogonal to that Killing field
and the one of translation along the axis. We defined
the angular deficit using the norm of the rotational Kil-
ling field. If we wish, lacking symmetries, to relate
source and field in a similar way, then we shall have to
revise these definitions.

One might define angular deficit, for example, by con-
structing geometrically certain "circles" about the
string, and comparing proper radius and proper cir-
cumference in the limit as the circle collapses down on
the string. Or, alternatively, one might define and com-
pute the asymptotic deflection of a light ray just grazing
the string. Similarly, one might define mass per unit
length by integrating, for l & 0, some specified "time
component" of the stress-energy over some geometrical-
ly defined two-surfaces cutting the tube of matter, and
then taking the limit l~O. It is by no means certain
that there exist any general definitions whatever along
these lines. Even if given such definitions, there may re-
sult no simple relationship between the source and field
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so defined.
To summarize, even if one specifies equations of state

for one's matter, then, lacking symmetries, it is not clear
whether there exists any limiting space-time for a con-
centrated string source. Even if such a space-time does
exist, it is not clear what to do with it.

We may illustrate some of these issues with the special
case in which one discards only the cylindrical symme-
try, retaining the static character. Denote by y, b the
three-dimensional spatial metric, and by V the norm of
the timelike Killing field. We again take as our source
T,b p(t, ——tb —z, zb ), i.e., the form (24) with equations of
state (25). Then, aligning t' along the timelike Killing
field, Einstein's equation becomes the following system
of three-dimensional equations on the fields V (&0), z'
(unit), p, and y, b

..

D'D, V=0,
1

z V' z'= —(y' —z'z )D V,

(27)

(2&)

D, (pz') =0,
l

D,Db V—+p(y, b z, zb ),
V

(29)

(30)

p = pz, dS', (31)

where the integral is over any two-surface S cutting the
static tube of matter. By Eq. (29) this integral is in-
dependent of the choice of S. One can think of this p as
a "minimum value" for the mass per unit length, in the
sense that

p( J' pn. dS' (32)

for any two-surface S cutting the tube, where n, is the

where Jk,b denotes the Ricci tensor of y,b, and D, its
derivative operator.

Now fix some additional sources on the right in Eqs.
(27) —(30), and solve the resulting system for the case of
a tube of fluid of characteristic size l. Does this family
of solutions have a limit as 1~0? This question, even
here in the static case, appears difficult. Its linearized
version is the following. Take as the background the
family, (1) and (2), of solutions of Eqs. (27) —(30). For
each l, find a solution of the linearized versions of Eqs.
(27)—(30) off this background, including a fixed addition-
al source on the right-hand sides. Does this family of
linearized solutions have a limit as l —+0? Even this
linearized version appears difficult. However, it does
have the same character as the following question. For
each I, solve the equation D P=p in the spatial metric
of Eqs. (1) and (2), where one fixes the source p, vanish-
ing in a neighborhood of the axis, and fixes the asymp-
totic boundary conditions. Does the resulting family of
solutions have a limit as l~0? Surely, this question can
be settled.

We next turn to the issue of finding and relating quan-
tities characteristic of source and field. In this static
case there is, remarkably enough, a simple and natural
notion of "mass per unit length. " Consider

unit normal to S. It is curious that this mass per unit
length does not vary along the tube. Unfortunately, we
do not know whether or not this p must have a limit as
l ~0. It may be possible to argue that the limit does ex-
ist by using independence of the surface S to choose S in
the limit far from the external object. But in any case
there appears to be no similar, simple measure of angu-
lar deficit to compare with p. Perhaps some light would
be shed on these issues by studying their linearized ver-
sions.

IV. COSMIC STRINGS

We now consider applications to cosmic strings.
Work in this area may be divided into three broad

categories, according to how the strings are treated. The
first is that in which the gravitational field of the string
itself is ignored; i.e., the string is represented by a test
stress-energy distribution. An example is the calcula-
tion of the evolution of a network of test strings on a
Robertson-Walker background space-time. The second
is that in which one deals with strings of finite size, with
the internal structure determined by a given equation of
state or even by an explicit field theory. Examples in-
clude the construction of straight strings from certain
gauge and scalar fields, ' and calculations of the effects
of loops of such strings on the growth of matter fluctua-
tions. Finally, the third category is that in which the
string is idealized as a concentrated source, and that
source is then inserted, directly or indirectly, into
Einstein's equation. Examples include calculations of
the gravitational effects of thin strings on external
matter or radiation, and of the gravitational radiation
from oscillating thin strings. We have been concerned
in this paper with the gravitational fields of concentrated
sources. Thus, the present considerations are not applic-
able to work in the first category, in which gravitational
effects are ignored, nor to work in the second, in which
the sources are not "concentrated. " But this paper is
applicable to work in the third category.

