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Thermodynamic properties of the gluon plasma
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We calculate the energy density, pressure, and speed of sound in the deconfined phase of lattice
SU(3) gauge theory at finite temperature for lattices of temporal size N, =4, 6, and 8. We compare
our results with perturbative QCD at high temperature and with a simple phenomenological model.
We also parametrize our results using the "bag" equation of state.

I. INTRODUCTION

There has been a great deal of interest in recent years in
the properties of hadronic matter at high temperature
and/or density. It is now well established that at suffi-
ciently high temperature the SU(3) Yang-Mills gauge
theory undergoes a phase transition from a confining
phase into a phase in which the forces between quarks are
Debye screened. At very high temperature, the major part
of the statistical ensemble in QCD is well described as a
gas of nearly free quarks and gluons, but at lower tem-
peratures in the vicinity of the phase transition, the theory
is very complicated. (For a discussion see Ref. 1.)

It is expected that the high energies or densities which
are needed to achieve the new phase of matter may be at-
tained in relativistic heavy-ion collisions. Relativistic hy-
drodynamics is the best method currently available for
modeling the space-time evolution of hadronic matter
during a collision. It requires as its input quantities such
as the energy density, pressure, and speed of sound of ha-
dronic matter on either side of the phase transition, a re-
gion of parameters for which perturbation theory is not
applicable.

Nearly all the information which we have about QCD
near the deconfinement transition comes from Monte Car-
lo simulation. The first computation of thermodynamic
quantities for a gauge theory was done [for SU(2)] by
Engels, Karsch, Montvay, and Satz. Svetitsky and Fuci-
to have computed the latent heat in pure SU(3) gauge
theory. More recently, Gocksch and Gavai have calcu-
lated the energy density and speed of sound in pure SU(3)
gauge theory on a lattice with the number of time steps
Ã, equal to 4. Following in this tradition in this paper,
we calculate the energy density and pressure of pure
gluonic matter on moderately large lattices and attempt to
extend our results to the continuum limit. Our statistics
are comparable with those of Ref. 4, while our data sam-
ple includes lattices of temporal size X, =4, 6, and 8.

We will briefly review the necessary formalism; for a
detailed discussion, see Ref. 2. We then describe our data
sample and our method of analysis. To anticipate our re-
sults, we see behavior in the energy density and pressure
which is Stefan-Boltzmann-like at high temperature even

though the same data sample also shows correlation func-
tions characterized by the presence of massive excitations
in color-singlet channels. At the end of the paper we will
describe a simple phenomenological model which de-
scribes the behavior of the energy density in terms of ef-
fective modes of the plasma.

II. EXTRACTING THERMOD YNAMICS
FROM LATTICE QUANTITIES

The calculation of the energy density and pressure was
first given by the authors of Ref. 2. The partition func-
tion for pure gauge theory is

Z = I [dU]e

where

5 ( U) = Q Re Tr U„(x)U (x +p ) U„(x + v) U (x)

(2. 1)

(2.2)

is the Wilson action. Here /3 is related to the bare cou-
pling g by f3=6/g and tV„ the number of lattice spac-
ings in the time direction, is related to the temperature
through the lattice spacing a as T= I/(X, a). The energy
density e and pressure P are given by

e=
I Wt —W, +g [C,( W, —W)+C, ( W, —W)]],

(2.3)

e —3P=A. (2.4)

3 Bg6= —18a ' (W;+ W, —2W) .
Ba

(2.5)

W, and W; are the expectation values of the space-space
and space-time oriented plaquettes in the finite-
temperature model, while W is the plaquette on a sym-
metric (T=O) lattice. Again, one must either calculate
aug /Ba using perturbation theory or from Monte Car-
lo renormalization-group methods. Opting for the first

The constants C, and C, were first calculated in perturba-
tion theory by Karsch. The quantity b, in Eq. (2.4) is
giveo by
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choice, we have

a b, =18 +g ~
(W + W; —2W') .

Sm 64m
(2.6)

The speed of sound is defined as

BP
S ae

or

1 BA

3 B6

(2.7)

(2.8)
L

Gavai and Gocksch calculated V, using finite differences
by computing e and P as a function of T, and eliminating
T between them.

