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Fermions trapped inside a closed domain wall may cool to degeneracy and form a long-lived struc-

ture. In the context of spontaneous left-right-symmetry breaking, we show that trapped right-handed

neutrinos cool due to annihilations to electron-positron pairs if the initial temperature is less than

0.21m, . The surface tension of the wall must be less than (1.93 TeV)'. The lifetime of the neutrino

ball (NB) is determined by neutrino annihilation to three photons and may be comparable to the age

of the Universe. These NB's are in the 10 —10' solar mass range and radiate y rays in the few hun-

dred keV range at a rate of 10 —10 erg/sec range. NB's die in a 10'"—10' erg electron-positron

burst.

INTRODUCTION contained in the horizon volume is'

In the early Universe domain walls may have existed
such that degenerate vacuum states on opposite sides of a
wall are related by a discrete symmetry. ' Particles on op-
posite sides which are related to each other by the discrete
symmetry operation have the same mass. But it is possi-
ble that a particle has a mass which changes across the
wall. Such a particle with energy small compared to the
mass difference will not penetrate the wall. A wall en-
closing a volume will then trap such particles. For de-
creasing volume the pressure of the gas grows much more
quickly (cc V for adiabatic compression of a relativis-
tic gas) than the pressure exerted on the gas by the surface
tension (cc V 't ). The structure is stabilized about some
volume; we wish to study the properties and evolution of
these structures.

Domain walls arise from a spontaneous breakdown of a
discrete symmetry, and we will base our analysis on an
explicit example of this phenomenon. We will treat the
case of spontaneous parity (and charge-conjugation)
breakdown in a left-right-symmetric theory. We take the
order parameter for this breakdown to be a large Majora-
na mass for right-handed (RH) neutrinos, ( vie v~ ) &0.
(The reader may assume that this order parameter devel-
ops either due to appropriate Higgs structure or due to
appropriate strong gauge dynamics in the absence of
Higgs fields. ) In another region of space it may be the
LH neutrino which develops a large mass, and this region
will be separated from our region by a domain wall. RH
neutrinos on the other side of the wall from us are light
(with masses equal to our LH neutrino masses). If their
energies are small compared to the large RH neutrino
mass on our side then they will not be able to pass
through the wall to us. All other fermions have equal
mass on either side. We refer to balls of trapped light RH
neutrinos as neutrino balls (NB's).

Domain walls in the early Universe must not dominate
the energy density and influence the evolution of the
Universe in an unfavorable way. ' But causality implies
that there is at least one wall stretched across each hor-
izon volume. Then, if the surface tension of the wall is o. ,
the time at which the one wall dominates the total energy

t =0.03//'(Go. } .

[We have used pb
——3/(32wGt ) =0.03/(Gt ) for the

background radiation energy density of the Universe. ]
There are two mechanisms by which these "infinite"
walls may disappear before t. One involves cosmic
strings which form earlier than the walls and which be-
come boundaries of walls when walls form. The system
of hole-dominated walls and walls bounded by strings
eventually decays away before t (Ref. 3). Note that the
spontaneous creation of a hole in a wall has an exponen-
tially suppressed tunneling probability and that this phe-
nomena plays no role in the infinite-wall removal. '
Rather, a piece of wall bounded by string striking an
infinite wall suffices to puncture the latter. The evolu-
tion and disappearance of the wall-st ring system has
been discussed for the case of interest here, that of a
left-right-symmetric theory emerging from SO(10) (Ref.
3). The other mechanism involves a slight explicit
breaking of the discrete symmetry. ' This slightly
favors one vacuum over the other and eventually the
walls get pushed everywhere toward the side of higher
vacuum energy. This mechanism creates an additional
complication to the following analysis which we will
treat. But for the most part we will not be concerned
with the actual mechanism for wall removal. We only
assume that some NB's remain after the infinite walls
(and strings) have disappeared.

We will be interested in the possibility of long-lived
NB's. We will find that NB's may undergo a cooling and
become long-lived if o'' 1.93 TeV. It might be expect-
ed that o'' is of the order of the scale of left-right-
symmetry breaking, in which case we are identifying
consequences of the latter occurring at a relatively low en-
ergy. But inside the wall thickness both ( vL vt ) and
(vR vR ) will be nonzero and thus cr is not directly related
to the potential-energy difference between the symmetric
phase [when both vacuum expectation values (VEV's) are
zeroj and the broken phase (when one VEV is nonzero).
Thus for suitable values of parameters in a Higgs poten-
tial, for example, o. ' could be arbitrarily small compared
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Inside a NB we have a relativistic gas of n„ flavors of
light stable RH neutrinos. We assume the gas starts with
total neutrino number zero and with zero chemical poten-
tial for each flavor. The number of neutrinos of one
flavor will always equal the number of antineutrinos of
that flavor.