We consider first the work involving the gravitational
effects of thin strings on external matter or radiation.
Here, one observes directly these gravitational effects,
then attempts to infer from these effects features of the
external gravitational field, and finally attempts to infer
from these features properties of the string source itself.
Consider, for example, the case of a cosmic string lying
on the line of sight between an observer and a distant
quasar. Because of the gravitational bending of light by
the string, one expects to see a double image of the qua-
sar. From the observed angle 0 between the two quasar
images one infers, assuming external metric (22), that
this external metric has angular deficit 20. Then, assum-
ing that the source is that of Eqs. (1) and (2), one infers
that the mass per unit length of the string is also 20.

But we have seen in Sec. III that, for a concentrated
string source, the relation between source and field is a
delicate one. Suppose, for example, that the string were
made of matter whose equations of state are not exactly
those of Eq. (25). Then the external metric would not in
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8=m.(1—cosy) —2vrs cosy . (33)

We conclude that, in the case of interest (cosy —1), the
mass per unit length of the string inferred from the angle
between the images will be subject to a fractional error
of the order of 6p/p. This error could, depending on
the new equations of state, be substantial. As a second
example, suppose that an external object were intro-
duced into the vicinity of the string. Then this object
would of course have a direct effect through its own
bending of light. It would thereby change the observed
angle between quasar images by the order of ma/r,
where m is some characteristic mass of the object, a a
typical separation of the two light rays as they pass the
object, and r a typical distance from object to light rays.
But, as we have seen in Sec. III, there will also be an in-
direct effect arising from the inhuence of this object on
the string itself: The presence of an external object will
break the normal relationship between mass per unit
length and external gravitational field of the string.
Given the size of the string, one could, at least in princi-
ple, compute this effect from Eqs. (27) —(30). But, as we
remarked in Sec. III, how the magnitude of this effect
behaves in the limit of a concentrated source is presently
unknown. It could be substantial. We conclude that the
mass per unit length of the string inferred from the angle
between quasar images will be subject to an error of at
least the order of ma /r, and possibility far larger.
Similar remarks should apply to other methods for
determining the mass per unit length of a string from its
gravitational effects, e.g. , by the effects of the string on
nearby free particles, or on the background microwave
radiation.

We consider next the work on gravitational radiation
from oscillating thin strings. Consider a loop of cosmic
string that undergoes oscillations, and as a result radi-
ates gravitationally. A particularly sensitive probe for
such gravitational radiation is provided by the pulsar
periods, since they can be measured so accurately. The
amount of gravitational radiation emitted is estimated by
idealizing the string to a distributional source and com-
puting its linearized gravitational field. This calcula-
tion predicts effects from cosmic strings which, for the
case of the millisecond pulsar, are close to what current-
ly would be observed.

How reliable are these estimates of the emission of
gravitational radiation? As we have noted in Sec. II, the
linearized Einstein equation makes sense with any distri-
butional source, while the full Einstein equation does not
seem to make sense for a source concentrated on a two-
dimensional surface in space-time. That is, the first-
order metric perturbation, in this case is not the linear
approximation, in any meaningful sense, to some exact

general be that of Eq. (22), but rather of Eq. (26). The
parameter s in this metric would be of the order of
p(5plp), where 5p is a typical change in the density of
the string matter resulting, via the Einstein-
hydrodynamic equations, from our new equations of
state. We must now relate the observed angle 0 between
quasar images to the parameters of this new external
metric. We obtain, to first order in s,

metric. Indeed, this problem is seen already in second
order in perturbation theory. The source for the
second-order metric perturbation h is given by an ex-
pression of the form (V'h), where 'h is the first-order
metric perturbation. But this source is not in general lo-
cally integrable, and so if we attempt to determine the
second-order perturbation, say, using a Green's function,
then the integral will in general diverge. We now esti-
mate the error that results from using first-order pertur-
bation theory and a distributional source to compute the
gravitational radiation from an oscillating string. For
the case of a string, the integral of the source for h

