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The bound-state problem of two quarks and two antiquarks with coupled channels in color space
is studied, using a potential as derived from the MIT bag model. For equal quark and antiquark
masses no stable bound state is supported, while for large enough mass ratio a true four-quark
bound state is found. The effect of a running coupling constant in the Coulomb part of the potential

is studied.

I. INTRODUCTION

The description of the spectrum of ¥(c¢) and Y(bb) in
terms of the MIT bag model with static, localized quarks
as sources of the glue field has been reasonably success-
ful.! Therefore, it is attractive to extend such a model to
the case of multiquark systems. This was done in a recent
paper,? to be referred to as I, where the possible existence
of stable heavy dimesons was investigated. For this sys-
tem the potential energy is a two-dimensional matrix in
color space. Employing the strict Born-Oppenheimer ap-
proximation where it is assumed that (i) only the ground
state of this matrix is needed to determine the effective
four-quark interaction and (ii) the color wave function
varies slowly with the positions of the quarks, it was
shown in a variational approach that the interaction is
sufficiently attractive to support a bound state of two
quarks and two antiquarks of equal masses.

In this paper we study the validity of the strict Born-
Oppenheimer approximation by solving (variationally) the
coupled-channel Schrédinger equation with trial functions
of the exponential type similarly as in I. It is found that
we get no binding for the four-quark ground state due to a
repulsive contribution from the kinetic energy operator
acting on the color wave function. It is of the order of 4
GeV, which renders the dimeson to be unbound.

We have also considered the case of two quarks with
mass m and two antiquarks with mass 7, m and 7 be-
ing, in general, different. For sufficiently large or small
ratio m /m the corresponding dimeson becomes bound, in
agreement with Refs. 3—6. A problem which arises in al-
lowing the masses to be different is that the size of the
four-quark system changes on varying the mass ratio. As
a result we need to have a running coupling constant in
the interaction to account for the quark loop corrections.
This is done in Sec. II which also includes a summary of
I. In Sec. III we describe the various variational calcula-
tions we have done for both the fixed-coupling and
running-coupling case. Some concluding remarks are
made in the last section.

II. BAG POTENTIAL
WITH RUNNING COUPLING CONSTANT

For not too light quarks it is a reasonable assumption to
treat their motion in a nonrelativistic way. The Hamil-
tonian of such a system is given by

H=K+V, (D

where K =, pi2/2m; and V is the potential between the
quarks, acting also in color space. Solving the MIT bag
model for the glue field due to any number of static, local-
ized quarks and antiquarks gives the potential (2a) below.
This is specialized in I to a four-particle system, consist-
ing of two quarks and two antiquarks, where it becomes
(2b):

Fi-F; k 21172
V_asgj P +75 H;Er,.} ] , (2a)
V=W+—§%I. (2b)

The F; are the color-SU(3) generators of the particles,
normalized to F;’=+%, I is the 2X2 unit matrix, and
d =d\d,/(d+d,), where d; are the color-dipole mo-
ments of the system.? The string tension k is related to
the bag constant B and strong coupling constant o
through
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k=
3

(3)

Insofar as the present paper is concerned the essential
point about Eq. (2a) is that it applies to both the two-body
system and the four-body system. By solving the two-
body and the four-body problems we can determine if the
dimeson is stable against decay into two mesons. The fact
that the potential does not contain an arbitrary additive
constant that is permitted to vary from one system to
another is clearly essential for this purpose.

In the single-singlet, octet-octet representation with
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basis states

vi=[[12)} 347,

4
We=[[(12)® (34)%]"),

where particles 1 and 3 are quarks and 2 and 4 are anti-
quarks, W can be written as

4y, V2(p13—yi4)

W=+
P IV2i3—yis) —Fyntryit iy

where y;; =w;; +wj, with all four indices different and

. T
v \/5, d1+d2 r,~j )

Equation (2a) is derived under the assumption that the
bag has a spherical shape together with the use of the di-
pole approximation for the homogeneous part of the po-
tential. As long as the distances between the quarks are
small as compared to the bag size it is expected to be a re-
liable description of the four-quark system. Since the
color-dipole moments d; depend on the positions of all
four particles, the interaction (2b) cannot be written as a
sum of pair potentials and therefore constitutes a genuine
many-body potential.

