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Periodic generalizations of static, self-dual SU(2) gauge fields
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Linear pairs are used to inject time dependence (periodic or not) in a particularly simple fashion
into static, self-dual SU(2) gauge fields. A canonical formalism is proposed for periodic generaliza-
tions of Euclidean versions of monopoles of arbitrary charge. The cases whose static limit corre-
sponds to charges 1 and 2 are studied in some detail. Finite actions over one period are obtained.
As nonperiodic examples Witten's solution for arbitrary index is derived in the context of our for-
malism with one single pole and a class of possible generalizations is indicated. A further generali-
zation of our formalism, in another direction, is sketched. It is based on a coordinate transforma-
tion leading to a "time" with finite domain. This paper is principally concerned with periodic solu-
tions. Such generalizations of only spherically and axially symmetric static solutions are considered
here. The basic formalism, however, is not thus limited.

I ~ INTRODUCTION

Static, self-dual Bogomolny-Prasad-Sommerfield (BPS)
solutions are well known. They are the monopoles and
their Euclidean versions (Higgs scalar C&~time com-
ponent A, of the gauge potential). Here a systematic
method giving periodic generalizations of such solutions
is presented. (Once time enters one cannot, of course, go
back to monopoles through A, ~C&. ) Euclidean periodic
solutions are usually considered in the context of nonzero
temperature. ' The possible roles of perIodic solutions
have been discussed, for example, in Ref. 2. Available,
really explicit, solutions of this type are limited. The PS
monopole can be given a periodic form through a gauge
transformation. ' There are certain related ones' and
one class can be obtained through "heating transforma-
tions" of Wit ten's solutions. The latter ones do not
necessarily have finite action over one period.

Here a canonical method is presented for constructing
periodic generalizations of (Euclidean versions of) mono
poles of arbitrary charge The p. resent study is limited to
spherical and axial symmetry. Only the cases of charges 1

and 2 will be studied explicitly. But the formalism is ful-
ly forged for the general case. Moreover our aim is to en-
sure finite action over one period Our gener. alization of
charge-1 static solution can be looked at from the point of
view of Ref. 3. But even there two new features are
present. First, of course, the method used permits itera-
tions to higher charges. Second, the Ansatz introducing
periodicity [Eq. (2.21)] ensures a finite action over a
period. It turns out to be the simplest member of a
canonical hierarchy. Our solutions are authentically
periodic. Periodicity is not a gauge artifact as for the PS
case. ' We demand that the invariant TrF must be
periodic.

It will be seen that for our solutions the asymptotic sit-
uation (r~ ~ ) does not differ from that of the limiting
static case but the core pulsates periodically.

An interesting feature of our solutions is that from the
Ansatze [(2.21), (3.29), and (6.6)] one can easily extract

linear periodic fluctuations about static limits (by making
certain parameters small). Small oscillations are relevant
to the construction of propagators and spinor solutions,
for example. Our solutions, of course, give a particular
class of linear deformations. We will, indeed, use linear
developments for a study of regularity properties for the
charge-2 case. Apart from that, this aspect will not be
pursued in this paper.

Our technique is not limited to periodic generalization.
It permits one to inject both periodic and nonperiodic
time dependence in a particularly simple and systematic
fashion. The periodic case will be the main object of
study in the following sections. A different, quite in-
teresting, possibility will be briefly indicated. It will be
shown how Witten's solutions can be very easily obtained
and how they can possibly be generalized to higher
Atiyah-Ward classes (Sec. IV).

Finally another possible generalization will be pointed
out. The periodic solutions, to be presented, have the stat-
ic BPS solutions as limits (for zero values of certain pa-
rameters). In a series of previous papers (Refs. 6—9 and
sources cited there) I have constructed sequences of in-
stantons ("instanton chains" or "hyperbolic monopoles" )

which also yield the BPS solutions very simply through a
scaling limit. They are studied for their own interest and
give the BPS solutions as by-products. There static tech-
niques are used to obtain finite action (in four dimensions)
through the transformation (A34) of the Appendix:
namely,

r +it =tanh —,
' (p+i r), rE [ —~,~] .

The "~-static" solutions are neither static nor periodic in
terms of t, the standard Euclidean time. One can general-
ize such a solution by introducing ~ dependence. The cor-
responding formalism will be briefly discussed (Sec. V and
the Appendix).

