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It is shown that in an asymptotically free theory a slowly running coupling enhances the value
of the appropriately defined fermion condensate while keeping the Goldstone-boson decay constant
essentially unaltered. In technicolor theories, including the necessary effective four-fermion in-
teractions which explicitly break some of the chiral symmetries, the condensate directly deter-
mines fermion and pseudo-Goldstone-boson masses through chiral perturbation theory. An
enhanced condensate can increase these masses substantially without affecting Mw and Mz.

Some gauge-theory examples exhibiting this behavior are tabulated.

In a recent Letter' (paper I), it was observed that a
slowly running coupling in an asymptotically free gauge
theory can have an important effect on the dynamics of
spontaneous chiral-symmetry breaking. The dynamically
generated fermion mass Z(p) can fall much less rapidly
over a substantial momentum range than its ultimate
asymptotic form might suggest. Certain quantities of
physical interest, such as the masses of quarks and leptons
in technicolor theories, are especially sensitive to these
higher-momentum components. These masses require the
existence of additional interactions at some large scale M,
which typically also lead to flavor-changing neutral
currents? (FCNC’s). For a certain range of gauge-theory
parameters, the quark and lepton masses were estimated to
be sufficiently large (and much larger than naively expect-
ed), even with M large enough to adequately suppress
FCNCs.

The purpose of this Rapid Communication is to describe
more generally the quantum dynamics underlying this
kind of enhancement effect, to catalogue some of the
theories that exhibit it, and to extend the quantitative esti-
mates to include the masses of the pseudo-Goldstone bo-
sons (PGB’s) that are also often present in technicolor
theories. An increase of pseudomasses is a consequence of
a large-momentum-component enhancement in chiral per-
turbation theory. Other possible consequences of a slowly
running coupling are also suggested.

Consider an asymptotically free gauge theory with a
vectorlike coupling to /Ny massless fermions. At a large
enough momentum g, the running coupling will take the
form

alg)=1/bIng/A’ , 1)

where

q%a=ﬁ(a) =—ba’—ca*+ -, b>0.

At some scale u, spontaneous breaking of the global chiral
SU(N,) L XSUWNs) g symmetry to SU(N;) L +x is expect-
ed to take place. A common fermion mass Z(p) will de-
velop with a computable dependence on the Euclidean
momentum p. X(p) will have some value X, of order u for
p<u and then fall monotonically for larger p. For
momentum p below u, the condensing fermions will decou-
ple and the running coupling a(p) can be expected to
evolve more rapidly than above p. This evolution will
determine the relation between the chiral-symmetry-
breaking scale p and the physical confinement scale A.
The point made in paper I was that if a small parameter is
present in the theory, in the form of a slowly running coup-
ling for p > u, a hierarchy of scales associated with spon-
taneous chiral-symmetry breaking can be generated. This
hierarchy can in turn have important experimental conse-
quences. In the class of theories being considered, howev-
er, fermion condensation will eliminate the small parame-
ter for p <u. For this reason, one expects that
u/A=0(1). This feature of these theories is confirmed by
our analytical and numerical studies.

The slow running of the coupling for p > u canlead to a
Z(p) that initially falls rather slowly. This has its most
direct impact on the size of the condensate (0| 7|0y,
which in turn determines the values of fermion and PGB
masses in technicolor theories. The high-momentum com-
ponents of the condensate can be computed perturbatively
to give

N M
~ 2
0] gy | 0as 5 zf pdpZ(p) , (2)
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where M is the ultraviolet cutoff and where the fermions
have been taken to be in the fundamental representation of
an SU(N) gauge group. The cutoff is both physical and
necessary to define the condensate. In the theories being
considered here, however, M will be sufficiently large that
the bulk of the contribution to the condensate will come
from momenta u <p <M. Because (O] Fy|0)y is espe-
cially sensitive to momenta in this range, a slow fall of
Z(p) over a substantial portion of the range can givc ita
much larger value than might be anticipated on naive di-
mensional grounds. In particular, (O] Fy|0)y can be
enhanced in this way, while Zo=Z(0) and F,, the
Goldstone-boson decay constant, are not. The physical
predictions to be described here will all follow from this
fact.

The form of Z(p) in the perturbative regime is governed
by the gap equation

3C2(R) kdk ks (k)
z
Pr=— f eSS
* kdk k2x (k)
+ k) 3
o k? a( k2+3%(k)
where a(g) is the running coupling constant and

C,=(N?—1)/2N for fermions in the fundamental repre-
sentation of an SU(N) gauge theory. For p >y, this
equation can be linearized, and with a(g) given by Eq.
(1), the ultimate asymptotlc form of Z(p) is
Zasy(p) =(Inp)4/27/p?, where A =3C,(R)/xb. It is
clear from this behavior that an ultraviolet cutoff M is re-
quired to define (0| Fy|0)p.3 Furthermore, if Z(p) falls
less rapidly than X,y over a substantial range below M,
(0| @y |04 can be considerably enhanced.

