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Inelasticity and leading-particle effect: Momentum and mass distribution
of the central fireball in high-energy hadronic interactions
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We calculate the distribution of the invariant mass and momentum of the system left by the lead-

ing particles in high-energy hadronic reactions on the assumption that it is determined by gluon-

gluon interactions. Comparisons with existing data are presented and predictions for Vs =540,
2000, and 40000 GeV are made.

The concept of inelasticity plays an important role in
the understanding of multiparticle production. ' The idea
is that only a part M =K~s of the whole invariant ener-

gy vs is used for multiparticle production in the central
region while the rest of it is taken by the leading particles
in the forward and backward regions. References 2—4
emphasized the importance of the leading-particle effect
in high-energy collisions and used it in the context of sta-
tistical models for multiparticle production, which have
become popular in connection with the quark-gluon-
plasma investigations and the observation of violation of
Koba-Nielsen-Olesen (KNO) scaling.

The physical picture which we have in mind is that of
two colliding hadrons h

&
and h2 interacting only through

their gluon contents while the valence quarks go through
and eventually form leading particles. If x& and x2 are
the fractional momenta of gluons deposited in the central
region and if the interacting glue leads finally to one cen-
tral fireball then this fireball will have an energy 8' and
momentum P (in the overall c.m. frame)

W= —,
' (x, +x2)v s,

l vsP= —,(x~ —x2)vs =—x,
2

or invariant mass M and rapidity Y (in the same frame)

M=+x)x2s =K&s

a central fireball when fractions x& and xz of the energy
of incoming hadrons h ~

and h2 were deposited (and possi-
bly equilibrated) in the central region. Note that X(x t,x2)
has to be normalized to unity over accessible phase space,
s.e.,

1 ]f dx, f dx~X(x, x~)8(x,x2 —K,„)=l, (3)

where K;„=0.6 GeV/U s (Ref. 8) is the minimal inelas-
ticity. Once X(x„x2) is known we can easily write the
distribution in other variables of potential interest by us-

ing the transformations ( I) and (2). The corresponding
distributions in the variables (K,x, ) and (K, Y) are denot-

ed X and X, respectively. The P (or Y or x, ) dependence
of the fireball is relevant among other things in calcula-
tion of the forward-backward correlation, in studies of
hadron-nucleus and nucleus-nucleus collisions, and in the
interpretation of the Bose-Einstein correlations, in which
the knowledge of the velocity of the emitting source
U =tanh Y is important for a proper interpretation of
data. Furthermore, it enables us to consider more accu-
rately the distributions in one variable only, by integrating
over the other.

As was already mentioned the central fireball arises
from the (undefined) number of minifireballs, ' each of
which is the result of gluon-gluon interactions. The prob-
ability to create such a fireball, X(x, ,x2) is

1Y=—ln
2 x2

(2) X(x&,xz)= g 6 x~ —gn;x~;
I n,. I

(all transverse-momentum dependence is ignored in what
follows).

Here x, denotes the fractional momentum of our cen-
tral fireball. In Ref. 6 we have calculated the inelasticity
distribution function X(K) which provides a measure of
the probability for the creation of a fireball with fraction-
al energy K averaged over its momentum. [In fact, in Eq.
(3) of Ref. 6 we made the approximation X gW~ where
W; is the energy of a minifireball. ] Here we are interested
in the more general distribution function X(x„x2). It
provides the measure of the probability for the creation of

X~ x2 y n'xp' /P(n')
n,

where the sum extends over all minifireball numbers
which are assumed to be independently produced so that
n; follows a Poisson distribution:

—n
nP(n)= e
nI

Using the standard procedure of expressing 6 functions as
integrals one can easily perform all summations and final-
ly obtain
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+ 00 +00
+(x1 x2) 2

drldr2 exp[&(xltl+x2r2)1
(2m. )'

/ ) 2 / p
1 (X ]t ] +X2t2 )

X exp dx ', dx,'8(x ',x,' —K~;„)~(x'„x,')(e —1)

X exp — dx
&

dxzco(x'„xz)
Z] Xp

(6)

The last term represents the probability that there is no
energy deposit from incoming hadrons beyond fraction x

&

and x2. The distribution g(x&,x2) is fully specified once
the spectrum of the minifireballs

dn
co(x~,x2) =

dX )dX2

is given. As before (cf. Ref. 6) we assume it to be a prod-
uct

co(x (,x2) =Gp )(x) )Gg2(x2)C(x), xq)

of gluon distributions G~ & 2 in hadrons h
& 2, respectively,

and a factor C(x ~,x2 ) representing the probability that all
minifireballs will form one central fireball. C can be tak-
en equal to the ratio o.gg/o. ~~ where o.