The method of linear pairs will be used. The formalism
of Belinskii and Zakharov' was adapted to static mono-
pole solutions by Forgacs, Horvath, and Palla. "' In
Refs. 6—9 the generalizations leading to finite-action solu-
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tions can be found. Sec. V of Ref. 6 is most directly
relevant. This is recapitulated at the end of the Appendix
[A34)—(A48)]. This contains the limiting case spelled out
at the beginning of the Appendix [(Al)—(A33)]. This
simpler case, presented explicitly for the first time, will be
used in this paper (except Sec. V). In the Appendix the
results are presented without derivations. It is hoped,
however, that this is sufficient to make the paper reason-
ably self-contained. If the reader accepts the expressions
derived for A, and g [(2.10), (2.11) and (3.6), (3.7)], since
they can be verified through direct substitution in the
self-duality equations, even the Appendix is unnecessary.
That however cannot, evidently, give any understanding
of the structures involved.

II. NOTATIONS AND 1-POLE SOLUTIONS

Let (t, r, 0,$) be the usual spherical coordinates and

Let M~ and M2 be two functions of (R i—t), arbitrary to
start with. Define

W =M&M~e sin —,(co —0)+M2M2e cos , (ro——0) .

(2.9)

It can be shown that the following X and g satisfy (2.7):

A, =(2N) 'e'(M2Mqe —M~M~e )sin(co —0),
'M)M2e" .

(2.10)

(2.1 1)

They can be extracted from the 1-pole solution (A25) of
G~(phys). [But, if one is so inclined, one can verify by
direct substitution of (2.10) and (2.11) in (2.7) and ignore
the derivation in the Appendix. ] In this particular case
the solution can be considerably simplified by making the
spherical symmetry explicit with

z = —,
' (r +it), z = —,

' (r it), —

y =e -tan —,y =e .tan —.2' 2

(2.1)
and discarding a vanishing factor c in k and the deriva-
tives of g (since only ratios appear in the A' s). Define

(M~/M2) p=f(z) (M&/Mp) p=f (z)
The flat Euclidean line element is [z= —,

' (r +it)], (2.12)
ds =dr +dr +r (dH +sin Hdg )

=4dzdz+4r (1+yy) dy dy . (2.2)

Only SU(2) gauge fields will be considered. Let A, be a
real function of the coordinates and g be another one, in
general, complex. Define

1, —, 1
A, = sinH (e" ffe ")= —sinH

2r 2J
(2.13)

where the function f is to be chosen to ensure desirable
properties. It can be shown that (for c~0) one ends up
with

0
D=A. r

A„=(iB„D)D

(2.3)

and

g =cosH —,
' 2f = —,K—cosH .

dZ
(2.14)

a A.

=i (2A, )
P

A„=(iB„D ')D

a A,

= —i(2A, )

ag
—a k

P
(P =y, z ),

(2.4)

(2.5)

The relation

BzBz(lnJ) = (J KK —1)
r

(2.15)

0 iJK

is crucial for self-duality.
In terms of (t, r, 0,$) one obtains the familiar-looking

expressions (o's being Pauli matrices)

and

,
~'+00

G=D D=A. (2.6)

A, =a,lnJ, A„=—a,lnJ, A~ ———,2' " ' 2

0 JK O3
A ~

——sinO —,
' — —cosO

—iJK 0
(2.16)

R =(r +c 2cr cosO)'—
R cos(co —0) = r —c cosO,

R sin(co —0)=c sinO .

(2.8)

The self-duality constraints for the gauge potentials
reduce (with G, =B,G and so on) toP7 p

r (G, G '), +(1-+yy) (G~G ')-=0 . (2.7)

Let c be a constant parameter (real for the present case)
and R and co, respectively, the radial distance and the axi-
al angle with the origin at (0,0, c) on the 3-axis. Then,

Define

Z= Ilt le", re= IIt e-"
The gauge transformation

A„=VA„V '+(ia„V)V-
—I bo 3/2

giveswhere U=e

A, =B„ln(J
l

K
l
), A„= —B,ln(J

l

IC
l

)

(2.17)

(2.18)

(2.19)
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CT2 0) 03
Ae= —J

I

K I, Ay =»noJ
I
K

I

—cos~)
2

'
2 2

Here

and

drS~ ——1 . (2.31)

J
~

K
~

=r(e" ffe —")

dj"
dz

1/2

25
dz 0& t & T=2~/k . (2.32)

The total action integrated over t C [ —ce, oo ], of course,
diverges.