First consider a static spherical NB. The internal neu-
trino pressure, always —,

' of the neutrino energy density p,
must balance the pressure exerted on the neutrinos by the
wall tension. We ignore here the external LH neutrino
pressure which eventually becomes negligible due to the
expansion of the Universe. The wall tension pressure is
2o. /r if the radius of the NB is r. Thus

p=6o. /r . (2)

We then find the total mass of the NB ignoring gravita-
tional eA'ects:

4vrr o.+—'~r p= ]2~r e . (3)

Relations (2) and (3) rely only on the neutrinos being rela-
tivistic and will thus be true throughout the evolution of
the NB.

For an initial temperature T; the initial energy density
is p;=(7' n„/12 0)T; and the initial number density of
neutrinos is n;=0. 18269n, , T; . Inserting p; into (2) gives
a relation between T; and r;. Thus for a given total num-
ber of trapped neutrinos N =n; V;, the initial T; and r; are
determined.

We note that there is an upper limit on the initial mass
M; since if M; is too large the NB becomes a black hole.
Requiring 2GM; & r; and using (3) gives

M; & (48mG cr)

= 1.3X10 !cr(TeV ) solar masses . (4)

(This bound is approximate since we have not incorporat-
ed gravitational effects in the determination of the mass. )

We also note that a NB which is not close to being a
black hole is then automatically smaller than the horizon
size at time t. This allows NB's to form before the infinite
walls must disappear.

In general, NB's will be formed with a nonspherical
shape and with moving walls. In a vacuum the result
would be NB's oscillating around the equilibrium
configuration. But the background density of LH neutri-

to the left-right-breaking scale. We will say no more
about the physics of left-right-symmetry breaking. To
give the reader some idea of the time scales of interest we
note that t=3000 sec for cr =(1 TeV) . The temperature
of the Universe at this time is about 20 keV, well below
the electron mass.

We start by assuming that the NB wall is completely
opaque to neutrinos. We will discuss initial NB proper-
ties, the cooling phenomena, and the NB lifetime before
returning to the question of possible leakage through the
NB wall. We then treat the case of a slightly preferred
vacuum. In the concluding section we describe the prop-
erties and evolution of NB's living much longer than the
cooling time.

INITIAL PROPERTIES

nos which are reflected at the NB surface causes a damp-
ing of these oscillations. The typical damping time is

rd =olgpg =t lgt, (5)

where g is the neutrino fraction of the total background
energy density pb. For example, if n =2 and if there are
no other massless particles besides photons then g tends
toward =0.3 as the electrons and positrons annihilate.
NB's formed before +twill have their oscillations damped
within one expansion time to end up as static, spherical
NB's. NB's formed after Pt will not have their oscilla-
tions damped in this way, but kinetic energy will still be
lost through gravitational radiation. The radiation loss
for large oscillations may be estimated (Vilenkin ) using
the quadrupole formula, noting that the typical frequency
of oscillation will be co=r

M= —GM r M = —Go.M . (6)

Thus in a time = t the large oscillations of these NB's will
also be damped. We therefore continue our analysis of
static NB's or NB's with an amplitude of oscillation small
compared to the NB radius.

COOLING

Inside the NB the RH neutrinos have the same weak
interactions (only parity (lipped) as the LH neutrinos out-
side the NB. Thus trapped neutrinos and antineutrinos
may annihilate to electron-positron pairs. The produced
electrons and positrons are able to drift outside the NB.
If T; ~m, these annihilations produce a short and unin-
teresting lifetime for the NB. If T; is sufficiently below
m, then a more interesting phenomena can take place.
Only those neutrinos on the high-energy tail of the
thermal distribution have enough energy to annihilate.
As this process continues the average energy of the
remaining neutrinos drops. Thus the neutrinos cool and a
nonzero chemical potential develops, the same for neutri-
nos and antineutrinos of each flavor. The decreasing
average energy makes it more and more difficult to pro-
duce electron-positron pairs through annihilation and the
process slows. We are left with a ball of relativistic neu-
trinos slowly approaching degeneracy.