The quark-antiquark potential obtained from the same
bag model is given by

(6)

4 O

V= 3 r

This potential also contains no arbitrary additive constant,

and is capable of providing a good fit to the ¢¢ and bb
spectra.

In I a slightly modified form of W has also been stud-
ied by changing W for large separations of the two
quark-antiquark pairs in order that W goes into a sum of
pair potentials of the form (7). Here we shall neglect this
complication and take the unmodified form of W as po-
tential. Hyperfine interactions, which are not considered
in this paper, can be treated as a perturbation.

The above potentials can be used as input for the study
of the possible existence of stable g2Q?2 states, with
masses m and 7 for the quark and antiquark, respective-
ly, in general chosen differently. Since the coupling con-
stant a,; runs with the size of the system, it was taken in I
to be smaller for heavier mass systems. Here we follow a
different procedure. A regularized form for a; that satis-
fies the renormalization-group analysis of QCD in the
one-loop approximation is

+(5)%ker ©)

In

(8)

Ay =Qg

In +vy

Ar)?

The scale constant A is chosen to be 1 fm™~!, which is in

the range of values extracted from high-energy experi-
ments. Recent lattice gauge simulations”® of the heavy-
quark potential indicate that the r dependence of «; is not
seen for r >0.15 fm, so it is reasonable to take y > 100.
For ¥ = oo a simultaneous fit can be made to the ground

and first excited s states of both the ¢z and bb systems, by
varying the two parameters @, and B and the quark
masses m, and m,. A good fit is found for a;=0.37 and
B'/=0.245 GeV (see Fig. 4 in I). A question which we
would like to address is the sensitivity of the binding ener-
gy of the four-quark system to the specific choice of y.
Keeping the values of ag and B fixed, the quark masses
were changed accordingly for y in the range of 50—1000
to yield the correct ground-state levels of c¢ and bb.
Since the correct asymptotic freedom behavior can be sa-
tisfied by having the coupling constant running only in
the Coulomb part of the potential, we have replaced a; by
ay in the constant k [see Eq. (3)], which essentially deter-
mines the potential at large separations. The calculated
2S-1S splittings are still reproduced nicely for these
values of y. The results are shown in Table I. We see
that over this wide range of y the splitting changes by at
most 15%. In Fig. 1 are plotted the resulting QQ poten-
tials for two values of y. They are very similar to previ-
ous potentials that describe the spectra of the ¢¢ and bb
systems, differing approximately by an additive constant.!

The existence of stable heavy dimesons has been ex-
plored in I for the case of equal-mass quarks and anti-
quarks in the strict Born-Oppenheimer approximation.
The wave function is expressed in terms of the eigenfunc-
tions X,(r;) of the potential matrix V:

o) =, dalr Xo(r;) . 9)

Assuming that only the ground state X; needs to be taken
into account, and that it varies slowly with the r;, the
Schrodinger equation becomes a one-channel equation:

2

;’;m,- +v, ( I; )

where v,(r;) is the lower eigenvalue of V. Equation (10)
has been solved variationally in I, using exponential trial
wave functions and found to support a four-particle
bound state with binding energies of typically 200 MeV.
For one case where there is an exact Monte Carlo
Green’s-function calculation of E, in Eq. (10), the results
agree very well.’

¢1(ri)=E4¢1(r,‘) s (10

TABLE 1. The mass difference between the 2S and 1S levels
of the ¢z and bb systems at a fixed bag constant B!/4=0.245
GeV and coupling parameter ap=0.37 for various values of the
cutoff parameter y in Eq. (8). Masses are in GeV. The experi-
mental value of the energy difference is the same as for y = oo.
The masses of the ¢ and b quarks are fitted to reproduce the
ground state of ¢¢ and bb to be 3.095 GeV, respectively, 9.460
GeV.

