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Virasoro conditions, vertex operators, and string dynamics in curved space
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We present the perturbatively renormalized expression of a scalar vertex operator for strings in

a background metric and dilaton field. The equations of motion for the background fields and the
wave equation for the vertex function emerge upon imposing Virasoro conditions on the vertex
operator.

In the last few years there has been great interest in
two-dimensional (2D) conformally invariant field theory
(CIFT). These studies have shed light on the classifica-
tion of critical phenomena for systems of interest in
condensed-matter physics. ' The subject of 2D CIFT had
its origins in the dual-string model. Not surprisingly
there is much interest in this area from the string
viewpoint.

In string theory one of the central problems is that of
string compactification, or equivalently to find the ground
state. This is inherently a nonperturbative problem, and it
would be desirable to set up a Hartree-type framework to
address this question. In its absence it has become fruitful
to explore consistent propagation of strings coupled to
background fields which are condensates of its massless
modes. For the bosonic string these are the metric, the di-
laton, and the antisymrrietric Kalb-Ramond field. Confor-
mal invariance is the guiding principle that constrains
these backgrounds. More explicitly, one is in some sense
using the representation theory of the Virasoro or confor-
mal algebra to make statements about the background
fields. In this paper we pursue this point of view and
present an explicit perturbative construction of a vertex
operator which creates string states that carry a represen-
tation of the Virasoro algebra. This happens when the
background fields satisfy the classical equations of motion,
and the vertex function, which is the wave function of the
particle emitted from the string, satisfies a linear differen-
tial equation. As is well known, the classical equations of
motion follow from an action principle. The linear wave
equation is a consequence of a second-order variation of
the action. This construction generalizes for curved space
the tachyon vertex of free strings. We also present the nil-
potent Becchi-Rouet-Stora- Tyutin (BRST) charge and
the physical states it annihilates.

Strings and 2D CIFT. We start with an abstract formu-
lation of the closed bosonic string: the Virasoro condi-
tions. These state that the first-quantized bosonic string
states satisfy

Lo I y) =
I Iit), L„ I ter) =0, n ~ I,

where L„, n E Z are the holomorphic generators of the
Virasoro algebra:

[L„,L ) =(n —m)L„~ + —,'2 c(n —n)8„

Identical equations are satisfied by the antiholomorphic
generators L„and there is an additional constraint

6,v= h +~ v+ h +r v.
dz dz dz dz

(3)

(Henceforth we shall omit the second term. ) (1) says that
the physical string states are highest-weight states of the
conformal algebra with dimension (1,1), or equivalently,
that the vertex operators of string theory are primary con-
formal fields of dimension (h, h ) = (1,1). Hence

8,V = (d/dz ) [e(z ) V(z,z ) ]

is a total derivative and the S matrix is conformally invari-
ant.

The stress tensor T„„ in 2D CIFT is conserved and
traceless. Its traceless part T» =T~~ —T22+2iT~2 is the
generator of the conformal transformations:

S,V(co) =Ilt e(z)T„V(co)dz/2ni .

The statement that Vis a conformal field of dimension h is
contained in the operator-product expansion (OPE)

a.V(~)
T„V(co)= + + regular terms,

(z —co) z co
(4)

which recovers (3) using Cauchy's formula. Thus (4) with
h =1 is equivalent to the Virasoro conditions (1). In this
paper, we present, for strings in curved space, a V that sat-
isfies (4).

The Virasoro generators are given by

L„=f z"+'T„dz/2tti

LOI y) =LOI y). The central charge is chosen c =26 for
string theory. A string state is created from the vacuum
by a vertex operator, I y) =V(0) IO), and the scattering
amplitudes are world-sheet integrals of a correlation func-
tion of vertex operators:

J '?Id', '(otJv;(, ) o)

Here we restrict ourselves to vertex operators local on the
world sheet. Since the Virasoro conditions (1) determine
the allowed vertex operators, in a sense they completely
characterize the string theory, apart from the central
charge and the requirement that the state space also carry
a representation of the modular group.

In 2D CIFT, a primary conformal field of dimension
(h, h) is one which, under infinitesimal conformal trans-
formation z z+e(z), z z+e(z), transforms as
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and (4) is equivalent to the operator statement

[L„,V(z)] =z"+'(d/dz)V(z)+(n+ l)hz"V(z) .