For (2.21), consider the action Sz. over one period

ff —2(z+z)
)
—1

X (fe ') (fe ")
dz

1/2

(2.20)

With a factor 47r from integrations over 9 and P
T 00

Sr 47——r f dt f dr Sg

For f=1 one gets the static, charge lsol-ution For. a
periodic generalization set

=4~ f dt f "dr(a„+ia, )(a,H) .

Since singularities in the finite region are avoided

(2.33)

e
—2kz

2kzaj+e
( 2z = r +i t ), (2.21) S =4vr f dt(a, H)„": +4tn f 'dr(a, H)', : (2.34)

with

k&0 and ~aj~ &1. (2.22)

Sz can be evaluated in several ways. The value turns out
to be continuous at a~ =0 (for all j), where it is very sim-
ply obtained to be

(For simplicity I have set each kj ——k &0. This is not the
most general choice possible. )

Note that for
Sz- ——4vrT(2nk+ 1) T = 2&

k
(2.35)

aj ——0 and aj =1 (j =1, . . . , n), (2.23) There is a discontinuity at
~

a~.
~

= 1, where

T =2m/k . (2.24)

one recovers the static case (f =1) with rescalings of r.
Otherwise f is periodic with a period

Sz- 4rrT(nk +——1) . (2.36)

This is a frontier feature. For
~
aj

~
& 1, divergences ap-

pear.

The choice (2.21) is excluded if one demands a finite ac-
tion over t E [ —oo, ao ]. But now one aims at a finite ac-
tion over one period only. This opens up the above possi-
bility. Moreover the Ansatz (2.21) turns out to be the sirn

plest member of a canonical hierarchy (See the follo. wing
sections. )

Define

III. 2-POLE SOLUTIONS

This corresponds to the solution G2 described in the
Appendix from (A28) —(A33). Let c be a complex param-
eter (eventually restricted to be purely imaginary) and de-
fine

n
1h=k

lkt+ l — —fkg+
(2.25) R =(r +c 2cr cosO—)'~

R =(r'+ c —2cr cosO) '~ (3.l)

As r~0,
ff~1 —2hr+2h r

and, indeed (for
~
aj & 1), while ff= 1 for r =0,

(2.26)

c sinO c sinOp=- ) ~R+r —c cosO R+r —c cosO

In terms of these and two functions

ff & 1 for r & 0 for all t . (2.27) f, (R —it), f, (R —it) (3.3)

dz
Inff —2a, (rh) .

dz

This ensures regularity as r varies. Also as r~0

(2.28)

define

( 1 +PA)M 1 ]M/z ( 1 +i'L ') '( 1 +p') 'M»M»

(3.4)
Apart from normalization and trivial angular integrations
the action density ( =TrF„„F"')reduces to

S„=a,a, [ —lnJ+ —,'(J (K
(

) ]=a,a,H . (2.29)

For f= 1, the PS case,

with

Mjj ——1+f&f&e ' + I

(j =1,2),
M(z ——1 f )fze— (3.5)

dK=2, J ~K
~

=r(sinhr) ', a, a, =
r2 ' (2.30)

Mz) ——M)z ——1 f,fze——2R

From (A31)—(A33), substituting in (2.6), one can extract
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lory, —M (1+PAL) (M)1+M22) —(1+P, ) M12 —(1+@ )
'

M21
p p

(3.6)

(1+pp, ) 'M)1 —(1+@ )
'

M21 f2e — (1+irp) 'M22 —(1+p, )
' M)2 f)e

p p
(3.7)

That this pair (A, ,g) satisfies (2.7) can again, in principle,
be verified by direct substitution. Such a verification will,
presumably, be far from simple.

For

—k(R —it)
I

b) +e
(3.1 1)

and

f) =f2=1 (3.8)

C= = —C 7 (3.9)

one obtains the Euclidean version of a static monopole of
charge (Refs. 13 and 14).

As a generalization of (2.21) introduce the Ansatz
(k)0)

As before, this is not the most general possibility, but suf-
ficient to illustrate nontrivial periodicity.

Case l. A rescaled and gauge transformed static solu-
tion (ai bz ——0,——j= l, . . . , n): This is not a new solution.
But the reason for displaying certain features of this case
will be appreciated in the following subsection. Little un-
necessary repetition will be involved.