Y m, M(2S)-M(1S) my M (2S)-M(1S)
) 1.364 0.591 4.781 0.550
1000 1.366 0.590 4.771 0.539
500 1.363 0.588 4.765 0.531
100 1.356 0.585 4.737 0.499
50 1.349 0.580 4.717 0.476
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FIG. 1. The QQ potentials of our model with ap=0.37 and
B'74=0.245 GeV for two cases of the cutoff parameter y =100
and 1000.

III. COUPLED-CHANNEL ANALYSIS

We now study the effect of solving the full two-channel
problem. It is convenient to use instead of the representa-
tion (4) the 3-3, 6-6 representation given by the basis
states

v=[(13)° 247",

(11)
We=|[(13)¢ (2 4)8]!),

with ¥ antisymmetric under interchange of either pair of
identical particles, and W symmetric. The relation with
Eq. (4) is simply given by a unitary transformation

\l’3= _(%)1/2‘1,1_(%)1/2\1’8 ,
(12)
We= (51720, — ()2 .

An arbitrary function of the color and spatial coordinates
can be written as

¢(r,~)=¢3(r,-)‘ll3+¢6(r,-)‘l’6 . (13)

The possible solutions to the coupled-channel equations
can be classified according to their spatial symmetry char-
acter as being of a T(true) and M (mock) type.’ For the
T type the (3-3) and (6-6) components are symmetric and
antisymmetric, respectively, in the spatial coordinates
under interchange of the quarks or of the antiquarks,
whereas for the M type the (3-3) and (6-6) components
are antisymmetric and symmetric, respectively. The Pauli
principle is then satisfied by taking the proper spin com-
binations.

Let us consider the case of T-type wave functions.
Similarly, as in I, we may study variationally the
coupled-channel problem with trial functions of the form

On(r)=N,[1—(—1)"P 3]
xexp{ —[a{3(r1; +734)+ a3 3R 12,341} (14)
with
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FIG. 2. Coupled-channel results for the bound-state energy
E, of the ¢>Q ? system in the case of the nonrunning coupling
constant a, as a function of the antiquark mass 7. The other
parameters of the bag model are taken from Ref. 1, correspond-
ing to the c-quark case: a,=0.747, B!'/#=0.145 GeV, and
m =1.685 GeV. Also are shown two times the bound-state en-
ergy E, of the g0 system and the results of a one-channel calcu-
lation where only the 33 component of the wave function is kept
(dashed curve).

T2=T1—10, I33=I3—1I4,

mr;+m;r, Mi3T3+MyTy
R12,34= - ’
m1+m2 m3+m4

and N, and the a'™”s are the variational parameters. P,3
is the permutation operator for the coordinates of parti-
cles 1 and 3. Equation (14) has been chosen such that the
components of the trial function satisfy the proper sym-
metries under exchange of r; with r; or of r, with r,.
The potential employed in these calculations is the one
from I with aq=0.747, y=w, and B!/#=0.145 GeV,
corresponding to the cC system. We now also allow the
quark mass to be different from that of the antiquark. In
Fig. 2 the results for the bound-state energy E, of the
dimeson and 2E,, E, being the ground-state energy of
qQ, are shown as a function of 7 with m taken to be the
c-quark mass m =1.685 GeV. From this figure we see
for sufficiently large mass 77 a stable bound state exists.
A bound state is considered stable if it cannot dissociate
into a pair of gQ mesons. No stable bound state is sup-
ported for the equal-mass case m =#7. Similar results are
obtained if we take the quark mass to be that of a b in-
stead of a ¢ quark. Also shown in Fig. 2 are the results if
we do a variational calculation keeping only the 3-3 com-
ponent of the wave function. The results are close to the
coupled-channel calculation, indicating that the coupling
of the 33 state to the 66 state is suppressed because of the
p-wave nature of the 66 state.