This representation together with the Jacobi identity im-
plies the closure of the Virasoro algebra (2) on the state
space generated by V, up to the central extension c. In the
OPE language (2) is expressed as

2 Tmm c)m Tmm

(z —co)" (z —co) 2

and c is determined by the correlation

(T„T „)= 2 c(z —co)

Vertex operators for free fields A.s a prelude to the
curved-space case, we study the free-field representation of
(4) and (5). Here c =D, the number of free boson fields.
An example is the tachyon vertex Vk(z) =exp[ik x(z)].
Dimensional regularization (d =2+2e) is used to control
ultraviolet divergences, and we introduce a mass m as an
infrared cutoff. The expectation value of Vk(z) in the
presence of an arbitrary source j' is

( Vk (co )), = [1/z (J ) ] &"Xlx exp —(I/4&) ~ d (—,' (B„x) +„d (J x +i k .x (co )

exp &
d j' x 0 z j

+regular terms . (7)

Equation (7) holds for an arbitrary source j(g) that van-
ishes at z, co, and when the O(m ) terms in A(z, co) are ig-
nored. Thus V' satisfies (4) and h =~zk . Notice that (7)
is satisfied even when m WO (but is small). In particular,
(Vk(co))p=v"'l2 and

(T zvk(co))p=v ''[—,'k'(z —co) '+O(m')]
Though both (Vk(co))p and (T„Vk(co))p vanish at precise-
ly m =0 (as expected from a conformal field of nonzero
dimension), they satisfy

(T„Vk(co))p =
2 k (Vk(co))p(z —co) (8)

where j'(g) =j(g)+ikb (g —
g ). A simple Gaussian in-

tegration gives
r

(Vk(co))~ =exp ik'„d &a(z, co)J'(z) ——,' k A, (0)

The propagator is

h(z, co) = —In(~z —
co~ e "m /4z)[1+O(m )]

the coincident propagator is d„(0) = —(1/e+ F+eF ~

+ . ), F=lnv, F~= ,'F —yF+ &', —z +y, v=e"m /
4np, p is an arbitrary mass scale, and y is Euler's con-
stant.

It is clear that Vk can be multiplicatively renormalized
by defining

Vk (z ) =exp( ——,' k 'e ') exp [ik x (z ) ] .

All matrix elements of Vk(z) are finite. The multiplica-
tive renormalization of V is equivalent to introducing a
series of additive divergent counterterms in the minimal-
subtraction scheme and serves the same purpose as normal
ordering in the operator formalism.

A simple computation with T„=—
z c),x'c),x' yields

(TzzVk(co))& =
2 k (Vk(co)), (z —co)

+ci (Vk(co))J(z —co)

+a„a„e—b„„a,a,e,
T, = ——'g 2G c), c), b+t), @2( )

(10)

In (10) and (11) we have set g„„=b„„.In principle g„„is
flat only up to a conformal factor. However, at e =26 the
theory has Weyl invariance: The Liouville mode decouples
from the dynamics. With this hindsight we henceforth use
g„,=8„„.This is possible for the tree-level strings because
the world sheet maps into the zero-genus complex plane.
Thus though @appears in T„„it disappears from A.

The Virasoro equations are local equations in the con-
figuration space of the string. Hence they can be solved
locally in the neighborhood of a point in the target space.
These local solutions are then patched up to obtain the
general solution. (This is reminiscent of the WKB method
in quantum mechanics. ) Hence the implications of confor-
mal invariance can be studied in the neighborhood of
points in the target space. We expand x about a fixed
point X in the target space: x =4"+A,z'. The variable x
is replaced by the Riemann normal variable ri (which
transforms as a vector at A'), and A and T„are written as
perturbation series in A, . Then to order A, , A and T„with
their one-loop counterterms in the minimal scheme includ-
ed are given by

I

when I is small but not zero, and the dimension h can be
correctly read off from (8). In the interacting case we will
present the results for j =0.

Vertex operator in curved space. The general nonlinear
model in 2D [with the target space metric G,b (x ) ] and
with dilaton background field @(x) is given by

A =(4x) '„d'&Jg [—,'X 'g""G. (x)cl„x'8~'
—R e(x )]

g"' and R are the 20 world-sheet metric and scalar cur-
vature. The dilaton coupling was introduced by Fradkin
and Tseytlin (Ref. 3). A, =a' is the slope parameter. The
stress tensor T„„=—4mb'/bg"" is

T„„=,' ~ '(G.,a„x a-„x' ,' b„„G.b e„—x'—a,x')

(4&)
—1)r d2g[ l

Q riAQ riA+ l p2(+~cD ic irD+re
—

1+&&)c) riedel ri + —m (b —~ e ~ )ri+ri +O(g )]
(12)
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T„=——'B, ri 6, ri+ —'), —(R ricriD+e 'R )B,ri~B, ri~+&D e9, 2ri~+X2D D e(ti, q B,ri +rt 6, q~) .

=exp(~& D„)V(x) . (i4)

With hindsight from free fields, if V(x) is a vertex
operator for emission of a (mass WO) particle, we

I

Here q =e,"(A')ri' where e,"(A ) is the vierbein at A; and
the Riemann tensor R~gD~, the Ricci tensor R~~ =R~~~~,
D~@, and D~D~@ are all evaluated at X. The mass term
and its counterterm in (12) regulate infrared divergences.
Note that since A is independent of z,z, translational in-
variance in the sense of 2D field theory is manifest.

A target-space scalar V(x ) can also be expanded:

V(x ) =Q (n!) -'k "g" q".D„, D„V(x )

expect D, V(x)-k '. Introducing V, =ED, V(x),
V,b =X D,Dq V(x), etc. , we have

V(x) =g(n!) 'q"' q""V,
,

. . .,
and each term is of order one.

