
PHYSICAL REVIEW D VOLUME 35, NUMBER 1 1 JANUARY 1987
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Next-to-leading-order perturbative QCD predictions are obtained for the two-photon exclusive
channels yy~M+M (M =~,K) at large momentum transfer. The calculation is carried out in
the Feynman gauge. The dimensional-regularization method is used to control both ultraviolet and
infrared divergences. The model meson distribution amplitude N~ ~6(x —

2 ) is utilized as a candi-

date form for the nonperturbative dynamical input. In order to reduce the effect of the particular
choice of 4M, similarity between yy —+M+M and y ~M+M (timelike meson electromagnetic
form factor) is employed. In the modified minimal-subtraction (MS) scheme definition of a„renor-
malized at 8 yy (total center-of-mass energy of the yy system), and with the present estimates of
AMs (-150 MeV), it is found that next-to-leading-order corrections become sufficiently small

((25%) only for Wy~) 10 GeV, which is much larger than the highest 8'yy for which experimen-
tal data exist.

I. INTRODUCTION

One specific aspect of perturbative QCD which has re-
ceived considerable attention in the last few years is the
study of exclusive processes at large momentum transfer.
This development was due to the work of Brodsky and
Lepage' and, independently, Efremov and Radyshkin.
They have demonstrated systematically to all orders in
perturbation theory that amplitudes for large-
momentum-transfer exclusive processes factor into a
hard-scattering amplitude TH and a soft, in perturbation
theory incalculable, distribution amplitude 4(x;,Q).

Large-momentum-transfer exclusive processes that have
been analyzed within the framework established in Refs. 1

and 2 include meson and baryon electroweak form fac-
tors, fixed-angle hadron-hadron scattering, two-
photon processes, ' heavy-quarkonia decays, and several
other processes. Analyses of these processes have led to a
new range of predictions which test both the scaling and
spin properties of quark and gluon interactions as well as
the detailed structure of hadronic wave functions at short
distances.

In the area of exclusive processes, two-photon processes
are of special interest since they can provide very clean
tests of perturbative QCD. Owing to the pointlike struc-
ture of the photon, initial states in these reactions are sim-
ple and controllable, and strong interactions are present
only in final states. This results in a substantial simplifi-
cation of the analysis of these exclusive scattering ampli-
tudes. For these processes, large-momentum-transfer
scaling behavior, helicity structure, and, often, even the
absolute normalization can be rigorously computed.

Photon-photon annihilation into two flavor-nonsinglet
helicity-zero mesons, yy~M+M (M =tr, K), is prob-
ably one of the simplest hadronic processes and it is this
process that we intend to concentrate on in this paper. In
the framework set out in Refs. 1 and 2, the
y~y~ ~M+M process at high energies and large
center-of-mass scattering angles 0, is described by the

helicity amplitudes (see Fig. 1)
1

m(A, k'; sO, )= f dx I dy+M(x, g )@M(y,gy)

&& TH(AA, ';x,y;s, 8, ), (1.1)

where Q„-min(x, 1 —x)~s
~
sin8,

~

(and similarly for
Q~), A, and A,

' are photon helicities, and v s —= Wrr is the
total center-of-mass energy of the yy system (or the in-
variant mass of the M+M pair).

The function 4M(x, g) in (1.1) is the meson distribution
amplitude. The intuitive interpretation of &PM(x, g) is
that it represents the amplitude for the meson consisting
of a qq pair, with the quark and antiquark collinear and
on shell relative to the scale Q, and sharing fractions x
and 1 —x of the meson's total momentum. &PM(x, g) is
intrinsically nonperturbative; it contains all effects of col-
linear singularities, confinement, nonperturbative interac-
tions, and meson bound-state dynamics. As far as the
computation of NM(x, g) is concerned, the method based
on the QCD sum rules' seems very promising. Eventual-
ly, one can also hope to compute NM(x, g) using lattice
numerical methods" or directly from the QCD equations
of motion. '

The function TH in (1.1) is the hard-scattering ampli-

FIG. 1 Factorization of the y~y~ ~M+M helicity ampli-
tude at high energies and large center-of-mass scattering angles.
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tude for producing collinear meson constituents from the
initial photon pair. By definition, TH is free of collinear
singularities and has a well-defined perturbative expansion
in a, ( Wrz ). Thus, one can write

TH(AA, ';x,y;s, 6, m )

=a, ( Wrz) TH '(kl, ';x,y;s, 0, ~ )

e+

X 1+ TH (A, A, ';x,y;s, 0, )+

(1.2)

The function TH is obtained by evaluating the
yy~(qq)+(qq) amplitude, which is described by the
Feynman diagrams of Fig. 2, with massless quarks col-
linear with outgoing mesons. This neglects terms of order
m /s, and, since the constituents are constrained to be
collinear, it also neglects terms of order kz /s, where kJ
is the average transverse momentum in the meson (typi-
cally of order 300 MeV). These terms are negligible in the
limit of very large s.

As is well known, unlike in QED, the lowest-order cal-
culations in QCD do not have much predictive power, the
reason being that the perturbative QCD effective expan-
sion parameter a, (Q) does not seem small at currently ac-
cessible energies. Consequently, one must be careful be-
fore applying lowest-order QCD results to existing experi-
mental data. It has by now been well recognized that to
achieve complete confrontation between theoretical pre-
dictions and experimental results, it is crucial that
higher-order corrections should be obtained.

A physical process by means of which one can study
the yy~M+M transition is the e+e ~e+e M+M
process. Mechanisms contributing to this process are
shown in Fig. 3. Among them, the two-photon mecha-
nism of Fig. 3(a) is the dominant one. This is due to the
fact that only in this case both photon "masses" can be
simultaneously small and the cross section is not
suppressed by photon propagators. If one restricts him-
self to the region where both electron scattering angles are
small, the contribution of the mechanisms shown in Figs.
3(b) and 3(c) are negligibly small and the information

M

FIG. 2. Feynman diagrams describing the yy~(qq )+(qq )

amplitude in terms of which the hard-scattering amplitude for
the yy~M+M transition is obtained.

(c
FICx. 3. Different mechanisms contributing to the

e+e ~e+e M+M process in terms of which the

yy ~M+M reaction can be studied: (a) two-photon produc-
tion, (b) bremsstrahlung production, (c) annihilation production.

about the yy~M+M cross section with both photons
(quasi) real can be extracted. ' In this case, the cross sec-
tion for e+e ~e+e M+M factorizes into a
yy~M+M cross section multiplied by a yy luminosity
function as

der(e +e ~e +e M+M )

d 8'yyd 0,
2

a P(j) do.(yy~M+M )

dQ

where g= Wrz/2Eb„, while P(g') is the photon flux
density which for untagged processes is given by'

(1.4)

The yy~M+M (M =n, K) process has been the sub-
ject of a number of experimental investigations. Better
and better data and data at higher and higher energies are
becoming available. The Mark II group at the SLAC
e+e storage ring SPEAR has recently reported results
of the measurement of cr(yy ~sr+~ +K+K ) in the re-
gion 1.6( Wrr (2.4 GeV (Ref. 15). These results have
now been extended to include the region 2.4( 8'zz (3.5
GeV (Ref. 16), and separate sr+~ and K+K contribu-
tions have been obtained. ' The data, although statistical-
ly limited, are in reasonably good agreement with the ex-
isting lowest-order QCD prediction.

The leading-order perturbative QCD analysis of the
process yy~M+M (M =sr, K) has been performed by
Brodsky and Lepage. In order to check the reliability of
their leading-order predictions, in this paper we examine
next-to-leading-order corrections to this process.

The plan of this paper is as follows. In Sec. II we dis-
cuss some ingredients needed in the calculation. In Sec.
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III we review the lowest-order predictions as originally
obtained by Brodsky and Lepage. In Sec. IV we present
our calculation of next-to-leading-order corrections to the
yy~M+M cross section and compare our results with
the currently available experimental data. Section V is de-
voted to some concluding remarks. As an illustration of
the calculational method employed, in Appendix A we
present a detailed evaluation of diagram A14 of Fig. 7.
Finally, in Appendix B we describe a method suitable for
numerical evaluation of the integrals containing first-
order poles and which are, therefore, defined by the
principal-value prescription.

~/i'( G;A, A, ';cosO, ) =&i (G;A.A, '; —cosO, ),
which is true to all orders in perturbation theory.

(2.5)

B. Pseudoscalar projection operator

The amplitude N(x, PM ), for finding a q and a q inside
the meson and sharing fractions x and 1 —x of its
momentum PM, is a 16-component object given by

tude by MP(G;AA, ') and ~(G;XA, '), respectively, then, in
view of (2.3) and (2.4), one obtains the relation

II. PRELIMINARIES
&b(x,PM) = g f u (xP~)u ((1 x)P~—) .

o, o
(2.6)

A. Kinematics

The process we want to study is

7 )(k),6) )+7'z(kz, e2 )~M+(PM+)+M (P~ ),
where both photons are real and M stands for a flavor-
nonsinglet pseudoscalar meson, such as ~ or K. To make
the analysis of collinear divergences easier, it is convenient
to choose the yy center-of-mass frame in which the four-
momenta of the incoming and outgoing particles are given
by

1 5PM
@(x,P~) = — N(x),M (2.7)

where N(x) differs from C&(x) in that it contains a factor
&x(1—x) coming from the normalization of the spinors.