For a~ =0, bj =0 (j =1, . . . , n),

—k(R —it)+a& ~e
k (R —it)

az +e
(3.10)

—2nk(R —it) ~ —2nk(R —it)=e &2=e

Substituting in (3.4)—(2.7)

(3.12)

( 1+—
)
—2( 1 + —(p +1)(R ~R ))2 ( 1+ 2) —1( 1+—2) —1( 1

—(p+ 1)2R)( 1
—(p +1)2R)

( 2 k) (3.13)

g —1 r — M ——1 2(1+—
)
—1(1+ —(p+1)(R+R)) (1+—2) —)P (1 e (P+1)2R)—

(1+ 2) —1p (1 —(p+1)2R)

p
(3.14)

—iP(M —1 (1+—
)
—I(1+ —(P+1)(R+R))( (P+1)R —(P+1)R)

+ (1+—2) —1p (1 —(p+1)2R) —(p+1)R (1+ 2) —1~(1 —(p+1)2R) —(p+1)R

p p

e
—lPt (3.15)

A gauge transformation by

ipto 3l2U=e (3.16)

I

Assuming absence of singularity for finite r, the three-
dimensional integral for the Euclidean energy (E) can be
evaluated as a surface integral in a well-known fashion
and gives

gives an explicitly static form of the gauge potentials. It
can be verified that it is entirely a rescaled version of (3.8).

One has, for the transformed static A's (with A,„=B„A,,
etc.),

2

2TrA, '= +p +, t(217l+q„q„+p(qq„+qadi„)]

E =2(p + 1)4vr (p =2nk ) . (3.19)

The factor 2 indicates charge 2. The factor (p + 1) plays
the role of a scale factor which (along with 4') is ab-
sorbed in the definition of the topological charge. For

2

(2TrA, )„„=p+1 —— +O(r ') .
2
T

(3.17)

(3.18)

one gets back the standard charge-2 case.
For (3.19) to be valid, one must ensure regularity for fi-

nite r. Two critical regions need careful study

0=0 and 0=—.
2
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Without going into details we recapitulate some crucial
features useful for the periodic case to follow.

(i) 8=0. From (3.1), (3.2), and (3.13) with c=icp (cp
real),

M =M()+O(8 ),
where

—k(R —it)

n J

+ k(R —it)Qj+e

r. (
—k (R —it)

g ) k(R —it)
(k &0) .

(3.29)

M() ——(1+e '~+ "")
—2(p+1)(r+ic() ) —2(p+ ) )(~ —(~0)—(1—e 1 —e (3.20)

In (2.21) it was sufficient to impose (2.22) (
~
aj

~

&1) to
avoid divergences, since

~

e
~

=e ""& 1. Now there is a
difference. Setting (with c =icp cp real)

Hence for

(p+1)cp ———(p =2nk),
2

(3.21)

R =(r cp —2ircp—cos8)' =R) +iRz

the real part R1 can be negative. Thus, for

r « cp, R, = r cos8+ O(r ')

(3.30)

(3.31)

and

M() ——0, M=O(8 ), (3.22)
which is negative for 0& ~/2. For r & Cp, R1 can always
taken to be positive and since

X=O(9 ) as 9~0 . (3.23)

This condition turns out to be crucial to eliminate a singu-
larity at the origin. Et is known from the p =0 case. ' '
[The condition fp

——0 of Eq. (5.33) of Ref. 7 is related. ]
(ii) 9=m/2. For r &cp,

for

R1 R1 q2 I 2

+1— = 2cos 0
Cp Cp Cp C

(cp, R1 & cp
2 2

(3.32)

(3.33)

and

R =i(c() r)'~ =—i 5( = —R)— (3.24) Hence it is sufficient to choose

/ al /

and
f bj

/

& e (3.34)
—lCp

r+i6

1/2
r —i6
r+i6

Substituting in (3.14) and (3.15)

„rsin(p + 1)6—5 cos(p + 1)6
r sin(p + 1)6+5cos(p + 1)6

0 & 5 & c() (p =2nk),

(3.25)

(3.26)

to have f),fq finite everywhere. Divergences in f),f2

need not be unacceptable for all types of solutions. But
(3.34) will be assumed in the following.