We note that the neutrinos originally decoupled from
the electrons when the temperature of the Universe was
=2m, ~ The NB's of interest are formed well below this
temperature so that the trapped neutrinos are decoupled
from the background radiation and matter in the
Universe. It is easy to check that they remain so over the
lifetime of the NB. We also note that some electrons and
positrons emitted by the NB itself may remain gravita-
tionally bound to the NB. But rapid annihilations to pho-
tons keep this electron-positron cloud from building up to
levels significant enough to afI'ect the NB.

We wish to derive the critical initial temperature below
which the cooling phenomena occurs. We first find the
relation between the change in the total mass M of the
NB and the change in the total number N of trapped neu-
trinos, due to annihilations to e+e . A neutrino and an-
tineutrino each having energy =m, may annihilate to
e+e, implying dM =m, dN. We may write the result of
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integrating over neutrino energies and phase space as
dM =Ym, dN. Since we are supposing that the tempera-
ture is well below m, the Boltzmann factor ensures that
most of the contribution arises from neutrinos with ener-
gies =m, . Then 7 is a number only slightly larger than
one. 7 also has a slight time dependence, approaching
unity even closer as the NB cools. For simplicity we set
7=1. But we then anticipate a small correction to our re-
sult for the critical temperature.

As we check below, the cooling process is slow enough
so that the NB continues to satisfy (2) and (3) as it
shrinks. Then M is a factor of —,

' times the energy in neu-

trinos at all times. Combining M = —,'(pin)N with dM
=m, dN gives
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FIG. 1. x,,-:—p„. ,-/p;=r;/r„, (ac denotes "after cooling" ) as a
function of y

—= T; /T, .

dM /M = (2m, n l3p)dN /N .

Equations (2) and (3) also imply that

dM/M =2dr/r = —2dp/p .

Then since n =N/( ', err ), —

dn /n =dN /N —3dr /r

(7)

(8)
n (p) = 3p/2m, + C(T; )p' . (16)

C(T;) is determined by the initial n; and p;. Defining
x—=pip; and w =n ln; we find that (16) is equivalent to

w (x)=xy+x (1 —y) .

=[—(3plm, n)+3]dplp . (9)

For decreasing M, p and n are increasing. But the aver-
age energy per neutrino, p/n, will decrease if
3 —(3plm, n) ~ 1 or

p/n & —', m„. (10)

Henceforth we use y = T; /T, in place of T; ~

The initial NB mass is

M; = (6 220 800o /49m n, T, )y =M, y (12)

The upper bound y & 1 means that M, is a lower bound
on M;:

M, =2X10 [cr(TeV )] /n, , solar masses . (13)

Combining this lower bound on M; with the upper bound
in (4) we find that for NB's to exist at all we must have

Thus p/n will continue to decrease after starting to de-
crease. By inserting the initial values p; and n; into (10)
we find that the initial temperature must satisfy

T; & T, where T, =0.21155m, .

In the limit of complete neutrino degeneracy we have
nd =n, ,pd /3~ and pd =n,pd /4~ for some chemical3 2 4 2

potential pd . The relation between nd and pd may be
written in terms of ed —=pd/p; and md =nd/n;:

wd (xd ) = 1.9244xd (18)

Thus a NB will tend toward a case of complete degenera-
cy if the functions in (17) and (18) intersect. A solution to
w (x„)=wd(x„. ) for x,„.&0 turns out to exist for all initial
temperatures y & 1.000 231. The fact that y may be
slightly larger than unity implies that degeneracy may be
achieved even though p/n increases slightly.

x„(y) is the ratio of energy density after cooling to the
initial energy density: x„(y)=p,,/p; =r;/r„, . We plot
x„(y) in Fig. 1 [where x„(1.000231)=21.968]. From
this we may obtain the limiting mass after cooling:

M„=x„(y) y M, .

We also note that the chemical potential after cooling
p„(y) has the maximum value p„(1.000231)= m, .