Requiring that f+ —— f +, to—ensure the pseudoscalar
state, and keeping in mind that q and q have opposite in-
trinsic parity, it follows from (2.6) that

k) ——p+q, k2 ——p —q,
PM+=p+k, PM-=p k,

where

(2.1)

(1,0,0,0),

(0,0,0, 1),

Ms
(0, —sinO, , O, cosO, ) .

2

Polarization states of the photons are taken to be

e&
——— —(O, cosO, , i, sinO, ),1

v'2

1
e& —— (O, cosO, , —i, sinO, ),v'2

+ — — +
E2 =E),E2

(2.2)

(2.3) Final
helicities

P, P'

d, G

U&(xp +)

a" M

v~. ((~-y) PM-)

Denote by Pl(A, A. ') a helicity amplitude for the process
studied. Then, using Lorentz invariance and taking into
account (2.1)—(2.3), one immediately finds that //(Ak'),
as well as the contribution to it arising from any diagram,
has to be of the form

Ml(lk';s, O, )=&i',(q, q k)(E', E'p )

'Y5 Mg
M

+~~&2(q, q k)(e) k)(e2. .k) . (2.4)
Trace

Use of this relation can be made in the following way.
Let G be a Feynman diagram contributing to
yy~M+M and G the diagram obtained from G by in-
terchanging the two photon vertices. Now, denoting the
contributions of these two diagrams to the helicity ampli-

l-y) PM-

FIG. 4. Projecting the qq pair into a pseudoscalar state.
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Having represented the distribution amplitude in the form
(2.7) (i.e., as a 4)&4 matrix), one may now write the helici-
ty amplitude for the yy~M+M process in terms of a
trace over a fermion loop. This is illustrated in Fig. 4. In
particular, one can write

~(A.A, ',s, e, )

1 ].

dx dy N* x N* y 6 Xk', x,y;$, 0,

(2.8)
with

b, (AA, ',x,y;s, 8, )

M+
Tl v'2

~ 0 ~ 0 ~ ~ ~ ~ ~&1 &2

D (xy;s, 8, )

M

v'2

(2.9)
where the dots stand for the strings of y matrices which
depend on the details inside the cross-hatched circle in
Fig. 4.

In addition to be projected into a pseudoscalar state, the

qq pair should also be projected into a color-singlet state
and a trace over the color indices is to be understood in
(2.9).

III. LEADING-ORDER PREDICTIONS

T[B;++]=(e)'+e2 )
x (1 —x)y (1—y)

x(1 —y)e, +(1—x)ye~'
T[B;+—]=8

x (1 —x)y (1—y)

(3.4a)

(3.4b)

FIG. 5. Basic lowest-order diagrams for the yy~(qq)+(qq )

amplitude. Sixteen more diagrams, which can be obtained from
these by various symmetries, are not shown.

The purpose of this section is to briefly review the
leading-order perturbative QCD predictions for the
yy~M+M reaction obtained in Ref. 7.

In view of (1.1) and (1.2), the lowest-order helicity am-
plitude for the process is given by

~~"'(XX;s,e,
1 1

=a, f dx f dy +M(x)4M(y)TH (&&';x,y;s, &. ),
(3.1)

x (1—x)+y (1—y);++ = e)ep x (1 —x)y (1 —y)
4a

X
a —6 z

16aT [C;+—] =2e&ez
a —b z
—2e]e2T[D;++]=x (1 —x)y (1 —y)

(3.5a)

(3.5b)

where the lowest-order hard-scattering amplitude TH' is
obtained by computing 20 Feynman diagrams. These dia-
grams can be generated, by particle interchange, from
four basic diagrams shown in Fig. 5. Let [A], [B], [C],
and [D] be groups of diagrams related to the lowest-order
diagrams A, B, C, and D, respectively. Further, let
TH [X] be the joint contribution to TH arising from the
diagrams of group [X] (A,B,C,D). Then, evaluating all
the diagrams and introducing T [X] by

TH '[X;A.A.'] = T [X;A, A, '], (3.2)
3 $

one finds that

8a 4a (1—a)
2 2 2 2

1 —z a —b z
(3.6a)

T[D;+ —]=
x (1 —x)y (1 —y)

8(1 —a) 4a (1 —a)
X 2 + 2 2

1 —z a —b z
(3.6b)

(3.7)

where the following definitions have been introduced:

z =cosO,

and

T[A;++]=(e, '+e, ')
x (1—x)y (1—y)

1+z
X

1 —z

T[A;+ —]=(e~ +e2 )
4(1 —a)

x (1 —x)y (1—y)

1+z
X

1 —z

(3.3a)

(3.3b)

- = (1—x)( 1 —y)+xy .
b

Now, making use of the fact that

TH '[X;++]= TH [X;——],
TH"[X;+—]=TH [X —+]
(X =A, B,C,D),

and combining (3.2)—(3.6), one finds that

(3.8)

(3.9)
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TH '(++ )

TH ( ——)
(0)

16wo., 32770.'

3s x (1 —x)y (1 —y)

(e, —e~} a2

1 —z
(3.10a)

TH '(+ —)

TH ( —+)
3277K

3s x (1—x)y (1—y)

(e» —ez) a e»eq[x(1 —x)+y(1 —y)] (e, —eq )(x —y)

1 —z 2 +
a —b z2 2 2 +

2
(3.10b)

At this point one can utilize the fact that the meson distribution amplitude NM(x, Q), appearing in (3.1) is universal,
also occurring in other exclusive processes involving the same meson, such as its electromagnetic form factor. Assuming
that NM(x, Q) is symmetric in x and 1 —x, the lowest-order expression for the meson form factor takes the form

(o» 16~a, » C»~(x, Q)CM (y, Q)
FM'(s) = dx dy {3.11)

3s o o x (1 —x)y (1—y)

Comparing (3.10) with (3.11), one notes that the x and y dependence of several terms in TH
' is very similar to that ap-

pearing in FM'(s). This fact can be used to eliminate much of the &PM(x, Q) dependence from Mg(»(kA, '). With the help
of (3.10) and (3.11), (3.1) can be expressed as

&&"»(+ + )

p(o»( )

p(0)(+ )

~y(o»( + )

((., —., )')
- = 16~aFM (s)

1 —z

((e» —e~)')
. = 16naFM(s) z +2(e»ez )p(z; PM )

1 —z

(3.12a)

(3.12b)

It is seen from (3.12) that all the @~(x,Q) dependence of //(»(kl, ') is now contained in the factor (0(z;d&M) which is
given by the expression

p(z;O'M ) =
@M(x Q)@M(y Q} a[x(1—x)+y(1 —y)jf 8X
x (1 —x)y (1 —y) a —b z

f +M(x, Q)+M(y, Q)
8X

x (1 —x)y (1 —y)

(3.13)

The spin-averaged cross section is given by the relation

80 2 ACT

dt s dz , —g ~

m(A. X')
~

' .
16~s 4 gg

(3.14)

2(e»e~)((e» —e~) )
p(z;@M)+2(e»e~) p (z;4M)

1 —z

Substituting (3.12) in (3.14), one finds for the lowest-order differential cross section to be

(0) 2a»g, FM(s) ((e» —ep )')= 16m' 22 +
dt s (1 —z')' (3.15)

To complete the calculation of (der/dt)( ', it is necessary
to know the meson distribution amplitude.

In general, however, 4&M(x, Q) is an unknown function.
Nevertheless, it has been shown that the leptonic decay of
each meson normalizes its distribution amplitude by the
"sum rule"

in which the evolution kernel V is calculable perturbative-
ly. Then, given the initial condition (I»M(x, QO }, perturba-
tion theory determines the evolution of NM(x, Q) for
Q & Qo. The solution of (3.17), to leading order in a, (Q),
is given by'

1 M
XCM X

0 2+n,
(3.16)

OO rn

@~(x,Q)=x(1 —x) g a„(QO )C„(1—2x) ln
n=0 A

independent of Q. In (3.16), fM is the meson decay con-
stant' and n, (=3) is the number of QCD colors. Al-
though &bM(x, Q) cannot be deduced from perturbation
theory, it satisfies an evolution equation of the form

2 (}Q
—Q @M(x,Q)= f dy V(x,y, Q)4&M(y, Q), (3.17)

(3.18)

where C„{y)are Csegenbauer polynomials of order —', , A
is the characteristic QCD energy scale, and y„are the
nonsinglet anomalous dimensions. In the limit Q ~oo,
the solution (3.18) evolves into the form



35 BEYOND LEADING-ORDER PERTURBATIVE QCD. . . 85

@M(x,Q) &3fMx(1 —x) . (3.19)
Q~ oo

However, with increasing Q, this evolution is very slow
(logarithmic) and, at the present-day energies, NM might
be different in form.

In order to see to what extent the form of NM influ-
ences the prediction for the cross section of the process
under consideration, we use the normalized distribution
amplitude of the general form

@~(x,Q) = x "(1—x)", rI )0,fM r(2+2&) „
2 3 I-'(1+rI)

(3.20)

where large r)(Q) implies a sharply peaked distribution (at
x = —, ), g(Q)=1 gives the asymptotic distribution (3.19),
while g(Q) small gives a broad distribution.