Let us examine now the two critical domains for all
Values of t

(i) 8=0. It was pointed out, following (3.23) that the
condition

(3.27)
M((9 p) =0 (3.35)

Since logarithmic derivatives are involved, for regularity,
the numerator and the denominator of A, should not be
separately zero. The choice

turns out to be necessary to avoid a singularity at r =0.
Now for 8=0 (p =O=P), from (3.4) and (3.5),

™11~22™12~21

(p + 1)cp ———
2

again plays a crucial role. For this choice

r sin(p+1)5~5cos(p+1)6

both vanish only for

r=0
and

6=0 or r =cp,
(3.28)

For 0=0,
R =v —icp, R =r+icp

Hence, if for 0=0,

f)e '+f2e
(3.35) is satisfied. A solution is

(2nk + 1)c() ———,2'

(3.36)

(3.37)

(3.38)
and then they vanish simultaneously their ratio being fi-
nite. (One can start with r & cp and come to similar con-
clusions. )

These two domains (8=0,vr/2) fix the parameters and
no difficulty arises elsewhere. ' '

Case 2. Periodic solutions. Consider now nonzero
values of a's and b's in

—ik(6 —t)aj+e
ik(5 —t)Qj+e

(3.39)

(ii) 8=sr/2. The situation is now to be compared to
that analyzed in (3.24)—(3.28). Using (3.24)
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b + +ik(5+t)
i@02—:e '

(co2 real) .—k 5b + —ik(5+t)

Define (for O=7r/2),

(3.40) a+e ik(5 —t)

a+e —ik(5 —t)

Assume further

ik(5+ t)b+e i 2(+P—5)
—ik(5+t)

=e
e

(3.49)

i 2g ~ ~ i 25 i 2(5+~2—m))=J 1J2e (3.41) ia
/

and /b
/

«1. (3.50)
The fact that iM [see (3.25)],fi, and f2 are all phases leads,
remarkably enough, to the result that for

O=~/2, r (cp,

Up to first order

1+(ae iks —beiks) ikt
(

iks h
—iks) —ikt

=0

, r sing —6costit
r sing+ 6 cosg

(3.42)

(3.43)
Hence, from the real parts

i2[+P—i2k+iis] (3 51)

As compared to (3.26) and (3.27), the only change is that
(2nk+1)6 is replaced by

l=cos2[+p —(2k+1)6] . (3.52)

For 5=0 (r =co) P=O and for 6=co (r =0),P=7r/2

1/J =5+ CO 2
—N i

Define

r 6=cosp, =sinp .
Cp Cp

(3.44)

(3.45)

co ——(2k +1)
2

Because of (3.48) again 0&(2k+1)6&tr/2. Thus as for
the static case, zeros can arise only for

e' &=fif2e' = =e-' ~..25 r+i& + 2

r+i6 (3.46)

when 0 & f3& vr/2. For the numerator or the denominator
of t(, to vanish one must have (with upper and lower signs,
respectively)

r=0 and r=cp . (3.53)

Now the imaginary, time-dependent part must also be
considered. Using (3.48), without any further real restric-
tion one can set

It has to be assured that they vanish (if at all) simultane-
ously leaving X nonzero and finite.

To analyze the situation further, consider the simpler
forms (with n = 1)

—k(R —it)

1 k(R —it)

Then from (3.51) and (3.52)

4 a
~

sin(5+co)coskt = —sin2[+ p —(2k + 1)6]=0 .

Hence

(3.54)

(3.55)

—k(R —it)+e
k(R —it)

Now (3.38) imposes

(2k + 1)co ———
2

and

&kco
ae =be

and (3.46) reduces to

(3.47)

(3.48)

coskt =0 . (3.56)

Thus, up to first order in the parameters, the situation
remains [apart from the additional condition (3.56)] the
same as for the static case. The numerator and the
denominator of k vanish only and simultaneously for
r=0 and 5=0 (and kt=+tr/2), leaving k finite and
nonzero. The properties of alt are difficult to analyze for
the full expressions (3.39), (3.40), and even for (3.47). This
will not be attempted in this paper.