diverges logarithmically. Were h to be computed, not
for a distributional string, but rather for one of finite size
l, then this divergent integral would be cut off at dis-
tances of order I from the string. We thus obtain, for
the gravitational radiation of a finite string, a second-
order perturbation that is the order of pin(R!I) times
the first-order perturbation, where p is the mass per unit
length of the string and R is a typical distance from the
string at which the radiation is observed. While this ex-
pression does become infinite as I ~0, it does so slowly,
reAecting the fact that the metric for a concentrated
string is "nearly regular. " Inserting typical values for
cosmic strings, l —10 sec, R —10' sec, and p —10
we obtain for this number about 10 . Thus, for calcu-
lations of gravitational radiation from cosmic strings,
the idealization to a concentrated source does not appear
to produce significant errors.

V. CONCLUSION

We have been concerned in this paper with the status
of concentrated sources in general relativity. In Sec. II,
we introduced the notion of a regular metric —a metric
whose curvature tensor, and therefore whose stress-
energy source, makes sense as a distribution. We
showed, in particular, that string sources —those con-
centrated on two-dimensional surfaces in space-time-
are not permitted by regularity. In Sec. III, we exam-
ined this conclusion in more detail. In turns out in the
case of a string to be difficult to construct a concentrated
source as a limit of well-behaved sources. Finally, in
Sec. IV, we discussed applications to work on cosmic
strings.

We have seen in Sec. II that the Bianchi identity does
not in general make sense for a regular metric. Thus,
for a regular metric, one cannot in general obtain con-
servation of stress-energy via Einstein s equation. It
seems strange that so fundamental a property of matter
should be lost in this way. Is there some way to recover
some remnant of conservation of stress-energy? A some-
what analogous issue arises in electrostatics. The force
on a smooth charge density in electrostatics is the in-
tegral of the charge density times the electric field. For
the case of the charge density a distribution, this formu-
la generalizes to the result of that distribution acting on
the electric field. Consider, then, a surface-charge distri-
bution of strength o". What is the force per unit area
acting on this distribution? Formally, this question can-
not be answered, for the charge distribution in this ex-
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ample acts only on continuous fields, while the electric
field is discontinuous across the surface. Yet we know in
this case that there is an answer to our question: The
force per unit area on the charge distribution is given by
the product of cr and the average of the electric fields on
the two sides of the surface. Perhaps there is available
something similar for certain regular metrics.

Since the stress-energy of a regular metric emerges as
a distribution, the matter fields contributing to this
stress-energy no longer need be smooth tensor fields.
How well behaved must these matter fields be? This is-
sue must be dealt with separately for each type of
matter, the general rule being that the matter fields need
only be sufficiently well behaved that the equations on
these fields and Einstein's equation both make sense.
Thus, for an electromagnetic field F,b we have Maxwell's
equations,

~[a bc] ~ ~[a ( ~bc) de )

and Einstein's equation,

(34)

(35)

Let the metric of space-time be regular. Then in order
that all of Eqs. (34) and (35) make sense it is necessary
that F b be a locally square-integrable tensor field.
Indeed, the first equation in (34) makes sense for any dis-
tribution F,~', the second, since e,&'" is locally bounded,
provided F,b is a locally integrable tensor field. But the
right-hand side of Eq. (35) makes sense as a distribution
only for F,b locally square integrable. It is curious that,
in the case of electromagnetism, one must obtain for the
stress-energy a distribution of a rather mild sort: a lo-
cally integrable tensor field. Does the resulting
Einstein-Maxwell system, Eqs. (34) and (35), have an
initial-value formulation? The case of a fluid source, in
which the equations analogous to (34) are nonlinear, is
more complicated. It is tempting to retain the four-
velocity of the fluid as a smooth vector field, allowing
only the density and pressure to be badly behaved. But
such conditions will, presumably, conflict with the hy-
drodynamic equations. Is there any set of conditions on
the fiuid variables with a regular metric that both (i) per-
mit a reasonable number of solutions (e.g. , via an initial-
value formulation) and (ii) exploit the full richness avail-
able with regular metrics?