To find the cooling time we consider the evolution of
the total number of trapped neutrinos N(t):

0' 1.93 TeV . (14) (dN(t)ldt)/N(t) = V(t)(dn /dt ~,„„)IN'(t)

We now discuss the cooling phenomenon in more detail
in order to find the NB mass after cooling. We may
rewrite (9) as

dn /dp —3n /p+3/m, =0,
which may be solved to give

=(dn Idt ~,„„)/n (t) . (20)

(dn ldt ~,„„) denotes the change in the number density
due to annihilations [and not due to the changing total
volume V(t)]. We find the time r, it takes for annihila-
tions to significantly change N by inserting initial values
of quantities into (20):

'=2(5Gp m, /3')[(m, /4n )T; exp( —2m, IT; )](0.1827T; ) (21)

Two neutrinos are lost per annihilation. The next factor in (21) is the weak-interaction annihilation cross section
o.(v, v, ~e+e ) for two neutrinos of energy =m„neglecting phase-space factors. The next factor is the squared nurn-
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ber density of neutrinos of one flavor with energies ~ m, . And the last is 1In (except that the I!n„factor has canceled).
Thus the cooling time is

r, =2X10'y exp(9. 454/y) sec . (22)

y =1 gives the lower limit r, ~ 1 yr. (Neglected phase-space factors should increase r, no more than a factor of 10.)
The corresponding time scale for neutrino-(anti)neutrino scattering, which is not Boltzmann suppressed and which

maintains thermal equilibrium, is of the order 10 /y sec. Also, the process v;v;~v~v~ maintains equal numbers of
diff'erent flavors.

To study the time evolution in more detail we express the RH side of (20) in terms of N(t) and then solve for N(t).
Suppressing the time dependence of quantities we write N = Vn, V = V;/x, and using (17) we find

N:—N/g =y'[ylx'+(1 —y)] where /=0. 182 7n„VT, 3.

Then

(23)

1/x =[N/y +(y —1)/y]3~ (24)

(dN/dt)IN=(1ln)(dn /dt ~,„„)=(1/N)(V, /g)(1/x )(dn/dt ~,„„)
= —(2X 10 sec) '(1/N)[N/y +(y —1)/y]3~2f(N) .

It remains to determine the factor

f (N)=[T(N)/T, ] expI —2[m, p(N)]IT(N—)]

(25)

(26)

which cuts off'the annihilations when T(X) becomes small. We do this by numerically inverting the relations

n =(n /n ) f dec/I exp[(e'p)IT—]+1], p=(n„/ i)rf de e /I exp[(e —p)IT]+1]
0 0

to express T and p, in terms of p and n which in turn are functions of N through (24) and (17). Equation (25) may then
be numerically integrated. A plot of the result for y = —; is shown in Fig. 2 where we have used N(t) to obtain M(t)IM;.

The above analysis has neglected kinetic energy of the wall as the NB shrinks. We may check this assumption by us-
ing (23) and the fact that x =r; /r to find the velocity of the wall:

dr/dt=(r;/t)I(N/2y )[N/y +(y —1)/y] ' (d inN/d lnt) I (28)

Since r;/t «1 at the time of cooling we may conclude
that the wall velocity is negligible (at least for y not ex-
tremely close to 1.000231).

LIFETIME

below the electron mass we need only consider an elec-
tron loop. We first show that the two-photon amplitude
is negligible. The weak vve+e vertex in this diagram
may be Fierz transformed to the form

We now treat the effect of neutrino annihilations to
photons. We consider the diagram in Fig. 3 with some
number of photons attached. With external momenta

&Ry"&gey„(a +by5)e .

Thus the amplitude for this diagram takes the form

&R y VR Tpa/3( k I, k 2 )El/2 (29)

1 0

0.9 -—
0
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where we let p,~, k,", and e"; (i =1,2) be the incoming
neutrino momenta, the outgoing photon momenta, and
photon polarizations, respectively. T& ~(k, , k2) is the
triangle diagram amplitude for one axial-vector current
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FIG. 2. The time evolution of the NB mass due to the cooling
process for y = —. FIG. 3. Neutrino-antineutrino annihilation to photons.
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and two vector currents. Gauge invariance
(k, T„~p——kzT„p ——0), Bose symmetry (k, , a~k2, P),
and on-shell photons allow only the following two com-
binations in T„p(k, , k2):

(1) (k, +kz)„e p k, k~2,

(2) e„~p~(k, —k2) (k, k, ) e„p—~pk, k,k,~ —e~„(,pk, k,k, p

We choose e~ k~ =eq kq=0 and e~ (k~+kq)=0. Thus
our amplitude takes the form

vRy"vs[A(k)+k~)„e p pk)k$

+Be„p (k) kp) (—k).kp)]e)e, . (30)