Action over one period. Consider now the action. For
static self-dual solutions the action density is

Vg —,TrF„F" =r sinO t)„r t), + (t3esinOt)q+tl~ ) (T„A, ) .
r r sinO

(3.57)

This no longer holds for periodic solutions. But since the solutions do not depend on P (the azimuth) using self-duality
one can show

V g , TrF&„F""=— (3.58)
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(For solutions both static and axially symmetric the two
expressions can be shown to give identical results. ) For
our 2-pole solutions (3.58) is still too complicated to use as
such. In addition, we have not fully explored the regulari-

ty constraints on the parameters, which is necessary to
make eventual surface integrations valid. So we fall back
on the first-order development considered following
(3.49). After the discussion for the critical regions
(8=0,wr /2) it is not difficult to convenience oneself that
(up to first order in a and b) there is no special problem
elsewhere. Moreover, now the integration of the action
over one period T( =2wrlk) presents no problem. Set

—2k(R —ir)( ~, k(R —it) — —k(R —it))J ] =e f, 1+ac —ae (3.59)

=4m. T2(2k + 1) . (3.60)

For n factors

and develop similarly f2. The terms of first order in a
and b being a11 periodic will be annihilated by the time in-

tegration giving [using (3.19)]

Sw =T (static action over three dimensions)

where R =(r —c() —2icpr cos8)'~ . Substituting in (3.6),
(3.7), and using (3.5) it is seen that all terms periodic in t
disappear except an overall factor e "in g which can be
gauge transformed away [as after (3.15)]. A study of this
Ansatz will not be undertaken in this paper. One can con-
jecture that this provides a direct generalization of
Witten's solutions to Atiyah-Ward' (AW) class 2.

V. A FURTHER GENERALIZATION

In the Introduction a generalization of static BPS
solutions was mentioned. It uses the transformation

r+it =tanh 2 (p+iw), pE[0, co], wE[ —wr, wr] . (5.1)

Static, finite-action solutions (in four dimensions) can be
constructed which are "w static" (independent of w). But w

dependence can also be considered. The necessary linear
pair formalism is summarized in the Appendix
[(A34)—(A48)) .

To generalize the 1-pole solution (2.19) define

ST——4wrT2(2nk + 1) (T =2wrlk) . (3.61)

This is of course to be expected, since the action, when fi-
nite, should be independent of the parameters (a, b). Now
using the argument of continuity one can say that the
value (3.60) should hold for a certain domain of the values
of a and b until singularities are encountered. We have
already introduced the restrictions (3.34) and (3.38). For
0=~/2 our study has been limited to linear deforrnations.
Our results remain incomplete in this sense.

sinhp

e i' f(z)f(z)—e

K= 2af—,K= 2afdf — df
dz dz

Here a is a real parameter and

f=f(z)=f(p+iw) .

The formalism of the Appendix leads to

(5.2)

(5.3)

(5.4)

IV. NONPERIODIC EXAMPLES: WITTEN'S
SOLUTIONS AND A POSSIBLE GENERALIZATION

As remarked in the Introduction our technique is not
limited to periodic solutions. For the 1-pole case, instead
of (2.21), set

For

A, =() in(& [K ), A = —(),»(& [K [
)P 2

(5.5)
672 0( 03

Ae= —J ~K ~, A&
——sin8J ~K

~

—cos8
2

'
2 2

aj —2zf=e"Q ' (2z=r+it)
) aj+2z

with

(4. 1)
f=1, a=2, 3,4, . . . , (5.6)

one gets instantons (or "hyperbolic monopoles") of ac-
tion

S=gwr (a —1) . (5.7)
a +ai. &0 (j =1, . . . , n) .

(4.2)

Substituting in (2.19) and (2.20) one gets immediately
Witten's solution' for index (n —1). This arbitrary index
is obtained in one single step (with 1 pole at the origin)
solely through the freedom of choice of f. Compare the
results of Refs. 16. There the index of the 't Hooft solu-
tion obtained through an analogous method is related to
the number of poles or iterations.

For the corresponding Ansatz with 2 poles one can try,
instead of (3.10) and (3.11) [and remembering (3.33)]

a2 —(R it)—
f) =e' '" g (ai+ai &2cp),

a, +(R it)—

p~r'/a, ~~t'/e,
A, ~aA, , Az~aA„(a~ ce ),

(5.8)

gives back very simply the monopole of charge 1. In this
sense one can attempt a generalization of the periodic An-
satz (2.21), setting

—ka(p+i ~)
J

ka(p+i ~)
J

(5.9)

(For noninteger values of a, there are either divergences or
branch points in the A' s.)