The lowest-order spin-averaged cross section for
yy~m+~ is plotted in Fig. 6 for three different choices
of the parameter rI in (3.20). Curves (a), (b), and (c) corre-
spond to g= 4, 1, and cc, respectively. The pion form
factor has been approximated by F (s) =0.4 GeV /s. As
is seen from Fig. 5, the lowest-order cross section for
yy~~+~ is essentially independent of the choice of
@M.

Criven predictions for yy~m+w, predictions for
yy ~%+K can be obtained using the relation

dcT

dt (yy ~K+K )

dO

dt
(yy~m+rr .

)

4

(3.21)

which is true to all orders in o., provided that the distribu-
tion amplitudes N„and N~ are similar in shape.

IV. NEXT- TO-LEADING-ORDER PREDICTIONS

A. Diagrams to be evaluated

Altogether there are 448 one-loop Feynman diagrams
contributing to the hard-scattering amplitude TH for the
yy ~M+M process. All these diagrams can be generat-

To obtain the complete next-to-leading-order prediction
for the yy~M+M (M =m, K) reaction, we need to cal-
culate the corrections to both the hard-scattering ampli-
tude and the evolution kernel for the meson distribution
amplitude. In this paper we calculate only the correction
to the hard-scattering amplitude. This approximation of
neglecting the correction to the evolution kernel can be
justified on the grounds that most of the Q dependence is
contained in the hard-scattering amplitude and that the
meson distribution amplitude varies slowly with changing

10

Al A2 A3

10'
f%T

A5

2
10

A7 A9

1
10

l

0.2
I I

0.4 0.6

z =cos 82 2

I

0.8 1.0
A10 A 12

FIG. 6. Lowest-order perturbative QCD predictions for the
yy~M+M differential cross section. Curves (a), (b), and (c)
correspond to the pion distribution amplitude of the form
@ (x, Q) ~x(1—x),

~

x(1—x) '~, and 5(x —
z ), respectively.

The pion form factor has been parametrized by I' (s)=(0.4
GeV )/s.

A13 A14 A15

FIG. 7. Distinct one-loop diagrams of group A contributing
to the yy~(qq)+(qq) amplitude. The total number of dia-
grams in this group is 104.
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ed from four basic lowest-order diagrams shown in Fig. 5

by inserting an internal gluon line, interchanging particles,
and taking into account diagrams with the photons
crossed. Depending on which basic diagram they are re-
lated to, we divide them into four groups A, B, C, and D,
containing 104, 172, 94, and 78 diagrams, respectively.
Distinct diagrams from each of the four groups are shown
in Figs. 7—10.

When evaluating these diagrams, one comes across ul-
traviolet (UV) and infrared (IR) (both collinear and soft)
singularities. Recall the circumstances under which IR
singularities appear. When an on-shell quark of momen-
tum p emits a gluon of momentum k, then IR singulari-
ties appear as a result of vanishing of the quark propaga-
tor k —2p. k. If the quark is massless, this can happen
when either p and k are collinear ( k

~ ~p, collinear singular-
ity) or when the gluon momentum vanishes (k~0, soft
singularity). Thus, a Feynman diagram with all particles
massless and external particles being on shell will have a
soft singularity if it contains an internal gluon line at-

C5

C3

C6

C9

B2 B3
C12 C13

FIG. 9. Distinct one-loop diagrams of group C contributing
to the yy~(qq)+(qq) amplitude. The total number of dia-

grams in this group is 94.

84 B5 B6

87 B9

B12

B15

816 B17 818
FIG. 8. Distinct one-loop diagrams of group B contributing

to the yy~(qq)+(qq) amplitude. The total number of dia-
grams in this group is 172.

FIG. 10. Distinct one-loop diagrams of group D contributing
to the yy~(qq)+(qq) amplitude. The total number of dia-

grams in this group is 78.
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In addition to being plagued with singularities, these di-
agrams suffer from an extra complication; namely, be-
cause of the kinematics of the process under considera-
tion, most of the diagrams develop cuts (two propagators
going on shell simultaneously), leading to an imaginary
part. Diagrams containing the cut(s) are

group A: all diagrams except A1, A2, and A6,

group B: all diagrams except 81, B3, and B6,
group C: C9 and C11,

group D: D8, D9, and D10 .

B. Regulating the divergences

In this subsection a rough outline is given of how to use
the method of dimensional regularization to handle both
UV and IR singularities simultaneously (at least to one-
loop order).

The main ingredient of the dimensional-regularization
method consists in making the replacement

d4I d 1l/

(4~a, ) ~(4~a, )(p )
(2~) (2~)"

(4. 1)

tached to two external quark lines. Qn the other hand, a
diagram will contain a collinear singularity if it has an
internal gluon line attached to an external quark line. It
follows then that a diagram containing a soft singularity
at the same time contains two collinear singularities, i.e.,
soft and collinear singularities overlap.

The singularities, both UV and IR, appear in every pos-
sible combination. Here are representative lists of dia-
grams for each combination:

UV: A4, BS,C1,D3, . . . ,

UV+ collinear: A6, B8,C5, D4, . . . ,

UV+ collinear+ soft: A7, 810,

collinear: A10, 812,C7,D7, . . . ,

collinear+soft: A14, B15,C9,D8, . . . .

for each loop integral, where n =4—2e is a real number,
whose value can be varied continuously, and p is an arbi-
trary mass parameter introduced to keep the coupling
constant dimensionless. All internal momentum variables
are taken to have n rather than four components, while
external momenta are left as four-vectors. At the one-
loop level, Feynman integrals have the form

I F(l,p),(2~)"
(4.2)

where p is used to denote all the external momenta. All
algebraic manipulations to be performed on the integrand
are carried out in the n-dimensional space-time using the
metric

g00 & gol & glJ IJ

(i,j=1,2, . . . , n —1) . (4.3)

To deal with the diagrams containing spinor propagators
internally, the algebra of the Dirac matrices has to be gen-
eralized to the n-dimensional space-time. Then

I y" y I =2g"", (4.4)

where g" is the metric of (4.3). When manipulating the
y matrices inside the integral, Eq. (4.4) must be adhered
to; otherwise gauge invariance will be lost and incorrect
results will be obtained. As is mell known, dimensional
regularization leads to an ambiguity when dealing with
the pseudoscalar matrix y5. In practice, the difficulty
arises in evaluating a trace containing a single y5. Each
of our traces, however, contains two y5's, separated by an
even number of y matrices. Therefore, y5's can be elim-
inated from the traces (using the properties Iy5, y&I =0
and y&

——1) and dimensional regularization can be applied
without difficulty. After the y-matrix algebra is per-
formed, the standard operations carried out on the in-
tegral (including translation of the integration variable,
Feynman parametrization, and symmetric integration) are
all allowed. The n-dimensional momentum integration is
then carried out with the help of the formula

d"1 (1 )" . ( —1)" I (r +n/2)l (m r n/—2)—1

(2~)n (12 v+l e)m (4~)n/2 I (n/2)I (m) (y i~) — —( /) (4.5)

After this integration has been carried out, all Feynman-
parameter integrations have to be performed. All origi-
nally divergent integrals exhibit poles, single and/or dou-
ble, at @=0, where a=2 n/2. The UV poles (l—abeled
I/eUv) arise from the momentum integration. On the
other hand, the IR poles, single and/or double (labeled
I/etR and I/Ent, respectively), arise from the integrations
over the Feynman parameters. (The appearance of the
double IR poles 1/e&R is related to the fact that a soft
divergence is always accompanied with two collinear
divergences. ) The crucial point here is that, at least to
one-loop order, the poles break apart into a sum of 1/eUv

and I/eqR poles, while poles of the form 1/(@Uvre&R) never
appear. Whenever the separation of the UV and IR poles
is simple to that extent, one can imagine @~0 for the
1/eUv piece and a&0 for the 1/eq~ piece without any
problem.

C. Cancellation of soft singularities

According to the KLN theorem, soft singularities from
radiative corrections are canceled by those coming from
gluon bremsstrahlung. In the case we are considering,
since mesons are assumed to be color-neutral states, it is
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impossible for them to radiate any color soft gluon.
Therefore, in summing a11 diagrams that contribute to the
exclusive amplitude yy~(qq)+(qq), originally present
soft singularities have to cancel exactly.

The physical reason for this cancellation is the follow-
ing. As the gluon becomes very soft, it is not able to
resolve the parton structure of the meson, it "sees" the
whole meson, which has no net color charge, and there-
fore decouples from the system.

Examining the diagrams in Figs. 7—10, it is easily
found (by using the power-counting arguments or the
Landau rules) that the ones containing soft singularities
are (A7, A13, A14), (B10, B13, B15, B17), (C9, Cl 1), and
(D8, D9, D10). As mentioned in the preceding subsection,
a soft singularity, when dimensionally regularized, leads
to the double pole I/etR . Evaluating all diagrams and
adding up their contributions, all I/etR poles cancel. The
cancellation takes place within each of the four groups.
The final result for the amplitude contains only single
1/t )R and, of course, 1/ezv poles.