III. NUMERICAL RESULTS

Our data was acquired as part of a study of correlation
functions in SU(3) gauge theory near the deconfinement
transition. Most of that study involved measuring the
response of the lattice to an external source. However, in
the analysis of our data it proved convenient to fix some
parameters (in particular, the expectation value of the
Wilson line) to their values in the absence of a source.
Plaquette measurements from Monte Carlo simulations
carried out without a source are used in the analysis re-
ported here.

We had two separate Monte Carlo codes. One was run

on the CYBER-205 at the Supercomputer Computations
Research Institute at Florida State University. The other
program ran on CRAY s at the Boeing Computing Services
and at the University of Illinois National Center for
Supercomputer Applications. Descriptions of the pro-
grams may be found in Ref. 5. The sourceless runs con-
sumed about 30 h of CYBER time and 20 h of CRAY time.

We ran on lattices of spatial size 11 or 11 ~15, with
time lengths N, =4, 6, and 8. Our data sets have from
2000 to 4000 sweeps per value of P, starting typically
from lattices which had been equilibriated at a nearby
value of P.

We also need the expectation values of plaquettes on
symmetric (T=0) lattices. We did not generate those
quantities as part of our simulation. Instead, we chose to
work with the high-statistics plaquette expectation values
of Barkai, Moriarty, and Rebbi taken on a 16 &(32 lat-
tice. These authors present data at P=5.6, 5.8, 6.0, 6.2,
and 6.4. We interpolated their data to our 13 values using
a three-point interpolation. (A similar procedure was
done in Ref. 2; the authors of Ref. 4 could compare
against their own T =0 data. )

The calculation of e and 6 is now straightforward. Our
data were collected in a series of short computer runs and
then averaged. In calculating e we found it convenient to
calculate the error on the quantity 8' —8; on a run-by-
run basis rather than computing the error in the differ-
ence based on the errors of 8', and 8; separately. This is
because fluctuations in the quantities 8', and 8' are
correlated; we can actually determine their difference

TABLE I. Energy density and 6 measured in this simulation.

N

4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8

5.72
5.75
5.77
5.80
5.90
5.95
6.00
5.70
5.75
5.80
5.83
5.86
5.90
5.95
6.00
6.05
6.11
6.15
6.20
5.85
5.95
6.00
6.05
6.07
6.15
6.17

77.8
80.4
82.3
85. 1

95.2
100.7
106.6
50.7
53.6
56.7
58.7
60.7
63.5
67.2
71.0
75.2
80.4
84. 1

89.0
45.0
50.4
53.3
56.4
58.0
63.1

64.5

10
A, 4

2.40+0.13
2.74+0.18
2.96+0.13
3.09+0.47
6.41+0.77
6.72+0.27
8.10+0.22
0.18+0.11
0.13+0.13
0.18+0.18
0.33+0.19
0.24+0.23
0.63+0.20
0.95+0.22
1.51+0.38
2.59+ 1.07
2.01+0.67
3.22+ 2.21
2.88+ 1.39
0.12+0.14
0.08+0.25
0.27+0.26
0.66+0.28
0.62+0.64
0.47+0.19
1.32+0.56

2.88+0.06
2.79+0.07
2.72+0.05
2.20+0.12
2.90+0.18
2.62+0.18
2.22+ 0.18
0.43+0.07
0.37+0.06
0.25+0.07
0.65+0.09
0.48+0.07
1.21+0.10
1.16+0.03
0.95+0.14
1.17+0.18
1.48+0.27
0.90+0.39
0.91+0.66
0.49+0.07
0.50+0.10
0.10+0.12
0.58+0.10
0.85+0.23
0.71+0.19
0.90+0.21
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FIG. 3. The energy density e/Al, for P&6.0 vs T/AL.
Open circles, solid circles, and boxes label N, =4, 6, and 8,
respectively. The smooth line is the continuum energy density
for a Stefan-Boltzmann gas. The dashed lines are as in Fig. 1,
and the long- and short-dashed line shows the prediction of the
effective model described in Sec. IV B.