The rescaling (A44),

(b2+bj & 2cp),
b, —(R it)—f2=e" "'
b, +(R it)— (4.3)

Since ~ anyhow has a range 2n. one can integrate over the
whole four-dimensional domain (taking integer k for ex-
ample) without being restricted to one period T as before.
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S= 8sr n ( ct n—) (a = n + 1,n +2, . . . ) . (5.10)

Thus for each class one has an infinite sequence. But for
a given u no free parameters are left.

The ~-dependent generalizations will provide a further
explicit solution in the higher AW classes. The maximal
number of parameters one can incorporate through this
particular approach and their domains compatible with fi-
nite action should then be studied.

One can next go on to analogous generalizations of multi-
ple Ansatze such as (3.10) and (3.11).

The ~-static solutions provide explicit construction of
instanton sequences in successive AW classes, the class be-
ing given by the number of poles. For n poles

choices of fj's should, of course, be investigated. Time-
dependent poles should also be explored.

It is known that breaking axial symmetry by introduc-
ing P dependence" ' involves considerable computational
difficulties. To start with, P dependence enters into the
poles in a quite complicated fashion. Our idea was that,
keeping axial symmetry, introducing time dependence
might be simpler. Indeed it has turned out that one can
obtain new, interesting solutions by preserving the simple
pole structure (apart from rescalings) and introducing
time solely through the row vectors M'"' of (1.13) [or
rather through such ratios f~ as in (A30)]. Moreover this
t dependence can be injected in a remarkably simple
fashion thanks to the feature [see (A20)]

VI. REMARKS

P~(p~ ) = —,(c~. —R~ +it),

p2(pi ) = —, ( —c~ —RJ. + it ) .
(6.7)

Our study of even the 2-pole solutions (Sec. III) remains
incomplete. But the canonical structure emerging is easy
to see. Define

R =r +c —2c r cosO,

R.=r +c 2c r cos6. —(j=1,2, . . . ),
(6.1)

and

cjsinO
p~ =—

R~ +r —c~ cosO
(6.2)

For static axially symmetric solutions"' ' the nonzero
values of cj appear in purely imaginary conjugate pairs
with quantized values. For an odd number of poles,

C ) =0, Cpj =C2J+ ) =l7TJ (J = 1,2). . . )

For an even number of poles

(6.3)

77c2~, c2, i(2j ———1)——— (j =1,2, . . . ) . (6.4)

For our case (as in Sec. III) we have to rescale such se-
quences suitably. An example is (3.21), which gives [in-
stead of (6.4) with j= 1]

l 77

2(2nk + 1)
(6.5)

Generalizing

fj= H

(2.21), (3.10), and (3.11) define for m poles

( )
—k(R —it)

a +e (j=1,2, . . . , m)—"+ "' '" (6.6)

which is only a particular, relatively simple possibility.
The problem of making the regularity constraints explicit
will increase with the number of poles. But one can at
least study linear deformations (first order in the a' s)
about static solutions as was done in Sec. III. Moreover
properties such as (3.37), (3.42), and (3.43) are encourag-
ing. One can reasonably hope that for an arbitrary num-
ber of poles certain aspects will remain (for our Ansatz)
formally close to the static limit (a;=0). One can en-
visage similar generalizations also for the form alisms
sketched is Secs. IV and V. Other possible interesting

Dropping the P-dependent B in (A20) we have taken the
M'"'s to be functions of P& and P2 and hence of (RJ it)—
for pj. We know of no systematic method of finding
solutions of (A9) and (A12). The results finally obtained
are showing agreeable properties. The generalizations
(A48) are also noteworthy. Our formalism (the Appendix)
also permits periodic generalizations of P-dependent
(separated) monopoles. "' Explicit constructions will be
much more complicated. Linear pairs for SU(N) [Refs.
12(b), 12(c), and 7] (N & 2) can also be generalized to in-
clude time dependence in an analogous fashion. This will
lead to some new features and additional difficulties.

In this paper we have used throughout the language of
linear pairs. There are other well-known formalisms for
construction of static self-dual monopoles. (See the talks
by Atiyah, Corrigan, Nahm, and Ward in Ref. 11.) It
would be quite interesting to see the counterpart of our
generalizations in the context of other approaches. In
particular, the twistor approach' ' is closely related to
that of linear pairs. Periodic twistor solutions corre-
sponding to our hierarchy can lead to a better understand-
ing through comparison.