The renormalized vertex operator V~ is obtained from
(14) by adding counterterms in the minimal-subtraction
scheme to make all Green's functions
(V~(x)rr '(z~) ri "(z„))ultraviolet finite to order X .
Each successive n produces a new set of counterterms, re-
sulting in an infinite series which ultimately exponentiates.
Here we present the result leaving details for Ref. 7:

V~ =exp(~zk e 'D~D~) exp(Xq D~)[V(x) ——,X e R~~v~~(x)

+ 6 ~ e RACVA(x)g 2 ~ e RACDBVAB(x)g ri

To obtain the analogue of (8) we compute (V~(cv)) and (T„V~(c)v) to O(k ) using (13) for T„The result is.

(V, (~)&=v ' " ""[V(x) ).'( ,'F+ ,'F—')R„—,V„,—(x)],
—g2D D /2(T„V~(cv)) =(z —co) v " " [ —

2 V~g+XDgevg+ 2 X ( 6 F+ 4 F )R~Bvccgg

+ (I —inc '
I
z —~

I
') (D~ Dae —

2 R„,) V„,] .

(15)

(16)

Thus (4) is satisfied for a single Vk correlation function
provided

and

Rgg =2DgDg@,

x ( ——,
' D~ Dg v+ DgeDg v) =h v .

(i8)

(i9)

To leading order in X, V~~ = —2hV, because in (19) the
dilaton term is of higher order.

In analogy with the free case we expect that (4) is true
as an OPE when (18) and (19) are satisfied. This means
that for vertex functions satisfying (19) the states created
by Vz carry a representation of (2), provided the back-
grounds satisfy (18). It remains to compute the central
charge c. This is done by directly evaluating (T„T ) us-

ing (13). We find (T„T ) =—,
' c (z —ro) (for zero

genus (T„)does not contribute), with

C =D+ 3& [R+4(Dye) —4D~D~e]. (2o)

The BRST charge. The Virasoro conditions can be ex-
pressed in terms of the BRST charge. Fixing the confor-
mal gauge in (12) introduces a Faddeev-Popov deter-
minant which can be written as a functional integral over
anticommuting ghost fields b„, b,—,—,c',c'. The ghost stress
tensor' is denoted Tg, and satisfies the Virasoro algebra
on its own with central charge —26. Since the deter-
minant depends only upon g„„, the ghosts (and hence Tg, )
commute with x'. The BRST charge is Qa~sT=Q+Q,
Q =fj,dz/2+i, j, =c'T,",+ ,'c'Tg, + —', 6, c', and simi-—
larly for Q. One can verify that

Q' = —,', (c —26) IIl) 8,'c' c'dz/2ni

where c is the central charge of T,", alone. This is a conse-
quence simply of the fact that T,", and Tg, satisfy (2) and
that the x and ghost variables commute. Thus the BRST
charge is nilpotent if (i) the state space carries a represen-
tation of the Virasoro algebra and (ii) c =26. In the
present case to order X (i) holds for states l y)
=V~(0) lo) provided (18) and (19) are satisfied and (ii)
holds, for example, when D =26 and

R +4(D~e) —4D~Dge =0 . (21)

V~ (0)
l
0) satisfies (1) if in (19) h =1. When (h, h )

=(i, i), I
~&=v, (0) lo&ec, c, lo& satisfies QB,sT! e)

=0. This is the BRST version of the Virasoro conditions.
It is well known that (18) and (21) follow from the ac-

tion
r

S =J d"x JO exp( —2e)[R+4(De)'] .

The physical meaning of the anomalous dimension eigen-
value equation (19) can be understood as follows: Suppose
we have a background field T(x) describing a tachyon
condensate. The Virasoro conditions then imply that the
low-energy effective action includes the tachyon coupling
to Gand +:

s =J"d" ~G p( —2e)[—,'(DT)' —X '7'] .

For a fluctuation V(A') around a background value To(A')
(T = To+ V), the second-order term in ST is

fS = d x JG exp( 2e)V(———'D +De D —k )V
aJ 2

The linear operator (19) is thus precisely the small-
fluctuation operator and the vertex function is interpreted
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as the wave function of the emitted particle. Similarly one
can discuss the vertex function h,s(X) [which appears in
the vertex 8,x't),-x h,s(x)]. Replacing G,b by G,b+h, b

gives the emission amplitudes. Virasoro conditions
demand that now G,b+h, b must satisfy the background
field equations. Thus h,b (X) satisfies the eigenvalue
equation that follows from the linearization of Einstein's
equations (18) and (21). The traceless part of h,b(A') is
the graviton wave function in curved space. We will
present the details in a forthcoming publication.

Note added. While this work was in progress we re-
ceived the following papers prior to publication which dis-
cuss some related issues: T. Banks, D. Nemeschansky, and
A. Sen, Stanford Linear Accelerator Center Report No.
SLAC-PUB-3885 (unpublished); C. G. Callan and
Z. Gan, Princeton University report (unpublished).
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