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Gauge theories at finite temperature and chemical potential
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The relativistic partition function is studied respecting the internal symmetries. We consider gen-
erally the SU(N) gauge theories, and, in particular, the SU(3) symmetry relating to the quark-gluon
plasma. The implications of the complex chemical potentials are analyzed and discussed in relation
to the lattice gauge theories. It is explicitly shown that the physical partition function is real, which
can be obtained from a complex Euclidean partition function by imposing Gauss's law.

In recent times there has been much discussion of the
relation of a constant potential in gauge theories to the
thermodynamical properties at finite temperature and
chemical potential. The calculation of an effective poten-
tial for the order parameter of gauge theories at finite
temperature in the one-loop approximation demonstrates
an unusual oscillating structure. This has been explicitly
calculated' for the SU(N) symmetry. On the other side,
the relation between Bose-Einstein condensation and spon-
taneous symmetry breaking in gauge theories has brought
attention to the role of the chemical potential. However,
the introduction of a chemical potential p in the Abelian
gauge theory with a constant external potential has been
the point of some recent controversy. ' In this work we
shall consider the problem of introducing the chemical
potential for the color SU(3) symmetry in relation to the
quark-gluon plasma.

This problem demands consideration of the dynamical
aspects of the relativistic quantum gases in the presence
of internal symmetries Very recently a general approach
involving a group-theoretical projection technique has
been presented for this problem of quantum statistics with
internal symmetry. Here we apply this approach to a

model of a colorless quark-gluon plasma for the calcula-
tion of the relativistic partition function with a finite
quark chemical potential pq. The presence of pq intro-
duces an imaginary part into the generating function in
the presence of the vacuum gauge potentials. However,
we demonstrate here for our model that the final partition
function is a real quantity. This fact may have important
implications for the lattice gauge calculations at finite
temperature and density.

First we shall generally discuss the evaluation of the
partition function ZQ(T, V) in relation to a globally con-
served total charge Q. The general form of ZQ(T, V) re-
lates to a trace over the charge states of the type

ZQ(T, V)=Tre
Q

where /3 is the inverse temperature T and H is the Hamil-
tonian operator. In terms of the occupation-number rep-
resentation for the particles of momentum k and charge q
each state has a single-particle energy ek with nk particles
and n k antiparticles. Whereby we may represent this
trace as

ZQ(T, V)= g & Q —qg(nk nk) e'p I'g—&k(nk-
I&k &pI k k

2' dP e '~~ exp — ek —iq nk exp — ~k + I'q

Ink I k k

(2a)

(2b)

Thus we see already that the constraint on the total
charge Q can give rise to a representation in terms of
complex quantities. At this point we introduce the quan-
tum statistics (cr=+ 1 for Fermi-Dirac and cr= —1 for
Bose-Einstein). The partition function can now be gen-
erally written as

2~ dAZ(a)(T V)
'v —iQ/Z(u)(T V y)2~'

where Z( '(T, V, P) is the generating function for specific
statistics denoted by cr and a given parameter (angle) P.
For an ideal quantum gas with a single type of particle
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and its antiparticle the result is simply

lnZ' '(T, V,P)=erg [ln(1+ere "
)

k

+ln(1+ere " )] . (4)

Z C( ( T, V, aj ) = g exp g ( —/3ek+iaz )nk
In, I

X g exp g ( /3e—k ia—~)nk, (9a)
In~I k

We shall generalize this known result to situations con-
taining more charges as well as the additional properties
from the gauge potentials and the chemical potentials
through the use of the group-theoretical projection tech-
nique in order to describe the internal symmetry of the
quark-gluon plasma.

We now discuss the analysis for the color group SU(3)
with chemical potentials pk for each quark flavor. The
addition of the chemical potentials is readily accom-
plished in the usual way by replacing the Hamiltonian

operator H in (1) by a modified Hamiltonian operator for
the f quark flavors

f
H(P1 Pf ) H y Pkqk

k=1

where qk are the external charge generators, which do not
break the exact internal symmetry of the SU(3) color.