By contrast, it can be seen from Eq. (3) that Z(p) for
p— 0 (the dynamical or ‘“constituent” fermion mass) is
not terribly sensitive to the high-k behavior of £(k ). Even
a logarithmic fall with k will converge the integral equa-
tion for k > Xo=A, and eliminate the need for a cutoff. F,
is similarly insensitive to the high-momentum behavior of
(k). This contribution can be computed to give®

N (°d
Fol g =0 [T 42
p

dx
iah- 2(p)—tpz(p)=—=| . D
co:r‘lgtl;nfms 27[2 P PP dp

Thus F, is also much less sensitive to the high-k behavior

of (k) than (0| #y| 0> In particular, the behavior of
> (k) expected with a slowly running coupling can sub-
stantially increase (0| #y | 0)5s without increasing F,. In a
technicolor theory, this means that this mechanism will
not substantially increase the weak-gauge-boson mass
My=gF,.

We next summarize the behavior of £(p) throughout
the range p =< p =< M. At p =y, the coupling a, will equal
or exceed a critical value® a, given by 3a.C,(R)/r=1. If
the condition bc,+ca,?<1 is satisfied (assuming conver-
gence, |c | at,‘2 < ba,), the coupling will evolve very slowly
for a range of momenta above u. By integrating the evolu-
tion equation for a and expanding about ¢ =y, one finds

alp)=a,ll —(ba,+ca,)Inp/u+---1.

Thus a(p) will only drop appreciably below a, when
(ba,+ca,? )Inp/pu— 1. For lower momenta, a reasonable
first approximation is a(g) =a,. With a,=a., the solu-
tion to Eq. (3) is approximately X(p)~1/p, a much
slower fall than X,y The asymptotic form will only
emerge in the limit b a,Inp/u>>1 which may or may not
be reached for p =< M. It is worth remarking that the form
of Zgsy can also be derived using the operator-product ex-
pansion. The coefficient is then proportional to
(0] 7y | 0 g, where the subscript denotes definition by sub-
traction at some scale less than p. The full coefficient is,
of course, independent of the subtraction point.

Quantitative estimates of fermion and PGB masses will
be given for a specific SU(V) technicolor gauge theory.
Other possible theories exhibiting a similar behavior are
listed in Table I. For an SU(V) theory with fermions in
the fundamental representation, the coefficients b and ¢
are given by

b=(11N/3—2Ns/3)/2x ,
¢ =[34N?/3—10NN;/3—(N?=1)Ns/N1/(87%) ,

where Ny is the number of fermions. As an example, the
gauge group will be taken to be SU(4) and it will be as-
sumed that there are Ny =14 fermions in the fundamental
representation of this group. Then a.=0.56, b =0.85,
c=—0.73.

It will turn out numerically that a,==a.. Thus the con-
vergence of the B-function expansion does not seem bad
even at ¢ =yu. The slowness of the running coupling is en-

TABLE 1. Theories with a walking coupling. Conditions: (1) asymptotic freedom (b >0), (2)
reasonable convergence (| c | a/b $0.6) for @ < a., and (3) fermions in the fundamental representation.
Gauge
group Nf Qac b (bno fennions) c ba. +ca[2
SuU@) 10 0.79 0.69 (1.75) —0.31 0.35
Su®4) 14 0.56 0.85 (2.33) —0.73 0.25
SU(7) 24 0.31 1.33 (4.08) —2.14 0.27
SO 8 0.70 0.61 (1.45) —0.25 0.30
SO(11) 16 0.42 0.72 (2.63) —1.65 0.19
SO(15) 24 0.30 1.25 (3.79) —2.65 0.14
SO(16) 24 0.28 1.53 (4.08) —2.34 0.25
E(6) 6 0.72 0.53 (1.17) —0.15 0.30
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sured by the fact that
ba,+ca,?=0.47—0.22=0.25 .

To be more explicit about the model, the 14 tech-
nicolored fermions can be composed of a colored weak
doublet (U,D), a colorless weak doublet (E,N), and two
colored weak singlets P and Q. An interesting feature of
this model is that the asymptotic freedom of QCD is lost
above the technicolor scale. Below the technicolor scale,
the b parameter for QCD is given by bqcp={(1/2r)
x(11—=4x6)=7/2rn, while above, bqcp=—(11/67).
Although the coupling then begins to grow, it will still be
well below its low-energy (=1 GeV) value at momentum
scales on the order of the cutoff M, providing M <103
TeV.