Table II gives the calculated values of the variational
parameters for the coupled-channel calculations, together
with the probability of finding the four-particle system in
the 33 state. It is seen that with increasing mass 7 the
system tends to go into a pure 33 state. This is just what
one would expect since the two very heavy antiquarks are
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TABLE II. The variational parameters in the trial functions (13) and (14) obtained by minimizing
the ¢2Q ? bound-state energy as given in Fig. 2. The mass of the quark is held fixed at m =1.685 GeV
and 7 is the mass of the antiquark. The bag-model parameters are a; =0.747 and B'/#=0.145 GeV.
The a'™’s are in fm~!. Also shown is the probability P to find the ¢*Q * state in the 33 color configu-

ration.
m (GeV) ad) a(132134 aty a(lg],m P 73
5 6.1 5.6 6.3 4.7 0.863
10 6.2 11 7.2 8.5 0.988
20 6.3 23 9.0 15 0.999
30 6.4 35 9.5 20 1.000
40 6.4 46 9.5 25 1.000

able to take advantage of their Coulomb attraction in the
color 3 state. To demonstrate that this is indeed the case
we choose a different trial function

b (r;)=exp[ —(a{3ri3+airay+ai32uR 32401, (15)

expressed in terms of the relative coordinate r,, of the two
antiquarks, 13, and R,; ;4. [These are defined in analogy
with the expressions below Eq. (14).] If the Coulomb at-
traction of the two antiquarks in the color 3 state is dom-
inant, then the variational parameter a(ﬁ) should take on
the hydrogenic value corresponding to a reduced mass of
/2 and a coupling constant +a;:

3) : ma
ayy (hydrogenic) = 3 -

The results of these calculations, which do not include
any coupling between the two color states, are shown in
Fig. 3 and Table III. For the M-type wave functions
(n =6) no stable bound-state solutions are found for the
range of mass 7 considered. The T-type solutions
(n=3) are qualitatively in agreement with the results
shown in Fig. 2. The binding energies obtained with Eq.
(15) are, in general, about 20-MeV larger than the corre-
sponding one-channel results with trial functions (14). It
is seen in Table III that the variational parameter a5y ap-
proaches the hydrogenic value as 7 increases, as expected.

We now turn to the case using the four-particle poten-

E4(q202)

2Ep(qQ)
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o 20 40
m(Gev)

FIG. 3. One-channel results for the 7- and M-type ¢2Q 2
ground state using the trial function (15). See caption of Fig. 2
for the meaning of the various curves and the bag-model param-
eters used.

tial with running coupling constant. Let us confine our-
selves to the T-type solutions. Since the coupling of the
33 state to the 66 state is small we have carried out the
variational calculations using only the 33 channel and
adopting the trial functions (15). Figure 4 shows the
dependence of E, and 2E,(gQ) as a function of the mass
of the antiquarks for the case that we have ¢ quarks with
m =1.356 GeV and ¥y =100. We see that there occurs a
stable four-particle bound state if the mass m > 12 GeV.
The magnitude of the binding energies are considerably
smaller in this case due to the effect of the weakening of
the 1/r attraction at small distances; however, the critical
value for the mass 7 to support a four-particle bound
state is similar to that obtained for a fixed-coupling con-
stant. Within the model considered here the ¢*f 2 system
would form a stable dimeson, but ¢2b 2 would not. Figure
5 shows the dependence on y for the case of ¢%72. In the
considered range of y the results are not very sensitive to
this cutoff parameter.

To understand why the strict Born-Oppenheimer ap-
proximation breaks down we remove the approximations
made in Eq. (10). For this purpose we again work with
the eigenstates of the potential matrix V. Let

2Vnm(r,')Xma(r[):Ua(r,')Xna(ri), a=1,2 (16)

with normalized eigenfunctions X, with components
Xma (m =1,2) with respect to a fixed color basis ¥,,.

TABLE III. The variational parameters (fm~!) in the trial
function (15), taken to be a pure 3-3 color state, obtained by
minimizing the ¢°Q ? bound-state energy as shown in Fig. 3. m
is the mass of the antiquarks. See the caption to Table II for the
values of the input parameters. The final column shows the
theoretical value of the parameter ab} for a pure hydrogenic rel-
ative wave function of the two antiquarks.