I /r = ( n /2 )ncr ( Vv y&y y )

={p„'/6~ )4.5 ~ 10 Ru GF E,,
' /m„ (31)

We have expressed n in terms of the chemical potential
after cooling, p, „.. If we also set E,, =p„. (we will improve
this approximation below) then we have

r = 5 & 10' R ( m, /p„. „.)
' sec . (32)

This estimate assumes that (m, /p, , )' »1. We see that
the lifetime r is much greater than the cooling time r, [at
least for y not too small, see (22)]. The ratio m, /p„. may
be obtained as a function of y:

m, /p, „,=2. 165X„(y) '
/y . (33)

We plot the factor (m,, /Iu„. )' appearing in the lifetime
versus y in Fig. 4.

We have obtained cosmologically interesting lifetimes
which are independent of o. and thus independent of the
underlying particle physics giving rise to walls (assuming
that o is less than our upper limit).

We need not determine 3 or B since both terms inside the
brackets are proportional to (k&+kz)„=(p&+p2)„(fo«he
B term this is most easily seen in the center-of-mass
frame). We therefore find that our amplitude is propor-
tional to vR (p'~+$2)v~, implying a neutrino mass factor.

The vanishing of the vv~yy amplitude to first order
in GF and for zero neutrino mass was first discussed by
Gell-Mann. ' A nonvanishing contribution appears at or-
der GF (Ref. 6). This corresponds to the appearance of a
dimension-8 effective operator involving two factors of
F„,, the factor

very"vz,

and one derivative, appearing in
the theory below the weak scale.

With the cosmological mass limit on light stable neutri-

nos in mind we conclude that the NB lifetime is deter-
mined by neutrino annihilations to three photons, since
the amplitude for Fig. 1 with three photons is not propor-
tional to the neutrino mass. Below the electron mass
scale this amplitude corresponds to a dimension-10
effective operator involving three factors of F„,, the factor
very"vz, and one derivative. Thus a GFm, factor ap-
pears in the amplitude. To estimate the numerical factors
we note that the cross section o.(yy ~ y vv) has been cal-
culated. If R =o (vv —yyy)/o. (yy ~ yvv) then the
characteristic NB lifetime ~ is
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FIG. 4. The factor (m,, /p, ,-)" appearing in the NB lifetime as
a function of y.

LEAKAGE

We now consider possible leakage through the wall. If
a Dirac condensate ( vR vz ) develops inside the wall
thickness of the same order of magnitude as the Majorana
condensates then the neutrino mass eigenstates are corn-
pletely different inside and outside the wall thickness. In
this case it is possible that a v~ colliding with the wall
could convert and emerge as a vz on the outside. For the
one-dimensional problem of a plane wave incident nor-
rnally to the wall, the probability for transmission is
=l /A. . l is the thickness of the wall and k the wave-
length of the incident plane wave. (This is the probability
found for transmission of a boson through a domain wall
not arising from a discrete symmetry. )

But the formation of a nonzero ( v~ vz ) breaks
discrete symmetries. If the operations vz ~ —vz and
vz —~ —vR are independent symmetries everywhere in
space then (v~vz ) =0 even in the wall. In this case the
mass eigenstates do not change inside the wall (even
though the masses do) and there is no way for a v~ to
convert to a iz. The vz would always be rejected. On
the other hand, we should still contemplate a Dirac neu-
trino mass of order Qm~mz or less generated by phys-
ics on lower mass scales (having nothing to do with the
wall). Then the mass eigenstates will change slightly in
the wall, and the transmission probability is now
5 (1 /k )(mz l mR ) (where these are neutrino masses on
our side of the wall). In this case leakage of neutrinos is
a negligible effect.

But even if the v~ is alv ays reflected, another possible
effect of the collision with the wall could be to cause a
virtual excitation of the wall to radiate a pair of neutri-
nos to the outside. Then energy is lost even though neu-
trinos do not escape. This is just another form of cool-
ing, As energy is radiated and the radius r decreases, p
increases with r ' while n increases with r . Thus
n ~ p' and the neutrino gas is driven closer to degenera-
cy. But as degeneracy is approached further shrinkage
due to energy loss stops; a completely degenerate ball of
neutrinos can radiate no more.