D. Method of calculation

(4.6)

where Ip; I stands for the set of all external momenta.
Suppose now that the integral I contains, say, UV and
collinear singularities, coming from the integration re-
gions for the virtual-gluon momenta given by )~oo and

1~~p& (p~ =0), respectively. Our strategy for evaluating
this integral is as follows. Since we are using dimensional
regularization to handle all divergences, we first continue
the integral into n space-time dimensions. Next, we con-
struct the UV and collinear subtraction terms (counter-
terms) IUV and I„~~, which are designed to approximate
the integral I in the UV and collinear region, respectively.
A subtraction term is supposed to be constructed in such
a way that (i) it cancels the divergence of the original in-

tegral at each point of the integration region, (ii) it does
not introduce any new divergences, (iii) it works well nu-

merically, and (iv) it is simple enough to be evaluated
analytically. Having constructed the subtraction terms,
we can now formally represent the integral I as

Ivv —I oi&)+(Ivv+1 oij) . (4.7)

In the following we outline the method used in per-
forming the calculation. Details are presented in the Ap-
pendixes.

In order to obtain the hard-scattering amplitude for the

yy —+M+M process to order a, , one has to compute
Feynman diagrams of Figs. 7—10 with the number of
propagators in the loop ranging from two (self-energy dia-
grams) to six (B17, B18, C13, and D10). Diagrams with

two, three, and most of the diagrams with four propaga-
tors in the loop can be evaluated straightforwardly using
the standard methods. On the other hand, it would be ex-
tremely difficult to obtain analytical results for the dia-
grams containing five and six propagators in the loop.
The problem is that when dealing with this kind of dia-
grams, the standard method of combining denominators
results in very complicated integrands which contain alge-
braic expressions raised to fractional powers. These
parametric integrals could probably be evaluated analyti-
cally if the space-time dimensionality can be set equal to
4. This, however, cannot be done since all these diagrams
contain IR singularities (soft and collinear) and diverge as
n ~4. An alternative approach would be to try to express
each term in the numerator as a linear combination of the
denominators with the aim of cancelling some denomina-
tors. This would result in replacing the original integral
by a sum of scalar integrals (no powers of the loop-
momentum vector in the numerator), each of which con-
tains less denominators and is, therefore, easier to evaluate
than the original one. Unfortunately, because of the large
number of external vectors present in the problem (p, q,
k, E), and eq), this procedure cannot be carried out all the
way and, therefore, does not lead to any simplification.
Thus, in order to compute the hard-scattering amplitude
for the process at hand, we are forced to combine both
analytical and numerical methods.

A general one-loop Feynman integral can be written in
the form

Note that the first term on the right-hand side is perfectly
finite (by construction), while all the divergences are now
contained in the second term. Denote these two terms by
I~„and Id;„respectively. Our next aim is to evaluate
these terms. The first term, being finite, can be evaluated
in four space-time dimensions. The necessary y-matrix
algebra (trace evaluations) is performed using the comput-
er program REDUCE (Ref. 19). The loop integral is
evaluated by closing the lo contour at infinity, taking the
residues of enclosed poles, and then performing the
remaining three-momentum integral using the adaptive
Monte Carlo integration routine VEGAS (Ref. 20). For
most of the diagrams, the remaining three-momentum in-
tegral has poles l &, l2, . . . , l„(0& 1; & oo ), 1 now being the
magnitude of the loop three-momentum vector. The in-
tegral is then properly defined by the principal-value
prescription. Numerical evaluation of this kind of in-

tegral is known not to be straightforward; namely, no
matter how many points are used to evaluate the integral,
satisfactory accuracy cannot be achieved. The reason for
this lies in the fact that the finiteness of the integral is a
result of a nonlocal cancellation of infinite contributions
coming from the opposite sides of a pole. Because of this,
before putting the integral on computer, it is absolutely
essential to transform the integrand in such a way that it
becomes locally finite. An efficient way of accomplishing
this is described in detail in Appendix B. After this
transformation is performed, the numerical evaluation of
If;„ is easily carried out. Finally, the last step is the ana-
lytic evaluation of Id;, . This is done using standard
methods except that everything (y-matrix algebra,
momentum integration, and integration over Feynman pa-
rameters) has to be carried out systematically in n space-
time dimensions. Using the modified minimal-
subtraction (MS) scheme to cut off both the UV and the
collinearly divergent integrals, one finds that
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finIvv =Ivv +Ivv
EVv

fi
Icoll Icoll +Icoll

EIR

where

(4.8)

buting diagrams are shown in Figs. 7—10. Evaluating all
the diagrams, we find that the total contribution is of the
form

b, ' "(x,y;8, ) = b, r,'„'(x,y;0, )

+~Uv(x, y'Oc. m. ) „
E'Vv

Evv EIR

=——yE+ ln4n. ,
E'

(4.9) +a,.„(x,y;e, )

EIR
(4.14)

with yE being the Euler constant. Therefore, on the basis
of (4.7), (4.8), and (4.9) the final result takes the form

I =Idiv +Ifin

where

1
Idiv Ivv +Icoll

EVv EIR

fin finIfin —Ifin+I vv +Icoll

(4.10)

(4.11)

We conclude this subsection with a few remarks con-
cerning the diagrams with quark self-energy corrections
where the quark momentum P is on shell (A2, B3, C2,
and D2). Since these corrections modify external legs,
each of these diagrams is accompanied with a factor of —,'.
In dimensional regularization, the contributions of each of
these diagrams turn out to be proportional to

(4.12)

and, therefore, vanishes when P =0. On closer inspec-
tion, however, one finds that this vanishing is a result of
the cancellation of a UV pole with an IR pole. Thus, I"
can be represented as

In a calculation as tedious as this one, it is important to
have as many internal checks as possible. One very im-
portant check is to see that the third term on the right-
hand side of (4.14) is such that it can be absorbed into the
meson distribution amplitude. Use of the collinear Ward
identities can be made to show that this nontrivial re-
quirement is met by our final result.

Therefore, the one-loop hard-scattering amplitude,
which we denote by T H', is obtained from (4.14) simply
by leaving the third term out. Thus,

T H'(x, y;0, ) =bf,'„'(x,y;8, )+6Uv(x, y;8, )
EVv

(4.15)

Let X be any of the four lowest-order diagrams of Fig.
5, and X; a one-loop diagram generated from X by insert-
ing an internal gluon line. Further, let [X] and [X;]be a
class of lowest-order diagrams and one-loop diagrams ob-
tained from X and X;, respectively, by particle inter-
change and by crossing the two photon vertices. Finally,
let TH'[X;] be the contribution of [X;] to TH'. Then, we
can write

Evv ~IR
(4.13)

T H"P'r ]=~.TH '[X] T H"[X;], (4.16)

The UV pole in I contributes to the renormalization con-
stant Z2 and eventually leads to the correct running of the
coupling constant.

E. Correction to the hard-scattering amplitude

The hard-scattering amplitude TH for the process
yy~M+M is obtained as follows. One first computes

the amplitude for the parton subprocess
yy~(qq)-+(qq). Since the virtuality of external particles
and all masses are taken to be zero, this amplitude is

gauge invariant. Then, using the distribution amplitude
for the free quarks, T~ is obtained by rewriting the full
amplitude in a factorized form as in Eq. (1.1). In this

way, collinear singularities are systematically removed
from TH, leaving a well-defined expansion in a, .

In order to extract TH from 6 in a gauge-invariant
way, we employ the method used in the calculation of the
correction to the hard-scattering amplitude for the pion
electromagnetic form factor. ' The method consists in
using dimensional regularization with massless on-shell
quarks to regulate collinear singularities.

Since we are interested in obtaining the TH" term in the
expansion (1.2) for TH, we have to compute b "I Contri-

where TH'[X] is the contribution of [X] to TH, given by
(3.10). For the purpose of this calculation, we use the
simplest form for the meson distribution amplitude,
namely, @~——5(x ——, ). Our hope is that like in the
lowest-order case, the next-to-leading-order predictions
for yy~M+M will not be too sensitive to the precise
form of d&M(x, g). The only reason why the calculation is
not done with the general form of NM(x, g) is that the al-

ready extensive labor involved would increase by, at least,
a factor of 5.

Contributions to TH' arising from the diagrams of
groups A, B, C, and D (shown in Figs. 7—10) for different
photon helicity combinations and four values of the
center-of-mass scattering angle (45', 60', 75, and 90 ) are
listed in Tables I, II, III, and IV, respectively. (The nu-

merical uncertainties quoted are 2-standard-deviation er-
rors as estimated by vEGAS. ) In these tables we use the
notation

g= —2+( —, +21n2) (4.17)

po ——11—, nf, — (4.18)

where po is the first term in the perturbative expansion of
the QCD p function, given by
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with nI being the number of active quark flavors. On the
basis of the results summarized in Tables I—IV, we find
that

T &'(Xl,', 0, ) = +( —, +2 ln2)
4 eUV

Therefore, the complete unrenormalized a, result for the
hard-scattering amplitude is

TH (kA, '; 8, ) = TH '(A, l, '; 8, )

where

+w (AA, ', 0, ), (4.19) Xas 1+ T H'(l. k', 0, ), (4.21)

~(++;8, )

~( ——;0, )

3.274(4),

3.638(4),

3.849(5),

4.233( 5 ),

0, =45',
0, =60',
0, =75',
0, =90

(4.20a)

where TH '(ll, ';0, ) is the lowest-order hard-scattering
amplitude given by (3.10) with x =y = —, .