FIG. 1. The energy density e/AL vs T/AL for N, =4.
Crosses show the results of Ref. 4, and the vertical dashed line
shows the location of the deconfinement phase transition. The
smooth line is the continuum energy density for a Stefan-
Boltzmann gas. The dashed lines are the predictions of pertur-
bative QCD through O(a, ) and O(a, ~ ).

agreement with the two-loop perturbative P function for
the deconfinement transition temperature is known to set
in only at P greater than about 6.1 (Refs. 8 and 9). In an
attempt to remove gross scaling violations, we plot in
Figs. 3 and 4 all of our data for which p& 6.0. The data
show a rapid increase in the energy density with ternpera-
ture.

For comparison, we superpose on Figs. 1 and 3 the ex-
pected energy density from a continuum gas of eight
massless noninteracting vector bosons. Remarkably, the
data all lie on the curves, confirming previous observa-
tions. ' We have attempted to verify this behavior by
fitting the energy density to the form

2

e=A+B T
15

(3.1)

I
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FIG. 2. The parameter 6/AI vs T/AL for N, =4. The la-
bels are the same as for Fig. 1. The curves show the QCD per-
turbation theory for the parameter 6 through 0 (a, ) and
O(~ '/2i

FICx. 4. The quantity 6/Ar. for P&6.0 vs T/Al . Open cir-
cles, solid circles, and boxes label N, =4, 6, and 8, respectively.
The curves are as in Fig. 2.

more accurately than we can determine their individual
values. Our results are presented in Table I. For further
analysis, we will break our data down into subsarnples and
deal with each of the subsamples separately.

Our data for N, =4 are shown in Figs. 1 and 2, along
with the results of Ref. 4. Their e data and ours appear to
lie along a smooth curve which rises with T/AI. Our
data for 6 disagree with the data of Ref. 4 where they
overlap with it, but we cannot quantify this disagreement
since they do not quote errors. At higher T/AL our data
show that the parameter 6 appears to level off.

Much of the analysis of Sec. II involves taking the con-
tinuum limit using the perturbative P function. Unfor-
tunately, perturbation theory is not believed to be applic-
able for p & 6.0. For example, asymptotic scaling in
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Data

TABLE II. Fits to the energy density.

Number
of points

and

A, 4

T 22a 8~ —64 ~a,
AL ~ 3

(4.5)

Nr =4
N, =4, 6, 8

N, =6)8

7
10
9

0.12 + 0.1 —0.15
—0.32+0.15
—0.10+0.15

9.8+ 1.0
9.7+0.3

8.15+2.5

3.3
4.9
4.4

IV. DISCUSSION

where B counts the effective number of massless vector
degrees of freedom. Results of this fitting procedure are
shown in Table II for selected subsets of the data. Our
X, =4 data are fit by B =9.8+1.0. Our 13&6, N, =6, 8
data give B =8.2+ 2.5.

Our data are too noisy to extract a speed of sound for
the plasma using the numerical derivative method of Ref.
4. The most we can say is that the parameter 6 does not
show any striking rise with temperature, unlike e. For ex-
arnple, in Fig. 4 6 is constant as the temperature varies.
This result suggests that the speed of sound is approxi-
mately ( —, )' for T/AL greater than about 50. We re-
mark that our data show too much fluctuation for us to
give a reliable value for the latent heat.

We conclude this section with some warnings about our
numerical analysis. The analysis of the pressure and ener-

gy density is much more model dependent than the
analysis of other quantities on the lattice.

(1) There are delicate cancellations between the T =0
and T&0 plaquette values. Our plaquette values have er-
rors in the fifth decimal place, which can result in a
30—50% error in the energy density. There may be un-
known systematic errors in comparing our plaquette
values with those of Ref. 7.

(2) Many quantities in the analysis have been calculated
using perturbation theory, yet the data are mainly taken in
a range of P's for which asymptotic scaling is known not
to work.

The running coupling constant is

a, (T)=
12

11 T
ln

6 A

17 T+ ln ln
22 wAL

(4.6)

B. Three-component model

Our second phenomenological model is based on the
picture of the plasma given in Ref. 1. In the plasma there
are at least three important length scales. First, in order
of magnitude, there is the Debye screening scale

with ~=31.3 to convert from lattice regularization to the
Pauli-Villars regularization of Ref. 11.

