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We discuss the heat-kernel option in the new covariant-derivative regularization program. The
exponential regularization is generally simpler and more systematic than the previously studied
power-law regulators. As a result, for example, we are able to verify the vanishing gluon mass in all

dimensions at once.

Covariant-derivative regularization of gauge theory to
all orders in d dimensions has recently been reported. '

In particular, a dimension-dependent finiteness condition
n) n(d) has been established for power-law regulators
R'"'=( l —b, /A ) ", so there is no doubt that heat-kernel
(exponential) regularization will succeed in arbitrary di-
mension. Use of the heat kernel makes contact with exist-
ing literature, and may also be superior for nonperturba-
tive analysis. Here we discuss the heat-kernel Schwinger-
Dyson (SD) rules, finding that they are, in general, even
simpler and more systematic than the rules for power-law
regularization.

We begin with the y family of regularized SD equations
given in Ref. 3:

5R '
E:—f (dx)(dy)(dz)R», '

5A„'(z) 5A„'(x)

will be taken with the heat-kernel regulator

R»(b, )=[exp(b, /A )]'„»,

(2b)

(3)

where b, is the covariant Laplacian, as discussed in Refs. 1

and 3. The regularized SD diagrammatic rules, given in
Ref. 3 for power-law regularization, remain exactly the
same in this case, except for modification of the regulator
expansion.

The weak-coupling expansion of the heat kernel
proceeds in several easy steps. First define

0=( f )dx)
6SgM

+D„' (x)Z (x)
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, + v, v=—gr, +g'r, ,
A A

where

+ A)r) F) . (r, )„",=f"[a„"A„'(x)+A „'(x)a„"]5'(x—y),
(r, )

b =f"gf'"A'„(x)A„'(x)5'(x —y),
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(Sb)

$2
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Here (dx)=d"x, F[A] is an arbitrary functional of the
gauge field,

s,M=4 f (d )Fx„'Q'„.

is the usual Yang-Mills action in d dimensions, and Z' is
the Zwanziger gauge-fixing function, which we specify as
eZ'=0-3'. The y family of regularized functional La-
placians A (y)= ch, +yE,

and is the ordinary Laplacian. Next, introduce an in-
teraction picture

1

R(b, )=exp T exp f do V(cr)

in which T is "time ordering" in the parameter o., and

V( cr )—:exp cr V e—xp tr
A A

Finally, a simple change of variables gives

35 753 1987 The American Physical Society



754 BRIEF REPORTS 35

exp(D/3 ) =

FIG. 1. Expansion of the heat kernel as regulator strings. FIG. 2. The zeroth-order gluon propagator.

n
'

(
n

R(b, )=e xp z + g f g dP, 5 1 —g f3k exp(P, /A')Vexp(13, /A')V. . Vexp(P„ /A') .
A n =2 j=1 k=1

The diagrammatic interpretation of this expansion as a sum of regulator strings is shown in Fig. 1 ~ As in Ref. 3, the
wavy lines are gauge fields, while the three- and four-point vertices represent I 1 and I 2, respectively. In the present
case, however, each straight line carries a free regulator propagator exp(/3 /A ), with its own weight P. A11 the P's of a
given string are integrated from zero to one, subject to the constraint that their sum is unity.

The zeroth-order gluon propagator, shown in Fig. 2,

(3„'(x)A (y))= f ze '~' ~'[T„„(p)+aL„(p)j&'"~P ,b exp( —2p /A )
(9)

P

already exhibits the exponential regularization, but loop
computations are necessary to appreciate the simplicity of
the heat kernel. As an illustration, we discuss a computa-
tion of the one-loop gluon mass for all dimensions at
once. In contrast, power-law regularization essentially re-
quires a separate computation for each dimension.