We estimate the time scale for this form of cooling.
The probability per collision for this process should be
less than =I /k =E /cr . We consider the total rate
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of collisions with the wall, dN/dt „,]~, and note that

(dN/dt
~
„,ii)/N=nA In V

= 3/r

=(n !8~ )(p„/o. ) . (34)

dius becomes less than o /e and ui (x) switches back to the
behavior in (17). The result would be a NB approaching
degeneracy with a lower p„and hence a somewhat longer
lifetime than the corresponding NB in the previous
analysis.

We then find the time ~' at which this energy loss be-
comes significant:

1/r'5(dN/dt
~
„,ii)N '(E /o ),

r'&10' (m, /p„) (cr /TeV ) sec .
(35)

Thus ~' is far larger than the cooling time ~, found above.
Only if a large (vii v~ } forms inside the wall thickness

could the NB lifetime ~ be affected. Henceforth we will
assume that this is not the case (e.g. , for an appropriate
range of parameters in a Higgs potential).

A SLIGHTLY PREFERRED VACUUM

Thus far our analysis would apply to the case that
strings were responsible for wall removal. We now in-
stead suppose that a slight breaking of the vacuum degen-
eracy was responsible for wall removal. If the difference
in vacuum energies on either side of a wall is e then there
is an extra pressure, also given by e, exerted toward the
side of higher vacuum energy. But before the preferred
vacuum starts to dominate the volume of the Universe,
two constraints must be satisfied. First, e must exceed the
radiation pressure of the neutrinos or otherwise this radia-
tion pressure on both sides of walls will maintain equal
volumes of the two vacua. Thus e&rpb/3=0. 01$/(Gt )

(g is the fraction of the background energy density in neu-
trinos). Second, e must exceed typical forces due to sur-
face tension before e can inAuence the motion of walls.
Since typical radii of curvature=horizon size we have
e ~ o. /t.

At a time t when both conditions become satisfied the
vacuum with lower energy begins to dominate the volume
of the Universe. If e is such that t 5pt/3 [r is defined in
(1)] then one may show that the horizon size r exceeds
o. /e. In this case, NB's may form both larger and smaller
than cr/e. The larger NB's have pressure exerted on the
inside neutrinos due mostly to the e pressure rather than
the wall surface tension. On the other hand, if t & Pt/3
then NB's are always smaller than u/e and the surface
tension dominates. The evolution of NB's smaller than
o./e would be as outlined above.

It is amusing to consider the NB's larger than a/e.
The inside neutrino pressure, p/3, must balance e, thus
fixing the neutrino energy density p independent of ra-
dius. Then the mass of the NB is proportional to r .
With this difference we can carry out the same analysis
which led to (17). The corresponding expression is

LONG-LIVED NEUTRINO-BALLS

dn/n = —,'dp/p . (39)

We conclude that E= ,'p/n =p. —(The time dependence
of quantities is suppressed. ) If p is the probability that an
annihilation produces photons then

p=E=E (yyy)p+E, (e+e )(1—p) .

E,(yyy) and E (e+e ) are the average energies per neu-
trino per the respective annihilation mode. E (yyy) will
be some significant fraction q of p, E,(yyy)=i)p. (We
will not attempt to determine g, but a guess would be
i)=0.9.) And E (e+e )=pm, where, as before, we lose
little by setting += l.

We now solve for p to obtain

P =(m, —P)/(m, —ilP) . (41)

Here we are interested in NB's surviving until recent
epochs and beyond. We therefore treat the case that the
factor (m, /p„)' appearing in the lifetime (32) is large.
But from Fig. 4 we find only a weak constraint on y; in-
teresting lifetimes occur for y close to unity. This in turn
places a weak additional constraint on o. due to the
black-hole upper limit on the initial NB mass. By com-
paring (4), (12), (13), and (14) we find

c '"S1.93y'" TeV .

We may work out the time evolution of a NB after it
has cooled and as it gradually shrinks and dies due to
neutrino annihilations to photons. The tendency for these
annihilations to move the trapped neutrinos away from
degeneracy competes with the opposite tendency arising
from possible annihilations to e +e . Since the latter
cross section is so much larger (for neutrinos of sufficient
energy), the trapped neutrinos remain close to degeneracy.
We can use this fact to find the relative frequency of an-
nihilations producing photons compared to those produc-
ing e+e

First we find the constraint on the average energy lost
per neutrino per annihilation. If we denote this by E then
we may repeat the arguments which led to (9) (by replac-
ing m, by E ). We have

dn In = [—(3p/En ) +3]dp/p .