The projection technique has been previously investigat-
ed ' for arbitrary multiplets (p, q) of color SU(3). The
fundamental orthogonality relationship for multiplets
(p, q),(p', q') with the associated group characters
Xzq(cp, g), Xz q (cp, P) is given by

f dcpdgM(cp Q)XIq(cp Q)Xp q (cp Q):6qq 5qq (6)

where M(y, P) is the Haar measure for SU(3) and y and g
are the two integration (group) parameters.

At this point we look more closely at a model for a
colorless quark-gluon plasma. The two commuting gen-
erators of the maximal Abelian subgroup of color SU(3)
are the isospin I3 and the hypercharge Y8 operators. In
order to project out the color-singlet partition function,
we need the general SU(3) generating function relating to
the baryon-number operator A (Refs. 9—11);

(ii) quark,

Z~'(T, V, a;)= g exP g[ /3(e—k —Pq)+ia;]nk
In„I

X g exP g [ —/3(ek+Pq)
k

—ia, ]n„ (9b)

Z cI (T, V, a~ )=exp 2 g —ZG(nP, V)cosna~
n=1

(1 la)

ca 1
n+1

Z&(T, Va;)=exp 2 g Z~(nP, V)
n =1 n

&& cosn (a; i /3Pq)— , ( 1 lb)

where the quark chemical potential pq is one-third of that
for the baryons. The parameters a; are for the different
quark colors, while the czj are for the different gluons,
which may be related to the angels y and P in (7a) in the
following way:

a„= ,'q+ ,'q, —ag————,'q+ —,'q, a, = ,'q, (—lo—a)

ak ——g, a„= ,
'
cp+p, a—=——,

' g+tt, as ——0 . (10b)

The expressions ek and ek are the quark and gluon
single-particle energies. Thus for both the gluons and the
quarks we are able to evaluate the generating function of
(9a) and (9b) in terms of a sum over the known single-
particle partition functions Z for the relativistic quantum
gases, which yields

Z(T, V p, cp, f)=Tr exp[ /3(Ho —pA )+icpI3—

+ i'll', ], (7a)

where p is associated with the baryon-number conserva-
tion. The color-singlet partition function can then be ob-
tained by

Z ( T, V p ) = f d cp d tt/ M (cp, P )Z ( T, V,p, cp, g ) . (7b)

i =r, g, b j=i,,p, v, 5

We write out formally the different contributions:
(i) gluon,

If we now explicitly consider the particular SU(3) repre-
sentations relating to the noninteracting quarks (1,0), anti-
quarks (0, 1), and gluons (1,1), then Z can be written as a
simple product:

z= g z," p z'o'.

We note here that these results may be readily compared
to the Abelian case with a single constant "vacuum pa-
rameter" u. For the massless gluons the usual Stefan-
Boltzm ann temperature dependence is found for Zz,
whereupon (1 la) simply becomes

Z cI (T, V, a~) =exp 4VT 1

4 cosp1cxj
7T n =1 fl

(12)

The above series may be summed to give a known result.
Furthermore, for the massive quarks the analysis of (1 lb)
leads to somewhat more lengthy expressions. The explicit
evaluation of the indicated integrals over color SU(3) will
be considered in a following work' for the more general
cases. However, if we now consider only the special case
of the light quarks, the analytical results may be obtained
by use of the single-particle partition function as for the
gluons, however, by suitably shifting the angular variable.
We summarize this special case of (1 la) and (lib) for the
sake of later discussions as follows:
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2

lnZG(T, V, a. )= VT g6 . 30J
4

2

2

1nZg(T, V,pq, a;)= VT g[ 3'o —(a; i—/3pq) n
Q r & q&

(13a)

Z(T, V, —pq) =Z(T, Vpq), (19)

Next we want to establish that in spite of the complex
generating function the final color-singlet partition func-
tion is real. This fact has mainly to do with the quark-
antiquark symmetry inherent to the colorless partition
function. The symmetry between quarks and antiquarks
immediately imposes the condition on the partition func-
tion:

+ —, (cz; i p—pq) vr ] .