2x

2x

For the computation, we choose the case y=O, thus
eliminating, as noted in Ref. 3, the regulator vertex clus-
ters with one incoming line (RVC~'s). Then, only three
types of diagrams contribute to the gluon mass as shown
in Fig. 3. The number of diagrams of each type (trivially
related by symmetry to the representative diagram shown)
is given with each diagram. Diagrams 3(a) and 3(b) are
"ordinary" since they contain only Zwanziger gauge-fixed
Yang-Mills vertices, while diagram 3(c) is an additional
diagram with a regulator vertex. The dotted box in the
diagram indicates, as in Ref. 3, a regulator vertex cluster
(with two incoming lines), which consists of two regulator
strings contracted at the cross.

Because it exhibits more of the heat-kernel structure,
we sketch the explicit evaluation of diagram 3(c), shown
in Fig. 4 with all relevant indices. For simplicity we ex-
plicitly discuss only the Feynman-Zwanziger gauge a = 1,
though we have checked that the diagram is in fact in-
dependent of u. The sequence of SD "pictures" for the
representative diagram 3(c) is shown in Fig. 5, in which
the vertex factors are given by

I I

FIG. 3. Second-order diagrams which contribute to the gluon
mass.

FIG. 4. Diagram 3(c) with indices. The only valid ordering is
AB.
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V„"~(p1 p2 p3) = —gf—"[(p1—p2)~41 +(p2 —p3)t 5~ +(p3 —p1).5„3.]— gf"[(p3)~5 „—(p2).5„~],
2 2'

(~1)1JAI (pl p2 p3) tgf (pl p3) 5/A. /A

The value of the representative diagram 3(c),

1 1 V"„f(p, k —p, —k)(I, )'"f (p —k, p, k—)
2 f dP, f dP~5(1 —P1 —P2) f (dk)

0 0 2p [p +k +(p —k) ]

(loa)

(lob)

Xexp[ —/3, (p —k) +(I+P2)k +2p ]/A j, (11)

is then obtained as the product of the factors from each
picture times Kronecker deltas for each line in color and
tensor indices, and a combinatoric factor of 2. After trun-
cation near p =0, this type of diagram s contribution to
the gluon vacuum polarization is

Fig. 3(c), in units of

5„P'"[2Ng /[d(4')"])(A /2)"~

II(c)„'„(0)=4g N5' 5„
A

exp —2k /A
(21r)"

(12)

The remaining contributions to the zero-momentum
vacuum polarization are similarly evaluated and recorded
with their diagrams in Fig. 3. The sum of the three con-
tributions is zero, providing a simultaneous check of
gauge invariance in all dimensions at once.

We also remark that the y family of regularized'
Parisi-Wu Langevin systems

in the case of SU(N). Performing the final integration,
we have recorded the contribution of this diagram with 3 „'(x,t) = — (x, t)+D„' Z'(x, t)

+ dye„'g yt

1
(~): 2,2p'

gg ab

+(y —1) f (dy)(dz)R&,'
5A„'(z)

( rl„'(x, t)rt (y, t') ) =25'"5„P (x —y)5(t t')—
(13a)

(13b)

V„'„'it(p, k —p, —k)
~2+ (k p)2+ k&

p —k —+
r..'. "

is equivalent to the y family of regularized SD equations
(1). The additional term in the Langevin equation (13a) is
a one-loop counterterm for the Langevin diagrams, which
generates extra RVC~'s, changing their total weight, and
canceling them completely at y=0. In this connection,
we note that the work of Refs. 1—3 [and Eq. (13) of this
paper] have used the Stratonovich calculus. In fact, the
case y =0 in the Stratonovich calculus corresponds to the
case y = 1 in the Ito calculus. Put another way, if the re-
gulator scheme of Refs. 1—3 had utilized the Ito calculus,
the only change would have been that RVC&'s would nev-
er have arisen in the first place.

(c): r1q„, exP( —[P1(P —k) + (1 + P2) k + 2P j/3 )
p'

FICx. 5. Schwinger-Dyson pictures for diagram 3(c).
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