We now proceed to renormalize the UV poles in (4.21)
using the MS renormalization scheme. Renormalization
is carried out by stating that the a, appearing in (4.21) is
the bare unrenormalized coupling related to the renormal-
ized physical coupling aMs( Wrr ) by

~(+ ;8, —)

w( —+;0, )

2. 859(3),

3.845(4),

4.714(4),

S. 186(5),

0, =45',
0, =60',
0, =75
0, =90

(4.20b)

as =aMs(Wr&) 1—~Ms(~rr) PO

4

Substituting this in (4.21), we get

(4.22)

TABLE I. Contribution to T H' of the diagrams shown in Fig. 7.

Class of
diagrams

A2

45'

—2.376(1)
—2.376(1)

60

—1.980(1)
—1.980(1)

75'

—1.700(1)
—1.700(1)

90'

—1.591(1)
—1.591(1)

Coefficient
of 1/&vv

2
3
2
3

A3 —,(pp —6)

A4

A5

A6

A7

A9

A10

A11

A12

A13

A14

A15

+-
+ ++-
+ ++-
+ ++-
+ ++-
+ +
+
+ ++-
+ ++—

—0.347(2)
—0.351{2)

6.004(3)
5.378(3)

—5.469(2)
—5.025(1 }

0.714(1)
0.630(1)

—1.886(1)
—1.636(1)

3.432(6)
2.885(4)
0.650(1)
0.650(1)

—1.139(5)
—1.166(7)

3.047(6)
3.412(6)
0.848(9)
0.922(6)

—1.285(4)
—1.208(4)

3.689(8)
—0.348(7)

—0.287(2)
—0.296(1)

5.358(4)
4.358(4)

—5.433(2)
—4.633(2}

0.781(1)
0.630(1)

—2.086(1)
—1.636(1)

4.147(3)
2.970(4)
0.336(1)
0.336(1)

—0.698(5)
—0.705(4)

1.545(6)
2.216(6)
0.474(4)
0.455(6)

—0.775(2)
—0.636(2)

3.098(10)
—0.551(7)

—0.248(1)
—0.258(1)

5.158(4)

3.797(5)
—5.522(2)
—4.356(2)

0.849(1)
0.630(1)

—2.291(1)
—1.636(1)

4.863(3)
3.043(5)
0.110(1)
0.110(1)

—0.453(3)
—0.427(3)

0.498(8)
1.403(6)
0.276(5)
0.154(5)

—0.420(3)
—0.218(3)

2.647(8)
—0.592(9)

—0.233(1)
—0.246(1)

5.131(2)
3.605(1}

—5.580(1)
—4.247(1)

0.881(1)
0.630(1)

—2.386(1)
—1.636(1)

5.180(1)
3.069(2)
0.020(1)
0.020(1)

—0.361(1)
—0.318(1)

0.123(7)
1.114(7)
0.216(7)
0.048(3)

—0.289(3)
—0.058(3)

2.494(4)
—0.626(6)

1

24

9
8

2
3

1

24
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TH(AA, ', 8, )=TH'(l. l, ', 8, )aMs(Wrr) 1+
4 3( —,

' +21n2)+a (A.A, ';8, ) (4.23)

In the next step we remove the explicit dependence of (4.23)
which is '

on nf by introducing a new coupling constant a(Wrr),

a—(W )
(W )

Ms rr
1 —(Po/4)( —, +2 ln2)aMs( Wrr )/m.

where

W* =0.21 W

=aMs Wrr (4.24a)

(4.24b)

is then the coupling-constant scale appropriate for the process in question. On the basis of (4.24), Eq. (4.23) can now be
written as

(4.25a)

TABLE II. Contribution to T 0' of the diagrams shown in Fig. 8.

Class of
diagrams

B1

B2

B3

45

—1.442(1)
—1.442(1)
—0.564(1)
—0.564(1)

0

60'

—1.074(1)
—1.074(1)
—0.564(1)
—0.564(1)

0

75

—0.864(1)
—0.864(1)
—0.564(1)
—0.564(1)

0

90

—0.795(1)
—0.795(1)
—0.564(1)
—0.564(1)

0

Coefficient
of 1/evv

1

3

2
3

B4 4 (pp —6)

B6

B7

B8

B10

B11

B12

B13

B14

B15

B16

B17

B18

1.107(2)

0.926(2)
—3.928(1)

0.080(1)
0.065(1)
0.065(1)
1.428(1)
1.428(1)

—0.886(1)
—0.886(1)

0.140(l)
0.140(1)
0.077(3)

—0.509(3)
—0.049(1)
—0.148(1)
—0.007(1)
—0.007(1)
—0.407(1)
—0.407(1)

0.061(1)
0.599(2)
3.689(3)

—0.348(13)
—0.267(3)
—0.701(2)

0.888(9)
0.888(9)

o.777(z)

0.582(1)
—3.606(1)

0.052(1)
0.065(1)
0.065(1)
1.428(1)
1.428(1)

—0.886(1)
—0.886(1)

0.140(1)
0.140(1)
0.077(2)

—0.522(3)
—0.014(1)
—0.100(1)
—0.007(1)
—0.007(1)
—0.407(1)
—0.407(1)

0.033(2)
0.470(1)
3.098(3)

—0.551(6)
—0.209(2)
—0.568(2)

0.820(5)
0.820(5)

0.592(1)
0.398(1)

—3.431(1)
0.015(1)
0.065(1)
0.065(1)
1.428(1)
1.428(1)

—0.886(1)
—0.886(1)

0.140(1)
0.140(1)
0.076(2)

—0.525(3)
0.001(1)

—0.078(1)
—0.007(1)
—0.007(1)
—0.407(1)
—0.407(1)

0.026(2)
0.406(1)
2.647(3)

—0.592(12)
—0.153(2)
—0.493(2)

0.804(4)
0.804(4)

0.529(1)
0.345(1)

—3.371(1)
0.001(1)
0.065(1)
0.065(1)
1.428(1)
1.428(1)

—0.886(1)
—0.886(1)

0.140(1)
0.140(1)
0.082(2)

—0.535(1)
0.003(1)

—0.072(1)
—0.007(1)
—0.0O7(1)
—0.407(1)
—0.407(1)

0.019(2)
0.384(1)
2.494(2)

—0.626(3)
—0.108(2)
—0.458(2)

0.803(3)
0.803(3)

1

3

1

3

1

24

9
S

1

24
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TABLE III. Contribution to f'
H of the diagrams shown in Fig. 9.

Class of
diagrams

C1

C2

45

—1.419(1)
—1.419(1)

0

60'

—1.210(1)
—1.210(1)

0

75'

—1.246(1)
—1.246(1)

0

90

—1.258(1)
—1.258(1)

0

Coefficient
of 1/evv

2
3

2
3

C3 4 (pp —6)

C4

C5

C6

C7

C9

C10

C11

C12

C13

—3.142(3)
—3.142{2)
—0.206(1)
—0.102(1)

4.052(2)

4.052(2)
0.219(1)
0.219(1)
0.613(1)
0.151(1)
0.202(1)
0.336(1)

—5.328(25)
—6.708(21)
—0.771(21)

0.771(21)
6.757(17)
6.624(15)

—0.930(2)
—0.240(2)

—3.008(2)
—3.008(2)
—0.098(1)
—0.052(1)

3.900(2)
3.900(2)
0.182(1)
0.182(1)
0.433(1)
0.241(1)
0.182(1)
0.300(1}

—2.190(14)
—2.124(8)
—0.324(14)
—0.324(14)

4.170(9)
4.024(7)

—0.716(2)
—0.154(2)

—2.934(1)
—2.934(1)
—0.046(1)
—0.034(1)

3.842(2)

3.842(2)
0.167(1)
0.167(1)
0.338(1)
0.292(1)
0.174(1)
0.284(1)

—1.145(8)
—0.218(4)
—0.221(10)
—0.221(10)

3.209(7)
3.061(5)

—0.617(2)
—0.109(1)

—2.914(1}
—2.914(1)
—0.032(1)
—0.032(1)

3.854(2)

3.856(2)
0.166(1)
0.166(1)
0.308(1)
0.308(1)
0.176(1)
0.286(1)

—0.867(8)
0.488(4)

—0.195(3)
—0.195(3)

2.951(7)
2.814(5)

—0.589(2)
—0.096(1)

2
3

9
4

1

12

TABLE IV. Contribution to T H' of the diagrams shown in Fig. 10.