(13b)
Now we want to discuss the implications of these re-

sults in relation to gauge theories at finite-temperature
and chemical potentials. It has been previously estab-
lished for Abelian gauge as well as nongauge theories
that a constant potential may appear as an imaginary
chemical potential in the partition function. The SU(3)
case exhibits a similar behavior. We start from the usual
QCD Lagrangian in the Minkowski metric where the
gluon fields are considered to contain a classical external
part given by the constant real potentials A3'"' and Az"'
which .are related to the diagonal generators of SU(3).
These terms contribute to the general potential 3," by re-
placing

which in view of the above equations (7a)—(13b) is neces-
sary and sufficient for Z to be real. However, we may
show this in more detail as follows. From (10b) and (12)
we see that Z g'(T, V, ai) is invariant under the reflection

Thus we use (8) together with (7b), which
is the relevant generalization of (3) for SU(3), to find
Z(T, V, /2q) in terms of the product of ZG and Z&. Then
by performing the integration over the group SU(3) we
find

Z*(T, VP ) = f dM(y, t/i) Q Z 'g'*(y, P)Z g (@,1( )

(20a)

= f "M«&) IIZ~g( e 0»—'8'(V—»0)

gp gp+g ~pext+g ~ptzt (14) (20b)

gA 3'"' ———iPIP,
gA s'"' = i PIP, —

(16a)

(16b)

which amounts to rotating 3 '"' to purely imaginary
values, then the total Hamiltonian operator for the gluons
in the external potential becomes

HG ——HpG —i I3 —t Y8, (17)

After artificially turning off all interactions of the gluons
except with the external potential, it has been shown by
canonical quantization in the Hamiltonian formalism that
the resulting Hamiltonian for the gluons is simply given
by

Hg —Hpg+gA 3"'I3+gA 8 "Yg,
which can be expected for charged particles interacting
with a constant external potential. Thus, if one chooses

Z [Qj

1nZg( V T pq y)
m2VT ™

( 1)n+1
=go 2, X

277 n =1 ll
K2(n pm )

XZg( —y, —P) .

(20c)
However, (20c) is just a representation for Z ( T, V,p ),
where in (20b) we have used (13b) and (10a). Therefore,
we can conclude that Z*(T, V,pq)=Z(T, V,pq), which
proves that Z(T, V,pq) is real.

The discussion which we presented in the above para-
graphs can be naturally extended to arbitrary SU(N)-color
internal-symmetry group. In this case the general expres-
sion for the generating function of the gluons and massive
quarks can be obtained as follows:

=Z(T, V,p, r/2, $), (18)

which is (7a). This fact has been considered as a major
problem for the calculations on a lattice, ' because the fer-
mion determinant with a nonzero chemical potential is
generally not real. '

which corresponds to the effective Hamiltonian to be used
in the generating function (7a). A corresponding result
holds for the quarks.

We now can clearly see that the imaginary vacuum
gauge potentials A3" and A8" lead automatically to a
complex structure of the Euclidean partition function ZE
of (7a) in the presence of quarks with a chemical potential
p. Thus from Eqs. (14)—(17) we may write

Zz(T, V,p, A3"', A8"') =Z(T, V,p, &PgA3 p&PgA s'"')

X [e "'X~(yn)
dQ

+e "'X~(yn)], (21a)

VT 1
1 Zon(VTy)=gG

2 g ~J (ny),
dGm n

(21b)

where gQ, gG are, respectively, the quark and gluon de-
generacy factors and m the quark mass. y—= (y~, . . . , y„),
where y; are the parameters (angles) and r the rank of the
SU(N) group. The characters X~(y) and X (y) and di-
mensions d~ and dG are those of the fundamental (quark)
and the adjoint (gluon) representations of the SU(N)
group, where X ~(y) =[+~(y)]'. From the above generat-
ing functions one can find the colorless partition function
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XZ G(T, V, y), (22)

where M(y) now indicates the invariant measure on the
group. Furthermore, it is easy to check for the particular
structure of SU(3) that (21a), (21b) and (22) lead for mass-
less quarks to the results of (11), (12), and (13a) and (13b).