gg is the total cross
section for gluon-gluon interactions (taken at M =%Ms )

and o.~~ is the total inelastic hadron-hadron cross section
(taken at U s ). We shall parametrize o.

sg as

CX M+61n, M) Mp,
M p
a Mp 2

+61n, M &Mp,

a=(9.4 GeV )o.~I, (v s =16.5 GeV),

5=0 Ogcr.~~(~s =16.5 GeV), p=1.0 GeV,

so that 0gg behaves according to the presently accepted
lore, i.e., like -M at low energies and like -lnM at
high energies. The "freezing point" Mp ——5 GeV is neces-
sary because the first of Eq. (9) diverges as M~O. Its
value is determined by requiring that (E ) =0.49 at
vs =16.5—62.5 GeV and (K)=0.3 at vs =540 GeV
(Ref. 4).

This parametrization is the simplest possible one which
incorporates the most general trends of the cross section
as a function of the effective energy M=+x~x2s. With
it ~~ turns out to be equal to 25 mb at low energies,
which is not an unreasonable result.

For the gluon distributions G(x) we used the parame-
trization of Gliick, Hoffmann, and Reya" in which scal-
ing violations have been included. This parametrization is
good even for small values of x where perturbative QCD
calculations are not applicable. For very high energies
(Vs =40 TeV) the parametrization of Duke and Owens"
was used instead as more suitable. In both cases it is
necessary to reduce the number of gluons at low x (this is
consistent with similar expectations in Ref. 12); this was
done by introducing a factor P&1 in the x ' term of
G(x):
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FICx. I. The inelasticity distribution P(K=0.2, Y) (dotted
curve) and g(K=0.5, Y) (solid curve).

FICz. 2. g](K) at ISR energies. Comparison with data from
Ref. 13.
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FIG. 3. do. /dxL for the leading particle at ISR energies.
Comparison with data from Ref. 2.
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G(x) ——for x « 1 . (9) FIG. 4. +1(K) at various energies ( 3 = 16.5—62. 5 GeV,
B =540 GeV, C=2000 GeV, D =40000 GeV).

This makes sense only in the context of our representation
of cu(x&, x2) in terms of separate product of G's and
C(x &,X2). Numerically all results depend on the products
Pa and P5. The separation of a, /3, 5 and their interpreta-
tion should be always done with the above-mentioned pic-
ture in mind.

Because co(x &,X2) is strongly peaked at very small x~ 2

it is justified to make in Eq. (7) the approximation

—t(x& t
l +x&t& )

e —1=—i(x&t, +x2t2)

—
2 (xiri+X2r2) (10)

This leads to a Gaussian integral for X(xt,x2) which
can easily be evaluated and gives

exp( I) —1 2 2X(xi,x2) =
2~h

exp — [I20(x] —I]0) +I02(x2 —I0] ) —2I]](x]—I ]0)(X2 —I0] )]
2A

where

xl x~
I„~= dx'(XP dx2x2 0(x,x2 —K~;„)co(x,,x2),

0 0
1 1I= dX1 dX2CO X1,X2

h =
~
I20I02 —I ) )

(12)

From X(x, ,x2) one can immediately get distributions in
other variables and calculate single-variable distributions

1 1 X1X(Y)= f dx) f dx2X(x), X2)5 —ln —Y
0 0 2 X2

1 1

X2(x, )= f dxi f dx2X(xi, x2)5(x, —x2 —x, )

1

dE+ K,X,
min

(13)

such as
1 1

X,(K)= f dx, f dx2X(x), X2)5(+x)X2 K), —

TABLE I. Results for different moments of g for various energies.

vs
(GeV)

16.5—62. 5
540

2000
40000

'Input.

0 49'
0.30'
0.20
0.10

(x, )

0.00
0.00
0.00
0.00

0.19
0.12
0.10
0.055

0.20
0.11
0.07
0.04

(Kx, )

0.00
0.00
0.00
0.00

0.20
0.18
0.17
0.15
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FICx. 7. d~/dxl for the leading particle at 540 CieV.
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FIG. 5. +2(x, ) at various energies.

xc Once X(x&,xz) is given it is straightforward to calculate
the spectrum of leading particles, say in the forward
direction:

1 do. = I dx, dx2X(x, ,x z )6(xL —1+x, ) . (14)
o QxL 0 0

X2(Y)

-0.5 -0.25
I l

0.25 0.5

FIG. 6. gq( Y) at various energies.