Class of
diagrams

D2

D3
+
+

45

—1.230(1)
—1.452(1)

0

60'

—0.896(1)
—1.056(1)

0

75

—0.721(1)
—0.775(1)

0

90

—0.667(1)
—0.667(1)

0

Coefficient
of 1/eUv

2
3

2
3

4 (Pp —6)

D4

D5

D6

D7

D8

D9

D10

—4.537(2)
—5.029(3)
—0.513(1)
—0.808(1)

0.124(1)

1.543(2)
2.593(2)
2.931(2)

—0.141(1)
—0.088(1)

1.012(4)
1.230(3)

—0.628(8)
—1.238(9)

—4.109(2)
—4.632(3)
—0.291(1)
—0.580(1)
—0.011(1)

1.444(2)
1.904(2)
2.068(2)

—2.09(1)
—0.199(1)

0.792{2)
0.981(4)

—0.211(8)
—0.736(13)

—3.876(1)
—4.351(2)
—0.193(1)
—0.466(1)
—0.123(1)

1.279(2)
1.546(2)
1.481(2)

—0.264(1)
—0.333(1)

0.685(1)
0.818(3)

—0.013(7)
—0.301(12)

—3 ~ 802(1)
—4.243(1)
—0.167(1)
—0.439(1)
—0.531(1)

1.163(2)
1.414(1)
1.233(2)

—0.286(1)
—0.392(4)

0.658(1)
0.768(3)

—0.033(7)
—0.104(16)

2
3

9
4

1

12
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where

TH (A.X';0, ):—a (XX';0, ),
which is our final expression for the next-to-leading order hard-scattering amplitude.

(4.25b)

F. Beyond leading-order predictions for the yy ~M +M cross section

Having obtained the hard-scattering amplitude in the preceding subsection, the next thing we need to get the
yy~M M cross section is the helicity amplitude M(AA. ;0, ). According to (1.1), this amplitude is given as a con-
volution of the hard-scattering amplitude with the meson distribution amplitude 4M . This convolution, however, with
the meson distribution amplitude of the form 4&M ——5(x ——, ) has already been performed since in the evaluation of the
diagrams contributing to TH we have been using x =y = —, from the very beginning. Therefore, from (4.25) we find that
the yy ~M +M process is, to order a, , described by the helicity amplitude

(,), „aMs( Wrr ) (, )M/(kA. ';0, ) =~' '(Al, ', 0, )a—(
W'*

) 1+ M/("(AA, ';0, ) (4.26a)

with

~")(u,', 0, ) =—~ (u, ';0, ) . (4.26b)

Here ~( )(A, A. ', 0, ) is the lowest-order helicity amplitude which is of the form (3.12) with x =y = —,
' .

In order to remove some dependence of (4.26) on the form of the meson distribution amplitude, here, just as in the
lowest-order case, one can utilize the similarity of the yy ~M +M process with the timelike pion electromagnetic form
factor y* ~M +M

There exist two independent next-to-leading order perturbative QCD calculations of the pion form factor, one by Field
et al. and the other by Dittes and Radyshkin. Unfortunately, these two calculations are not in agreement with each
other (and a third calculation is clearly necessary). For the purpose of this work we adhere to the calculation of Ref. 5.
Using their result for the unrenormalized hard-scattering amplitude, setting x =y = —,, and following the steps used in

going from (4.21) to (4.24), we find that the pion form factor, to order a, , is given by

(o) aMS( Wrr )
FM(s)=FM (s)aMs( Wrr ) 1 —2. 33 (4.27)

where FM (s) is the lowest-order expression obtained from (3.11). In view of (4.26) and (4.27), we can now write

//")( xx', s, 0, )
//(A. k', s, e, ) =FM(s)

FM (s)

1+[aMs( Wr'r )/~] XÃ("(kA. ', 0, )

1 2. 33[aMs( Wrr )/n]
(4.28)

Introducing the notation

a("(xx';0, ) = [ //("(xx';0, )]'.//("(u. ', 0,

do
dt

dO

dt

the next-to-leading-order spin-averaged differential cross section for the yy ~M M reaction can be

(o) —s(W* )
1 + h(0, )

(4.29)

(4.30a)

where ( der/dt)( ' is given by (3.15) with p(z, @M ) = 1, and

~(1)(++ 0 )+~(l)(+ 0 )
h(0, ) =2 2.333+

//(0)(++, 0, )
~

'+
~

..//(o)(+ —;0,

1.575(2), 0, =45',
2.744( 3), 0, =60

3.480(3), 0,
4.255(4), 0,

(4.30b)

Now, in order to see how the correction to the lowest-
order prediction for the yy ~M +M differential cross
section depends on the center-of-mass energy of the yy
system, in Fig. 11 we plot the ratio Rd'ff=(der/dt)/

(do/dt)( ' for three different values of Wrr. Curves a, 6,
and c correspond to Wzz ——2, 5, and 10 CreV, respectively.
We take AMs ——1 50 MeV.

Integrating (4.30) over the angular range determined by
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1.0— h (z) =4.255 —14.709z +50.373z —63.353z (4.31d)

0.8—

04-

0.2—

60' 75' 90'

~

cosO,
~

& 5, we find that

(6, 8'ry )
—=R;„,(5, Wry )

c.m.

FIG. 11. Plot of Rd'ff vs 0, for three different values of
W'yy Curves a, b, and c correspond to 8'~~ =2, 5, and 10 CxeV,

respectively.

is the fit of the function defined numerically by (4.30b).
The Wrr dependence of the ratio R;„„defined by (4.31),
is shown in Fig. 13 for three different values of the pa-
rameter 6. Curves a, b, and c correspond to 6=0.1, 0.2,
and 0.3, respectively.

Equations (4.30) and (4.31), represented graphically in
Figs. 11 and 13, are the main result of this work. A
glance at these figures reveals that the corrections to the
lowest-order results become sufficiently small (&25%)
only for W&& & 10 GeV.

The processes yy~M+M (M =sr, K) have been the
subject of a number of experimental investigations. Mea-
surements of cr(yy~w+n +K+K ) in the region
1.6& Wzz &2.4 GeV and the angular range confined to

~

cosO,
~

&0.3 have been made by the Mark II group at
SPEAR (Ref. 15). These measurements have then been
extended to include the region 2.4& W&z & 3.5 GeV (Ref.
16). Using the PEP4/9 detector at the SLAC e+e
storage ring PEP, separate contributions in the same re-
gion of Wz& and the angular range given by

cosO,
~

&0.6 have now been obtained. ' Figures 14
and 15 show the PEP4/9 data for the yy~~+~ and
yy~K+K integrated cross sections, respectively, and
their Wzz dependence in comparison with the leading-

(4.31a)

Here the function f (6), the graph of which is shown in
Fig. 12, is given by

+5
gzh zdz

f(&)= (4.31b)+ g(z)dz

where 0.6—

(c)

(b)
(a)

1 4 1 8» ——
~
+—

(1—z)91—z
(4.31c)

is the function obtained from the expression inside the
large parentheses in (3.15) by setting e, = —', , e2 ————,',
and p(z, @~)= I, while

4.5—
C:

0,3—

4.0

3,5
0.1—

3.0

0.2 0,4 0.6

FIG. 12. Graph of the function f (6).

6

W&& (GeV)

FIG. 13. Wy~ dependence of R;„, for three different values
of the parameter 6. Curves (a), (b), and (c) correspond to 6=0.1,
0.3, and 0.5, respectively.
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so

2

~

l
~ ~ ~ ~

l
~ ~ I ~

(
I ~ t t J l ~ ~ ~

PP-=Tt; K
Icos 8, I & 0.6

4+It data are in very good agreement, in both the Wz&
dependence and the absolute normalization, with the
lowest-order QCD prediction. As to the next-to-leading-
order predictions, one sees that they deviate considerably
from both the ~+~ and the K+K data, indicating un-
reliability of the perturbative calculation in the region of
Wz& in which the data exist.

V. CONCLUSION

(solid curves) and next-to-leading-order (dashed curves)
perturbative QCD calculations.

From Fig. 14 one sees that the W&& dependence of the
yy~~+~ cross-section data is only in fair agreement
with the calculation of Brodsky and Lepage. The lack of
agreement can possibly be ascribed to the interference of
the continuum with the f(1270) and other resonances,
completely or incompletely reconstructed as ~+~ final
states. ' On the other hand, as is seen from Fig. 15, the

10
2

I I 1

I
t I I I I

3f
I

t I 3 1

I

I

YY KK
I cos 8, I ~0.6

10 =—

I

+ 10

-1
10

-2
10 I I I, , I

1 1.5 2 2.5 3 3.5

WYY (GeV)

FIG. 15. PEP4/9 data for the yy~K+K cross section
compared with the leading-order (solid curve) and the next-to-
leading-order (dashed curve) perturbative QCD predictions.

~as

~aa ~

&.5 2 2.5 3 3.5

W&& I,'GeV', i

FIG. 14. PEP4/9 data for the yy ~sr+~ cross section corn-

pared with the leading-order (solid curve) and the next-to-

leading-order (dashed curve) perturbative QCD predictions.

Taking into account the contributions from 448 one-
loop Feynman diagrams, the next-to-leading-order pertur-
bative QCD predictions have been obtained for the
) @~M+M (M =w, K) transitions at large momentum
transfer. The model meson distribution amplitude
NM ~ 5(x ——,

'
) has been utilized as a candidate form for

the nonperturbative dynamical input. The correction to
the evolution kernel for the meson distribution amplitude
(which is needed to obtain complete next-to-leading-order
prediction) has not been taken into account. This is cer-
tainly not a crude approximation since it is known that
most of the W&& dependence of necessary helicity ampli-
tudes comes from the hard-scattering amplitude and that
the meson distribution amplitude varies slowly with
changing 8'&&. With the aim of reducing the effect of
the special form of NM chosen, similarity between

yy ~M+M and y* ~M+M has been employed. In
the MS-scheme definition of a, (renormalized at Wzr )

and with the present estimate for AMs ( —150 MeV),
corrections to the lowest-order predictions are found to
become sufficiently small ( & 25%) only for
GeV, which is much larger than the highest Wz& for
which experimental data exist.