Somewhat related to these issues is the status of the
geodesics of a regular metric. the geodesic equation,

gmq ga I a /man (36)

regarded as an ordinary differential equation for a curve,
will not in general have solutions. Indeed, the existence
of solutions would require that I ' „satisfy a local
Lipschitz condition —something far stronger than the
local square integrability that follows from regularity of
the metric. Thus, a regular metric does not in general
have geodesics. Yet, in some physical applications one
does introduce curves regarded as representing the
motions of free particles. For a shell of matter, for ex-
ample, a "geodesic" is made to pass through the shell by
matching its tangent vector continuously across the

shell. Is there some larger framework into which such
examples At? One could, alternatively, introduce a "geo-
detic vector field, " i.e., a field P satisfying Eq. (36). In
order for this equation to make sense, it suffices, e.g. ,
that P be locally bounded, and that its weak first deriva-
tive exist. (These conditions, incidentally, are too weak
to ensure that integral curves of the field P exist. )

Perhaps such geodetic vector fields can, in some way, be
used as substitutes for geodesics.

In Regge calculus, one replaces the smooth metric of
space-time by a simplicial approximation, i.e., by a
metric that is flat except at certain two-surfaces, on
which the curvature is concentrated. Such a metric is
certainly not regular in our sense, and so we cannot re-
gard such a metric as an approximation, in the sense of
Theorem 2, of a regular metric. In fact, we cannot even
define, via Eqs. (9) and (10), the curvature distribution of
such a metric. In what sense, then does such a "simpli-
cial approximation" actually approximate a smooth
metric? Is there any way to guarantee that the "curva-
ture distributions" arising from the simplicial approxi-
mations converge as distributions to the curvature of
some smooth metric? Can one prove that computer
simulations based on Regge calculus actually reflect
what would happen in full general relativity? One might
think of proceeding by trying to generalize to higher di-
mensions Eq. (12), which defines the curvature combina-
tion R e,b in two dimensions for certain nonregular
metrics. But that formula appears to be special to this
particular curvature combination.

Is continuity actually necessary in Theorem 4 of Sec.
II? Consider, as an example, the metric on R given by

ds =dx +dy +dz +du
—4(x dx +y dy+z dz+w dw) /(x +y +z +w ) .

(37)
This metric is smooth everywhere except at the origin,
and is regular. Can it be approximated, in the sense of
Theorem 4, by smooth metrics? It is not so easy. For
example, there exists no smooth (or even continuous)
Lorentz metric that agrees with (37) outside a bounded
neighborhood of the origin, for the light cones in (37)
"point toward the origin, " resulting in a topological ob-
struction to extending them continuously inward from
outside such a neighborhood. In particular, the proof of
Theorem 4, applied to this example, will fail, for the;g, b

constructed in that proof will never be invertible near
the origin. Yet, in spite of all this, there do exist smooth
metrics that approximate (37) in the sense of Theorem 4.
Denote by L the "wire from the origin to infinity" given
by x =y =z=0, w)0. Choose a sequence of smooth
metrics, each coinciding with the metric (37) outside a
neighborhood of L, but whose light cones within this
neighborhood "turn so as to point outward along L."
This can also be done in such a way to obtain conver-
gence in the required sense. Can such "wires" be woven
into a proof that Theorem 4 holds withouts its continui-
ty condition?

What if Theorem 4, without the continuity condition,
should fail? The counterexample would consist of a reg-
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ular metric —necessarily discontinuous —that cannot be
approximated in the required sense by smooth metrics.
Then one would have at least two options. On the one
hand, one could argue that general relativity is funda-
mentally a theory of smooth metrics, and so no metric
should be considered unless it can be suitably approxi-
mated by a smooth metric. Then one would include
continuity as an additional condition in the definition of
a regular metric. On the other hand, one might "gen-
eralize" relativity by taking such metrics seriously. Do
they suggest new physics?

The definition we have given for a regular metric was,
after all, merely what seems to arise naturally from ex-
amining Eq. (9). Is there some theorem to the effect that
this is the widest, physically reasonable, class of metrics
for general relativity? It might, for example, read "Any

class of metrics such that. . . is included in the class of
regular metrics. " Here, ". . ." would require essentially
the existence of a distribution with properties (sym-
metries, dependence on the metric, locality, etc. ) reminis-
cent of a curvature distribution. Even a partial result
lending legitimacy to the definition of regularity would
be interesting.
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