The masses of ordinary fermions arise from the assumed
existence of effective four-fermion couplings. With the
strength taken to be gy2/M?, and the closed technicolor
loop assumed to cut off at the same scale,

2
mf=%<o| vyl ©)

where the high-momentum part of (0| Fy | 0),, is given by
Eq. (2). To estimate the overall size of this quantity, we
note that since there are four SU(2)y doublets, F, =250
GeV/2=125 GeV. X, can be estimated either by scaling
up from QCD7 or equivalently by applying Eq. (4),
remembering that the integral is dominated by momenta
k =3Xy. The result is £g=350 GeV. Then,

— 2(350 GeV)’?
Pres

where 6=X(p)/Zy and X=p/Z,. To adequately suppress
ﬂavog-changing neutral currents, M must be at least 300
TeV.

A rough estimate of the integral can be obtained by re-
calling that o(X) will behave approximately like 1/X until
X— expl1/(ba,+ca,?)]. Thus the relevant chiral hierar-
chy in the theory can be expected to be

M/,
O 7y | 0)a [ raxew . ©

(0] Ty |04/ (226%/ %) =expl1/(ba, + ca,?)] .

For the present model, this indicates a value of about 50
for the integral and, therefore, a fermion mass on the order
of 200 MeV. For a more precise estimate, we have numer-
ically determined (k) as a function of k and then numer-
ically evaluated the integral in Eq. (6). The integral turns
out to be approximately 200, and thus, with gy2/4n?=1,
my=800 MeV.

The numerical analysis leading to this result begins with
the gap equation [Eq. (3)], cut off in the ultraviolet at M.
A chiral-symmetry-breaking scale Xy is assumed to exist,
and below u=2%, the running coupling will evolve
without the retarding effect of the condensed fermions. A
physical confinement scale A is assumed to exist at which
a(q) reaches some value a, above a.. We have here taken
a, to be between 0.6 and 0.9. Below A, we have simply
taken a(g) to be a constant in the gap equation. Out of
this comes, first of all, a relation between Xgand A. As ex-
pected, u/A=0(1) for any a, in the above range. The

gap equation [Eq. (3)] is, of course, basically perturbative
and cannot be expected to completely govern chiral-
symmetry breaking. It is being used here as a qualitative
guide to the relative order of magnitude of £y and A. The
result Zo/A =0(1) is expected since there is no small pa-
rameter at the low momentum scales. Our fundamental
result, the enhancement of (0| y7y/| 023, comes, fortunate-
ly, only from the momentum regime p > u, where the gap
equation is more reliable.

The masses of PGB’s can be similarly estimated.” With
Ny=14, there will be 195 Goldstone bosons. Of these,
there will remain 16 color singlets unabsorbed by the W+
and Z° Although some of these will get electroweak
masses expected to be on the order of a few GeV, only the
effective four-fermion interactions can lift their masses
beyond this range. If it is assumed that the separate chiral
symmetries responsible for these Goldstone bosons are ex-
plicitly broken by effective four-technifermion interac-
tions, masses will be generated. A standard application of
chiral perturbation theory gives'®

2
2 02 &M

P M2 FR2

(0| gy | 0a)? @)

where a? is a coefficient of order unity. Using Eq. (5), the

pseudomass can be written in terms of the fermion mass:
M, =aMmy/gyF, For the present model, this gives
M, =ax300 GeV.

The central conclusion of this Rapid Communication is
that a slowly evolving coupling can considerably enhance
the vacuum value of yy while keeping F, essentially unal-
tered. For the technicolor theory considered in detail here,
and for many of the theories in Table I, this can naturally
produce fermion masses in the 100-MeV range and PGB
masses in the 100-GeV range, while keeping the scale M
large enough to adequately suppress FCNC’s. While the
raising of the fermion mass scale is probably welcome, it is
still far from clear whether a realistic theory of fermion
masses is possible in this context. A 100-GeV mass range
for PGB masses puts them beyond current experimental
lower limits but possibly within the reach of the next gen-
eration of accelerators.

A more systematic investigation of the effects of a slow-
ly evolving coupling should be undertaken.!! Another im-
portant question is the size of the next-order contribution
to the gap equation. Even though the B-function expan-
sion may converge and the running of the coupling might
be neglected for a range of momenta, the coupling strength
itself (~C,a,) is not small. There could, therefore, be
important higher-order contributions to the gap equation.
The next-order term is formed by replacing the single-
gluon contribution to the kernel by two crossed gluons. It
is easy to see!? that in SU(V) theories this contribution is
down by two powers of 1/N in a 1/N expansion. While
large NV may indeed be relevant for technicolor theories, a
slowly running coupling will not emerge in a simple 1/N
expansion. The number of fermion flavors N, must be
simultaneously increased with NV to keep b and ¢ small.
Whether the phenomena described in this paper can be
studied in the context of some systematic expansion
scheme is an interesting question.
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