Because of the particular form of +M used in the calcu-
lation, some uncertainty has probably been brought into
the predictions obtained. The size of this uncertainty is
not easy to guess without doing the calculations with dif-
ferent forms of NM. However, we know that the lowest-
order predictions for the yy~M+M reaction are al-
most completely independent of NM if the similarity be-
tween this reaction and @*~M+M is taken into ac-
count. Our hope is (and it is not unreasonable to expect)
that something similar happens in the next-to-leading or-
der also, and that the predictions obtained are not too sen-
sitive to the precise forms of the meson distribution am-
plitude NM.

In summary, the results of the analysis which has been
carried out in this paper indicate that reliable perturbative
predictions for the yy~M+M (M=~, K) process can-
not be made until 8'zz of 10 GeV is reached or unless
higher-order terms in the perturbative expansion are ob-
tained.
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APPENDIX A

To illustrate the calculational method, in this appendix
we present a detailed evaluation of diagram A14 of Fig. 7.

Using the momentum assignments shown in Fig. 16,
the contribution of this diagram, to, say, the T(+ + )

helicity amplitude can be written as

Tw&4(++)=eq g
2 4 4

S

2 I,
9

(Al)

I= 1( 2) Ey d1 N
i (2~)" D)DpD3D4D5Dp

The numerator in (A2) is of the form

(A2)

where eq is the electric charge of the quark line to which
the photons are attached, g is the strong coupling con-
stant, ——, is the color factor for the diagram, and I is the
loop integral given by

A glance at these denominators (or at Fig. 16) reveals that
the integral I contains one soft and three collinear diver-
gences. These divergences come from the following re-
gions for the virtual-gluon mornenta:

region A: l soft,

region B: 1~~(p+k),

region C: 1 ~(p —k),
region D: (1+p) ~(p+k) .

(A6a)

region A: 1& ~0(p = +, —,l ),
region 8: l+ » l, lq,

region C: l » l+, lz,
region D: (1+p)+ »(1+p), (1+p)l .

(A6b)

In terms of the light-cone variables, where 1 =(1+,1,1~ ),
the above four integration regions can be characterized as

N =Tr
XSj'M+

&2 ZPi&iP~VPA2 Let lA, lz, lc, and lD be the limiting form of the loop
momentum vector I in the regions A, 8, C, and D, respec-
tively. Then, in view of (A6), we have

where

M
7'4 ~l'p

P +=p+k, P =p —k,
p+k p kPl=

2
'

2 2
—l, p2 —————q+ ——I,

(A3)

(A4)

lA ——0,
l+

ls —— (p +k),
2

l
1c= (p —k),

2

(A7a)

(A7b)

(A7c)

p —k
D3 —— l+

2

2 2

+i 0, D = l + —+q ——p k
2 2

+i 0,

p =——q+ ——l, p. = +lp k p —k
2 2

' '
2

The rnomenta p, q, and k and the polarization vectors e&+

and eq+ are defined in (2.2) and (2.3), respectively. The six
denominators in (A2) are

2

Dl ——l +iO, D2 —— l- p+k
2

+i 0,

lo ———p+ (p+k) .
(1+p)+

2
(A7d)

A B C D
IST IIR +Icoll +Icoll +Icoll (A8)

Since the integral I is beset by singularities and is too
complicated to be evaluated analytically, we proceed as
follows. We first define the subtraction terms (or counter-
terms) I~~, I,„~~, I„~~, and I„~~ which approximate the
original integral I in the regions A, 8, C, and D, respec-
tively. Let us denote by IsT the sum of all subtraction
terms, i.e.,

2

D, =(l+p) +i0, Dp —— ——q+-p k
2 2

(A5)

5
M

Then, the integral I can formally be written as

I =(I I-)+Is. — (A9)

The point of writing I in this form lies in that the first
term on the right-hand side is finite by construction, while
all the singularities of the original integral are now
separated and contained in the second term. Equation
(A9) can also be written as

P——- q+—
2 2

p k——q+—
2 2

FIG. 16. Momentum labeling used in the evaluation of dia-
gram A14 of Fig. 7. Dashed lines are used to indicate the cuts
present in the diagram.

(A10)

where If,"„' ——I —IsT, while If;„' and Id;, stand for the fi-
nite and divergent part of IsT, respectively. We evaluate
I['„' numerically (in four dimensions). On the other hand,
If;„' is obtained by computing IsT in n space-time dirnen-
sions, expanding the result in the Laurent series around
n =4, taking the limit n ~4, and keeping the terms that
remain finite in this limit. The sum of the pole terms
then corresponds to Id;, .

We now proceed to construct the subtraction terms ex-
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plicitly. Since the soft divergence coming from the region
A overlaps with the collinear divergences coming from
the regions B and C, we start by subtracting the soft
divergence first. This is done by simply setting I =I& in
the numerator and in the denominators D4 and D& of the
original integral I, i.e.,

A d "I NA
IIR =

(2m. )" D)DqD3Dq~Dq~Dp

Subtracting (Al 1) from (A2), we obtain

d "I N —NAD4D5 /D4A D5I —IIR =
(2m. )" D, D2D3D4DqDp

(A 1 1)

(A12)

d
"I NB —NAD4BD5B /D4ADsAIcoll (2')" D) DpD3BD4~DqDp

(A13)

Similarly, the subtraction term I„ll is constructed by set-
ting I = lc in the numerator and in D2 and D5 in the
denominator of (A12). The result is

d "I Nc NAD4CD5c /D4AD5AIcoll
(21T)" D)D2CD3D4D5CD()

(A14)

On the other hand, since the collinear divergence from the
region D does not overlap with the soft divergence, the
corresponding collinear subtraction term I„ll is obtained
by simply setting I =ID in the numerator and in Dl and
D5 in the denominator in (A2), giving

ND

2~ " DIDD2D3D4D5DDO
(A15)

Performing in (Al 1)—(A15) the necessary y-matrix alge-
bra, in n space-time dimensions, and introducing the nota-
tion z =cosO, , we find that the subtraction terms are

AIIR = 1+z
1 —z

3 —z
1 —z

d "I 1

(2~)" D)D2D3

(A16)

BIcoll
1+z
1 —z

3 —z d "I 1

n1 —z (2')" D)D2Dg

(A17)

(A 1 8)

This integral is now finite when I~O, but still contains
all three collinear divergences. Our next step is to con-
struct collinear subtraction terms. The subtraction term
I„ll is obtained by substituting I = l~ in the numerator
and in D3 and D4 in the denominator of (A12). Thus

(A10), and (A16)—(A19) we find that

(, ) I dl dip N —(1+z)D4DgI(1)
(2vr) D(D2D3D4D5Dp

1+z
1 —z

1

DIDPD3
z

DID3D4

1 —z+
D2D3D4DD5

(A21)

where 1 is the magnitude and 8 and P are the polar angles
of the loop three-momentum vector l. We next perform
the lo integration using the method of residues. Let lo' be
the pole of the denominator D; (i =1,2,3,4,4D,5). Then,
closing the integration contour in the lower lo half-plane,
we find that the contributing (enclosed) poles are

I,"'=I—i 0,
1()

' ———,
' +(1 —1 cos8+ —,

' )' i 0,—

lp
' ————,

' +(1 —1cos8+ —,
' )' —i0,

I' '=I —1 —)0,
where

a =(1—2z)cos8+2(1 —z )' sin8cosg .

(A22)

(A23)

Carrying out the lo integration, we arrive at the three-
momentum integral which is a sum of 15 terms. A typi-
cal term is of the form

f F(l() ——lp~')

(2~) D)JDpg . . D5J
(A24)

where D;z(1) is the denominator D; evaluated at the pole
of the denominator Dz, i.e., DJ(l)=D;(lp ——lp~'). At this
point it is very important to examine the pole structure of
the integrand. Suppose that there exists I,z such that
0 & l,z & co and D;J.(l& ) =0. This means that there is an ij
cut, i.e., propagators i and j can go on shell simultaneous-
ly. Examining all D,z's, we find three such cuts, namely,

D32(1)=1—2(1 —1 cos8+ —,)'i

(A20)

with

X =21[(1—z )cos8+z(1 —z )'~ sin8cos8] —(1—z ),

d "I
i(iI + )( Iz+ ~ R) fi

(2m )" D2D3D4DDg

where

D4D ———zl+ —1+i 0 .