At low values of T/AI perturbation theory is poorly
behaved. At T/AL ——80 the O(a, ) correction to e is —,

' as

big as the Stefan-Boltzmann term, and the 0 (a, ~
) term

is 2 times as big as the Stefan-Boltzmann term. The
O(a, ~

) term remains larger than the Stefan-Boltzmann
term for T/AL ( 120. For this reason the much-
celebrated finding that the leading-order perturbative con-
tribution, i.e, the Stefan-Boltzmann formula, agrees with
the data can scarcely be taken as a confirmation of the
idea that the plasma is a weakly interacting gas at these
temperatures. We plot the O(a, ) and O(a, ~

) contribu-
tions to Eq. (4.4) in Figs. 1 and 3. It should be noted that
some finite-size effects studied in Ref. 2 would decrease
the measurements by about 30%%uo. However, our pessimis-
tic conclusions are unchanged.

For all values of T/AI appropriate to our simulation
the o;, term in 6 is bigger than the a, term, and it
drives 6 negative. This poor convergence property of the
thermodynamic potential is well known. We compare our
data with the O(a, ) and O(a, ) calculations in Figs. 2
and 4.

We will conclude this paper by comparing our Monte
Carlo results with the predictions of two models.

A. Perturbation theory

gT—:DDT,

and second, the scale for magnetic confinement

mM —g T=pM T

(4.7)

(4.8)

II= —VT f(T),
then

(4.1)

T4 T aT (4.2)

Our first model for the behavior of e and 6 is perturba-
tion theory. Kapusta" has computed the thermodynamic
potential II to O(g ). Thermodynamics tells us that if

In these formulas g(T) is the temperature-dependent cou-
pling constant; g ( T) = 16na, ( T) and the running cou-
pling constant a, is given by Eq. (4.6). Third, there is an
inverse mean free path mMF which marks the upper
momentum cutoff for the plasma to support collective hy-
drodynamic fluctuations. The inverse mean free path for
gluons has been calculated in perturbation theory by
Shuryak' to be

and
mM„—30a, (T)T=pMFT . (4.9)

e=3T f+6.

E

AL4

Differentiating Kapusta's expression for 0 we find
'4

T 8~
AL, 15

—8m.a, + 128~m.a, '

(4.3)

(4.4}

Since this distance is shorter than the magnetic confine-
rnent scale, the mean free path relevant to hydrodynamics
should be calculated instead for the color-singlet modes.
We offer a different estimate below.

For distances much shorter than 1/mD or 1/mM the
plasma is economically described as a gas of noninteract-
ing gluons. For distances longer than or on the order of
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1/mM or 1/mD, confining effects are important. For dis-
tances much longer than 1/mMF, hydrodynamic modes
are important. Thus we suggest a crude three-component
model of the plasma as a gas of free high-momentum
gluons, low-momentum noninteracting color-singlet
modes, and low-momentum hydrodynamic phonons. '

This model is somewhat reminiscent of the Landau theory
of liquid He (Ref. 14). Clearly there is some risk of mul-
tiple counting of degrees of freedom, since the color-
singlet excitations and the phonons are collective excita-
tions of gluons. However, there is some consolation in the
observation that the effect of excluding low-momentum
color-octet gluons and replacing them by a few color-
singlet modes is to reduce the number of degrees of free-
dom compared with a pure Stefan-Boltzmann gas of
gluons.

We calculate the energy density by breaking momentum
space into a sequence of regions and keeping only the
most important contribution in each region. For k ~ mD
those degrees of freedom are eight noninteracting massless
gluons. For k &mM they are the magnetically confined
color-singlet modes. For k &mMF the phonon also con-
tributes to the energy density.