But if the NB remains close to degeneracy then from (18),

iU (x)=y+ (1—y)x ', (36)

where ti~=n ln; and x=r;/r(&p!p;). y is defined as be-
fore and is now fixed from p/3 =e rather than being relat-
ed to the size of the NB. For y & 1, p/n is now decreas-
ing faster than previously for the same change in radius.
This produces more efficient cooling. Eventually the ra-

As expected, p ~0 as m, /p ~ 1. And the two annihila-
tion modes have equal probability for m, /p =2 —g. Thus
for m, lp, (t) sufficiently greater than 2 —il, p = 1, and the
decrease in the total number of trapped neutrinos is due
mostly to annihilations to photons.

The shrinking NB has n (t)

ccrc(t)

and V(t) cc lip(t)
~ 1/p(t)' . Thus we may define N(t) =N(t)lg'
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=Pm, /p(t)] where g'=n V„p„' /(3vr m, ). We have
(dN/dt)/N=(n/2n )cr(vv~yyy) and thus similar to
the derivation of (32) we find

(dN /dt) /N = —N /T, (42)

(43)

where T =5X10' i)
' R sec. We solve (42) and obtain

p(t): ~(t) =410[m /p(t)] [cr(TeV )] /n, , solar masses,

r(t) =2.3[m, /p(t)] fcr(TeV )]In,, light seconds .

(44)

determined improves our previous estimate (32) by a fac-
tor —,', g

From the evolution of p(t) we may obtain the evolution
of the NB mass and radius after cooling. Equation (43)
may be inserted into

This expression holds until m, /p(t) gets too close to
2 —rJ. For (m, /p„)' »1 the lifetime is =r, determined
from (43) by letting t ~0 and p(t) ~p„. The r so We also find the power radiated:

(45)

—dM(t)/dt=1. 3X10 [m, /p(t)] [o(TeV )] l(RiJ ' n, , ) erg/sec . (46)

Note that the power output increases as the NB decreases
in size [and p(t) increases]. The upper cutoff on the pri-
mary y-ray spectrum is of order p(t). The fraction of
power appearing as primary electrons and positrons is
(1 —rI)m, /[m, —rjp(t)]. When m, /p(t) reaches =2 —i)
the NB dies in a burst of primary electrons and positrons
of total energy =7.3X10 (2 —rj) [cr(TeV )] /n, erg.

We conclude with some remarks on remaining issues.
We have made no attempt to study the initial NB produc-
tion to find the expected number NB's as a function of
mass. This would depend on details of the infinite-wall
removal mechanism. Most crucial is the time at which
the infinite walls disappear. This is a function of the mass
density of the string in the string scenario or the vacuum
energy splitting in the preferred vacuum scenario. It is
also very sensitive to any previous supercooling. We
note as well that large NB's may form through collisions
of smaller NB's even after the infinite walls have disap-
peared. In any case for long-lived NB's never to dom-
inate the energy density of the Universe (for example)
would require that no more than one NB with y 5 1 be
formed for every = IO o /(1. 93 TeV) horizon volumes
when the temperature of the Universe was = T, . Thus
the efficiency for production of NB's above the critical
size must be small.

Gravitational effects have not been included; they will
somewhat alter the properties of NB's near the top end of

i

the mass range. Also, two numbers introduced in our
analysis remain to be calculated, R and g. They both ap-
pear in the power output (46).

And finally, the astrophysical implications of NB's
remain to be explored. To which of the known energetic
sources in the sky could NB's correspond? The initial
number of NB's is expected to be a rapidly falling func-
tion of their mass. Thus the population of long-lived
NB's is expected to be bunched near the shoulder of the
lifetime curve in Fig. 4, implying that many expire at a
similar time.

Topics of astrophysical interest include the possibility
of oscillating NB's giving rise to periodic bursts. Another
would be the question of how NB properties change when
they accrete matter. If a NB accretes enough matter a su-
permassive black hole could result. In any case the mass
range of NB's makes them of interest for seeding galaxy
formation. These possibilities will be pursued elsewhere.
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