One can also easily calculate all relevant moments of
X&(K), X2(Y), X2(x, ), etc.

It is worthwhile to mention here that for the simplified
case of gluon distributions G(x)=/3/x [i.e., neglecting
terms important in the limit +~1 because the inelasticity
distribution X(x&xz) is most sensitive to the behavior of
G(x) in the x~0 limit] all calculations can be done
analytically and one finds that in terms of the K, Y vari-
ables the distribution in rapidity Y of the central fireball
is independent of the value of K. The departure from uni-

formity of X(K=const, Y) as a function of Y is then a
measure of the importance of other factors in the G(x)
function (see Fig. 1).

The comparison with existing data is presented in Figs.
2 and 3. The leading-particle spectrum of Basile et ai.
and inelasticity distribution of Brick et al. ' plus the re-
quirement that the mean inelasticity

(K) = J dKKXi(K)
min

shifts with energy from (K) =0.49 at CERN ISR and
Fermilab energies to (K) =0.3 at collider energies fixes
our parameters: (a/3 ), (/3 5), and p (in K,„)completely.
The energy dependence of (K) is crucial in establishing
the rate of energy dependence of c =ass/ohh (i.e., a and
P), while the leading-particle spectrum determines practi-
cally the factor /3. The data on P~(K) and the normaliza-
tion requirement are more than enough to fix
(aP ), (P,5), and p completely. The resolution between
a, P, and 5 is then somehow arbitrary. If we take P= 1

(i.e., "normal" gluon distribution) ogs/o~~ turns out to be
unphysically sma11. Assuming, on the other hand, that
crsslohh is of the order of unity leads to /3=0. 1, i.e., the
effective number of soft gluons is muck lower than ex-
pected from a naive extrapolation of deep-inelastic
scattering data, but in agreement with Ref. 12.

Table I summarizes our results for different moments
of X, specifically, (K), the dispersions of K, x„and Y
(notice that (x, ) = (y ) =0), and (Kx, ), for different en-
ergies. Because our X(K) is a Gaussian, i.e., X(K)
= exp[ —(K —(K ) ) /2(~) ], (K ) and the dispersion
AE define completely the distribution.

In Figs. 4 and 5 the prediction for X&(K) and +2(x, ), for
energies vs =2 and 40 TeV, are presented. We note the
following.

(1) (K ) continues to decrease' with v s reaching at
Superconducting Super Collider energies (40 TeV) the
value of -0.1. Also the width of X~(K) decreases with
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energy from -0.19 at ISR energies to -0.055 at 40 TeV.
Notice, however, that this prediction is sensitive to the en-

ergy dependence of the ratio c =o.zz/o. ~~, i.e., the relative
importance of soft gluons in the hadronic inelastic cross
section.

(2) The width of Xz(x, ), i.e., bx, decreases in the same
energy range from 0.2 to 0.04.

(3) For the only energy ( V s = 16.5 GeV) where data
for X,(K) exist, the agreement with experiment is good
(Fig. 6). Both X&(K) and Xz(x, ) can be approximated at
high energies by Gaussians defined by the parameters in
Table I.

(4) The leading-particle spectrum der/dxL (Fig. 7) at
ISR energies where data exist is in agreement with experi-
ment. It is interesting to observe that the gluon-gluon in-
teraction picture explains the flatness of do. /dxL at ISR
energies and predicts a change (at x &0.6) of do. /dxL at
~s =540 GeV.

It is seen that asymptotically X&(K) and X2(x, ) ap-
proach 6 functions which means that at very high energies
the averaging over E and x, simplifies. The momentum
spectrum of fireballs X(x, ) is already very narrow at ISR
energies and this justifies the approximation of Ref. 6 (cf.

the text above) where the x, spectrum was neglected alto-
gether.

The knowledge of 7 is an essential prerequisite in the
search for a quark-gluon plasma since there the energy
density is the decisive physical quantity. Similar con-
siderations apply for the interpretation of multiplicity dis-
tributions. Last but not least as shown above the deter-
mination of X(x&,xz) could provide interesting and im-
portant information about gluon-gluon cross sections and
gluon structure functions. While in the present study we
were concerned only with hadron-hadron reactions, it is
obvious that for hadron-nucleus and nucleus-nucleus col-
lisions the inelasticity concept plays an equally important
part. The extension of the calculations presented here to
these cases is under consideration. However, it should be
clear that there is also an urgent need for experimental
tests of the results and predictions presented here and
calorimeters appear to be a natural candidate for this pur-
pose.
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