It is well established that in the finite-temperature
gauge theory the zero component of the gauge field Ap
takes on the role of the Lagrange multiplier which ensures
that all the states satisfy gauss's law. Because of the
periodic boundary condition in Euclidean space one can-
not eliminate Ap by setting it equal to zero. Nevertheless,
one can choose a gauge in such a way that Ao(x, r)A, , is a
constant in Euclidean space-time, so that

~ ab —1 abg (23)

In this case the obtained' effective potential V,~~ for the
order parameter (Wilson loop) of' the SU(N) gauge group
is essentially the same as the generating functions given in
(21a) and (21b). Actually, of course, we have

V,rr= —(Imq+Im, ) .
V

(24)

It is also interesting to note in the above chosen gauge (23)
that the Wilson loop defined as

1 P
L (x) =—TrP exp ig Ao(x, r)dr

N 0
(25)

represents the character of the fundamental representation
of the SU(N) group. For SU(2) the characters for an arbi-
trary J have the particularly simple form

+I I(g) =sin[(2J +1)/y/2]/(sing/2) . (26)

This gives for the fundamental representation J = —, the
form 2cos(y/2). Thus if one chooses g=Pa, it can be
immediately seen from Eqs. (23) and (25) that the Wilson
loop L (x) is simply —,7'' '(&p/2).

With the identification of the Wilson loop as the char-
acter of the fundamental representation of the SU(N)
group, one can write the generating function for the mas-
sive quarks as follows:

Vm T ( —1)"+'

277 n =1

X [(coshnPlu~ )ReL

+i(sinhnPp~)lmL]Kq(nPm ) .

(27)
The above equation with the assumed Boltzmann statis-
tics (n = 1) has the same structure as the fermion contri-
bution to the partition function in the hopping-parameter
expansion on the lattice. ' In this case one has

ln det( 1 KM) =4NI (2x )'—
X g [(coshN~pa )ReL(x)

+ i(sinhN ~pa )ImL (x)], (28)

for SU(N) internal symmetry by means of integration
over the group

Z(T, Vpq)= f dyM(y)Zg(T, Vpq, y)

where NI is the number of flavors, K the hopping parame-
ter, and a the lattice spacing.

We have indicated the above rather formal analogy be-
tween lattice gauge theory and the model under considera-
tion in order to show that the problem with the complex
determinant on the lattice is not due to the lattice struc-
ture but has a rather general nature. It appears when we
deal with a nonzero chemical potential for a non-Abelian
gauge theory. Nevertheless, as we have indicated in the
previous paragraphs, the physical partition function is
real even when the fermion contribution is expressed in
complex quantities. This situation also holds for the lat-
tice gauge theory. '

The exceptional situation appears when the gauge group
is SU(2). Then the character of the fundamental represen-
tation of SU(2) as well as the Wilson loop are real. This,
in turn, implies that the imaginary parts of the generating
function in (21a) and in the fermion determinant (28) have
vanished.

In conclusion we state that the presence of a chemical
potential together with a constant imaginary gauge poten-
tial leads generally for SU(Ã) to a complex form of the
Euclidean partition function. We have shown above in
(18) that the Euclidean partition function is identical with
the generating function for the projection onto a color-
singlet partition function for the quark-gluon plasma.
Furthermore, the imposition of the conservation laws ex-
pressed in terms of the internal symmetries yields a real
partition function. In view of our results expressed in
(16)—(18) we may state that a real partition function can
be obtained unambiguously from the complex Euclidean
partition function {including constant external gauge and
chemical potentials) only by integrating over the external
gauge potentials. This group-invariant integration effec-
tively imposes the constraint by Gauss's law for color-
singlet states only on the many-particle Hilbert space
under consideration.

Two publications have appeared since this work was
first written, which offer some further ideas for issues
raised here. A recent study of the strong-coupling limit of
SU(2) symmetry at finite baryon density using Monte
Carlo simulation and mean-field methods' discusses the
problem of a finite chemical potential in relation to the
chiral phase transition. A further work on Abelian
nongauge theories' provides another approach to this
problem using the g-function regularization of high-
temperature expansions.
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