7 (GeV) oy ) s ’"3“‘
5 4.0 7.3 5.7 6.3

10 4.4 14 6.8 13

20 4.5 26 7.2 25

30 4.5 38 7.2 38

40 4.6 51 7.3 51
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FIG. 4. Dependence of the ground-state energy of the 7T-type
qQ ? state on the antiquark mass 7 using the trial function (15)
for the case of the running coupling constant «; given by Eq. (8)
with ¥ =100 and a=0.37. The quark mass is taken to be that
of the ¢ quark m =1.356 GeV, while the bag constant is
B'/4=0.245 GeV.

Writing the normalized ground-state wave function as

lllo(r,-)= EX,,a(r,-)gba(r,-)\l/,, s (17)

na

the kinetic energy operator K produces three terms. The
strict Born-Oppenheimer approximation corresponds to
keeping only the one term in which K acts on ¢, (the
lower eigenvector), and taking ¢,(r;)=0. In first-order
perturbation theory we find, for the energy shift,

SE,= 3, f¢1(ri)an(KXn1)¢1(r,‘)Hdl',- , (18)

which is repulsive. Numerical evaluation of Eq. (18) for
the case of ¢%¢? gives an additional repulsion of 4 GeV,
which is consistent with the fact that no binding is found
in the coupled-channel calculation. Apart from the diago-
nal matrix elements (a=f3) of the kinetic energy operator,
there are also nondiagonal ones describing the coupling
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FIG. 5. Dependence of the ground-state energy of the T-type
g0 ? state on the cutoff parameter ¥ using the trial function

(15) for the antiquark mas m =40 GeV. The other parameters
are the same as for Fig. 4.

between the ground state and excited state. These terms
give rise to an attractive contribution to E4. A rough es-
timate shows that they are small as compared to the diag-
onal contribution.

IV. SUMMARY

We have calculated the ground-state energy of a system
of two quarks and two antiquarks, treating it as a two-
channel problem in color space. Using the potential ener-
gy derived from the MIT bag model, we find no stable
bound state if all four quarks have the same mass.

We now understand why the use of the strict Born-
Oppenheimer approximation in I is not valid. If the two-
dimensional potential matrix is diagonalized for every set
of positions of the quarks, and only the lower eigenstate
kept, it turns out that the corresponding eigenvector
varies sufficiently rapidly with quark position to make a
large contribution to the kinetic energy. It was the neglect
of this energy in I that led us to conjecture, incorrectly,
that the equal-mass case would support a bound state.

Returning to the full two-channel problem, and varying
the antiquark mass, we have found that for large enough
m a stable bound state is supported. This result can
rigorously be shown for 71— o (Ref. 10). The physical
reason for the existence of a bound state is that the color
Coulomb interaction within the antiquark pair is attrac-
tive when the pair is in the 3 representation and becomes
dominant for 77 — «. Because of this attraction the anti-
quark pair tends in this limit to sit on top of each other,
whereas the quarks will stay at a finite distance from each
other and the pair. As a result the 33 configuration of the
g°Q ? system is predominantly favored, yielding a binding
energy for the ground state which increases linearly with
m for large 7. This result is weakened only logarithmic-
ally by the variation in the coupling constant. Since the
gQ system has a ground state with a finite binding energy
for 7 — w0, we see that indeed the ¢2Q ? system supports
a stable bound state for large enough 7 and which is of
the 7T-type. This argument is far more general than the
specific dynamical structure used in this paper, and ap-
plies to systems such as u#2b? even though the light
quarks are relativistic. !

Although our numerical results are variational upper-
bounds, in view of the fact that the application of the trial
function used here for the one-channel problem gave reli-
able answers, we may hope that this also is the case in the
coupled-channel problem. To be sure a more systematic
analysis is needed such as the use of hyperspherical
methods. In any event, improved wave functions can only
produce more binding.

Since on varying the masses of the quarks the system
size changes, we have to account also for the running cou-
pling constant in the interaction between the quarks. This
aspect is also considered in this paper. As a result we find
that for a given mass ratio this decreases the binding ener-
gy considerably as compared to a fixed coupling constant,
but still yielding the presence of a stable ground state for
a mass ratio greater than of the order of 10. Therefore
narrow dimeson states of type u2b 2 s2b 2 and ¢*7? are ex-
pected to exist in nature.
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