(A19a)

(A19b)

D5i(1)=1—21,

D52(1) =2—31 cos8,

which vanish for

2
132

I

cos8
I

l, i
———, , 15q ——

3 —cos6

(A25)

(A26)

In the expressions (Al 1)—(A19) the factor —i (p )
' has

been systematically suppressed. On the basis of (A9),
respectively. Since the integral contains the (first-order)
poles given by (A26), it is properly defined by the
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principal-value prescription which amounts to using the
identity

A 1
IIR =

(4~)
C2(z) Ci (z)

, + +C»(z)
&gR &IR

(A29)

5(l —l;J )=P —i~
Dij(l) +i 0 D;z(l)

~

D,z(l)
~ &

(A27)

for each D;J in (A25). As a result of this the integral
splits into two parts, a real part and an imaginary part.
Since the lowest-order amplitude is real, the imaginary
part of the amplitude at the one-loop level will not contri-
bute (to the order in a, that we are interested in), so we
just drop it. As far as the integral representing the real
part is concerned, it is not yet ready for numerical in-
tegration. Before putting it on computer, it is very impor-
tant to perform a transformation on the integrand, so that
a local cancellation of infinities, coming from the opposite
sides of a pole, is achieved. An efficient way of doing this
is described in detail in Appendix B. After this is carried
out, the final integration is easily performed. The result is

where

Fa(z) =—

GB(z)=—

1+z
1 —z

3 —z
1 —z

1+z
1 —z

ln2;

(A31)

Since all the soft singularities cancel out when all the dia-
grams are put together, explicit expressions for C», 2(z)
are not needed and we do not give them here. It is, how-
ever, interesting to mention that I~R has a divergent imag-
inary part [C»(z) and C&(z) are imaginary]. This is relat-
ed to the fact that l32 ——

~

cos8
~

can be equal to zero.
The collinear subtraction terms are of the form

I,',» ——
2 F;(z) +G;(z) (i =B,C,D), (A30)

1 1

(4m )

—0.680(9), 8, =45
1+z

ln( 1 —z),
1 —z

—0. 130(3), 0, =60

0 051(3), 8, =75',
0. 103(3), 0, =90 .

(A28)
Gc(z) = 1+z

1 —z
ln( 1 —z)

2

(A32)

We now proceed to evaluate all the subtraction terms
analytically. This requires evaluating the loop integrals in
(A16)—(A19) and is performed using the standard
methods. The subtraction term I&z is given by

FD(z) = —ln
1+z

2

GD(z) = —(1+z)[K~(z)+%2(z)];

with

(A33)

1+ln( 1+y) 1 1
K&(z) = dy K, (z) = dx dy(1+y)(1—yz)

'
» (1—x)(1+y) 1+(1—x (1+y) )z

1

1 —yz
(A34)

(2)
Ifin = —'

0. 197(1), 8, =45',
0.079(1), 6, =60',
0.039(1), 9, =75',
0.021(1), 9, =90' .

On the basis of (A31)—(A34) we get

(A35)

A 1 - - 1Id;„——IrR+ gF;(z)(4~)' e iR
(i =B,C,D) .

(A37)

APPENDIX B

This completes our evaluation of diagram A14 of Fig. -7.

—0.877(9), 8, =45',
—0.209(3), l9, =60',
0 012(3), 0, =75',
0.082(3), 0, =90' .

(A36)

On the other hand, in view of (A30)—(A33), the divergent
part of I is

Combining now (A28) and (A35), we find that the finite
part of I is given by

max f (x)
J1 = + ~ +min & &+max

+min & —a
(B1)

Since this integral has a single pole, it is defined by the

In this appendix we present a method suitable for nu-
merical evaluation of the integrals containing first-order
poles and are, therefore, properly defined by the
principal-value prescription. For simplicity of notation
and with no loss of generality, we restrict ourselves to
one-dimensional integrals.

To begin with, consider the following integral:
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principal-value prescription, i.e.,

X

J1 ——lim dx + dx (82)

Introducing new integration variables by

+min +max
y2=

+ Inin +max
(83)

min g g min y1i —a/(a —x . ) f'( . ( ))J, = lim 1e~o y1 —1

where

0 f(g -(yz»f+
yz —1

(84)

gmin(3 ) xmin+ (+ xmin )3

gmax(3 ) Xmax + (+ X max )y
(85)

into the first and second terms in (82), respectively, we
obtain

another (nothing simpler) integral plus an extra term. The
important point to observe, however, is that unlike in the
case of the original integral J1, which is finite owing to a
nonlocal cancellation of infinite contributions (coming
from the opposite sides of the pole), the integral J*, is fi-
nite because the integrand is now finite at each point of
the integration region. This is crucial if one wants to
evaluate the integral J1 numerically. Rewriting J1 in the
form (89) amounts to a folding of the integration region
around the pole, as a result of which the infinities fall on
top of each other and cancel out.

Let us now apply the above procedure to the integral
containing n first-order poles:

m ax f(x)
min (x —a i )(x —a2 )

. (x —a„)
(811)

In order to prepare this integral for numerical evaluation
we first divide the integration region into n + 1 subre-
gions

[x;„,x,„]=[x;„,a i ] U [a i,a2] U U [a„,x,„]

Equation (84) can now be written in the form

f(g;„(y)) 0 f(g,.(y) )
J1 —— dy + dy

0 y 1 y

1 f(g;„(y))—lim dy
6'~0 [ min y —1

and represent (811)as

n +1 ak —eke
J„=lim g f dx F(x),

&~0 k 1
k —1+ k —1

where

QO +min ~ an + 1 +max

(812)

(813a)

1 f(g,„(y))
dy

1 —E'/(xmax a j y
(86)

and

ck (1 —5k —1,0)(1 —6k, a+i) (813b)

Denoting the sum of the first two terms by J1 and intro-
ducing a new integration variable z =y —1 into the last
two integrals, (86) becomes

min dz
J1 ——J1+ lim g;n 1+z

e o z
yields

+k ak —i+( 1) (+k++k —i
k

2(ak —ak i)
(814)

Introducing a new integration variable into the kth term
(integral) in (812) by

g ax 1+z, B7—e/[x „—a )

which, in the a~0 limit, takes the form

n+1 21,J„= g ( —I)"(ak —a„,) f dy„F(G(yk)),
k=1 k —1

where

(815a)

or, finally,

min dz+f( ) f /i max
(BS)

and

G(3'k ) [(+k ++k —1) +( I) (+k +k —1)( I yk )]

(815b)

Ji ——Ji +f(a)ln +max

+min
(89) 1+( 1)k ak —1

Zk —1= +(—1) +
2

Here f(a) is the residue of the integrand at the pole a.
The second term in (89) is a "correction term" which ap-
pears owing to the fact that

Zk = +( —1)
1+( 1)k+

2

Qk

ak —~k-1

(815c)

dyi (x) dy2(x)
dx ~ ~ dx

(810)
Equation (815) may be written as

Jn =J„*+AJn, (816)
where y1 and y2 are the integration variables in the in-
tegration regions 1 and 2, respectively.

At first sight, nothing has been achieved in going from
(Bl) to (89); the original integral has been replaced by

where

n+1
J„'= g ( —1)"(~k—~k, ) f dykF(G(y„))

k=1
(817a)
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1+( 1)k

2
(817b)

tegral at the upper [lower] limit. Thus, J„ is now finite
owing to a local cancellation of infinities. The term J„ in
(816), given by (818), does not present any problem and is
easily evaluated. Its origin is related to the fact that

The second term on the right-hand side of (816) is given
by the expression

dX x =Qp

d3'k+1

dx X =Qg
(k =1,2, . . . , n) . (B19)

b J„= g ResF(ak)ln
k=1

(818)

All the integrals in (817) diverge; the first integral at the
upper limit, the last one at the lower limit, while all the
others diverge at both limits. Note, however, that the
divergence of the kth integral at the lower (upper) limit is
canceled by the divergence of the ( k —1)th[( k + 1)th] in-

I

Therefore, having represented J„ in the form given by
(816)—(819), our goal has been achieved. The integral J„
is now ready to be evaluated numerically.

We now proceed to present a slightly modified version
of the method described above. The only difference is
that now instead of the linear change of variables, given
by (814), we use a nonlinear one, namely,

for k =1,
a1

1+ ( —1)" sk(ak —ak &)(x —ak ~)+ for k =2, 3, . . . , n +1,
2 (ak —ak, ) —(x —ak ~)[1+(—1)"(ak —ak &)sk]

(B20)

where

1
for k =1,

On the basis of (820)—(822) it is easily verified that we
now have

a1
for k =2, (821)

3k
dX x =Qg

3k+1
dX x =Qg

(823)

3k

dX X =QA
for k =3,4, . . . , n +1 . Because of this, the integral J„can, in terms of new in-

tegration variables, be represented as

lt may be seen from (820) and (821) that sk satisfies the
following recursion relation:

Sk=
k —1(ak —j ak —2)

2

(k =3,4, . . . , n+1) .

n +1 co~J„= g f dykjkF[x =x(yk)],
~I —l

where

(824)

dy
Jk=

dx

a1, for k =1,
&k(ak —ak ~)

2

for k =2, . . . , n +1,
I(ak ak —1)+[1+( 1) (ak ak —1)sk](+ ak —1)]

(B25)

is the Jacobian of the transformation (820). Therefore,
with use of the integration variables given by (820), the
"correction term" AJ„, requiring the evaluation of the

residues of the integrand, is absent. This makes the latter
version of the method simpler and more efficient.
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