Because all the scales in Eqs. (4.7)—(4.9) vary linearly
with the temperature (up to logarithmic corrections) each
of the regions of momentum space gives a contribution to
the energy density which is proportional to T . Expressed
in units of the contribution of a single spinless, massless
boson, the internal energy of the plasma is

where

2T4

30
"' (4.10)

u =uth(pMF)+ u~(pM )+uF (pD )+ 16uG(pD),

(4. 1 1)

where the phonon contribution is

15 ~ P'dP ~P
u~h(p) =

7T

(4.12)

The terms uM and u~ weight the color-singlet modes: per
magnetic mode,

uM(p)= ~

2d ( 2+ 2) 1i2
(4.13)

rr 0 exp[(p'+p )' '] —1

[the formula for u~(p) is identical] and uG the gluon
modes

We infer from previous work that pD (and probably
pM) range between 1 and 3 for the temperature range of
interest. We also know that mMF is no bigger than DDT.
Taking V, =( —,

' )'~ we can numerically evaluate the in-

tegrals of Eqs. (4. 12)—(4. 14) for this range of p. The re-
sults are shown in Fig. 5. As the parameter p rises (as the
temperature falls) the phonons take a larger share of the
energy density. The massive confined modes never contri-
bute more than 10%%uo of a single massless boson mode.
Only for very large p does the energy deviate appreciably
from the free gluon result.

In Ref. 5 we found that pD could be fit by the simple
functional form

pD=0. 79g(T) . (4.16)

Thus as T/AL rises from 60 to 100, pD falls from a value
of about 3 to about 2. Including this variation of pD with
T but keeping the breakup in momentum space exactly as
in Eqs. (4. 12)—(4. 14), taking pD, pM, and pMF all equal,
and counting one magnetic and one electric mode in e, we
get the long and short dashed curve shown in Fig. 3. It is
entirely consistent with our X, =6 and 8 data but consid-
erably undershoots our N, =4 points.

This simple model is much too crude to apply to the
quantity A. This term measures the interaction strength
of the plasma, yet the model assumes that the various
modes of the plasma do not interact. The quantity 6 is
also very sensitive to the details of the model. For exam-
ple, if we chose to make the momentum-space cutoffs in
the thermodynamic potential instead of the energy densi-
ty, and if we took the coefficients p to be temperature in-
dependent, we would find that 6=0. More detailed
modeling clearly lies outside the scope of this paper.

C. "Bag" equation of state

e=gT4+8,
P = —'gT4 —a

(4. 17)

Most hydrodynamic calculations of the plasma use the
"bag" equation of state' for the deconfined phase of
QCD:

15 p dpuG(p)=
e~ —1

(4. 14)
U

0.5—
SB

mMF ™M. (4. 15)

In the spirit of this model, we can now estimate the in-
verse mean free path. It is governed by the size and densi-
ty of the color-singlet modes, since they control the
longest-range interactions. Their size is set by the con-
finement scale 1/mM and since they exist only for mo-
menta smaller than mM, their density, given by the Bolt-
mann distribution, is of order mM . Thus, the mean free
path is of order

0—
0

FIG. 5. Behavior of the phonon, gluon, and confined mode
contributions to the energy density of the plasma as a function
of the cutoff parameter p. The modes are shown as a fraction
of a massless boson's contribution to the energy density.
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where B is a constant. In the bag equation of state, the la-
tent heat L is equal to 4B. Figures 3 and 4 suggest that
this equation of state can reproduce the gross features of
the deconfined phase. Comparing our data with this
equation of state, we have g appropriate to eight massless
vector gluons and [using the results of Refs. 8 and 9 to
give the ratio ( T, !AL)],4B=13.2T,

V. CONCLUSIONS

Within the limitations of our rendering of the Monte
Carlo simulation, we find that although the energy densi-
ty of the pure gluon plasma appears to follow a Stefan-
Boltzmann curve at temperatures above but near the
phase transition, this behavior is inconsistent with the
next two leading terms in perturbative QCD, and so can-
not justify the hypothesis that the plasma consists of a
nearly free gas of gluons at these temperatures. We have
formulated a crude model designed to take into account

nonperturbative effects by characterizing the plasma as a
gas of three noninteracting components: high-momentum
gluons and low-momentum color-singlet modes and pho-
nons, and find that it can account for the measurements;
however, it is not known how interactions in this model
would alter this agreement. In the interest of reconciling
the two approaches, it would be worthwhile repeating the
perturbative calculations of the gluon contribution to the
thermodynamic potential using a low-momentum cutoff
in the gluon propagator to see whether convergence is
thereby improved. More lengthy simulations with smaller
errors would also be welcome.
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