Nahm has pointed out that his adaptation of the
Atiyah-Drinfeld-Hitchin-Manin formalism to mono-
poles ' can be extended to periodic solutions or "calo-
rons. " He has also related them to spectral curves of
Hitchin. To see what may correspond to our explicit
constructions in such formalisms one should presumably
start with linear pairs based on the standard quaternionic
combinations of coordinates (x, +ixz, x3+ixa) rather than
(2.1) and (Al). This will complicate even the 1-pole solu-
tion of Sec. II. (A comparison of the two approaches can
be found in Ref. 9.) But even after such a reformulation,
pinning down explicit solutions in certain other formal-
isms may remain difficult.
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APPENDIX: CONSTRUCTION AND SOLUTIONS
OF LINEAR PAIRS

N Rk
g (A) = g I+ P,(A) (A7')

r (G, G '), +(1+yy) (GyG ') =0. (Al)

The construction is based on the method of Belinskii
and Zakharov. ' Forgacs, Horvath, and Palla" ' adapted
such methods to the explicit construction of static mono-
poles. Our technique will be rela'ed to theirs. But due to
our choice of coordinates the structure of the linear pair
and particularly that of the solutions of the pole equations
(to be introduced later) will be rather different. Moreover
time dependence will enter in a quite particular fashion.
(See Sec. V of Ref. 6.) The essential results are summa-
rized below.

The self-duality constraints for SU(2) gauge fields can
be expressed in terms of the 2&2 matrix G, defined in
(2.6), as (with G, = B,G and so on)

[r0, —p( 1+yy)B + ( 1+yp )]p =0,
[/ r»+(1+yy»)~y (p —y)]/ —=o

Defining

f3, (p) =(p —y) '(/tz+zy)

(A9)

(I is the 2&& 2 unit matrix).
The 2 X 2 matrices Rk (Rk ) can be constructed algebrai

cally R. k will be given below in (A14). The matrix G is
obtained from

(AS)

To eliminate double poles in the intermediate steps the
pk's satisfy the "pole equations"

Here, in terms of the standard spherical coordinates

z = —,
' (r +it),

0
y = tan —e'&,

2

z = , (r —it)—,

t9 —ip
2

=(G,G ')t/, (A2)

D~P—:(1+yy) [ArB,-+(1+yy)By+(A —y)AQ&]tl

Consider the linear pair (t/ being a 2/2 matrix and A a
complex spectral parameter)

D, g=r '[rB, —A(1+yy )8 —(1+yA)AB~]P

= —,
' [r(p —y) '(p+y)+tt],

P2(p) = (lty + 1) '(pyz —z)

= —,
' [r(py+1) '(/ty —1)+it],

B(p) =(1+py) '(p y), —

one can show that

p&(/L) =const,

pz(p, ) =const,

p(p) =const,

(A 10)

(A 10')

(A10")

=(Gy6 ')P;

D j and D2 commute and their consistency condition

[D, ,D~]Q=D)(GyG 'g) —D~(G, G 'g)=0

(A3)

(A4)

are all solutions of (A9).
The general solution of (A9) is

H(f3~(p), P~(p), B (,p, ))=0, (A 1 1)

e" 0
GQ —— „, QQ(A) =

0 ee

h(A)

—h(A)

(e= + 1) (A5)

implies (A 1).
Seed solutions of (Al), (A2), and (A3) to be used are

D;P&(A) =0, D;B(A)=0 (i = 1,2 j= 1,2) .

Define the row vectors

(A12)

where H is any function of P~, Pq, and B. The function H
has to be chosen suitably to obtain regular, finite action
solutions.

Note also that [using (A2), (A3)]

with mk M'" (pi(pk ) p2(iuk ) B(pk ) )Qk ](pk ) . (A13)

h(A)= —,
' r[(1+Ay) ' —y(A —y) '] . (A6)

(e=+1 or —1, respectively, for an even or odd number
of iterations to be performed. This will be illustrated
below. ) Now that h(A=0) =r so that pQ(A =0)=GQ.
Also

h(A)+h( —A ')=r,
Qk(A) = I+

with

&+Pkgk
0k i«)

/ k« / k)— (A 14)

The correct choice of the row vectors M'"' (functions of
f3&, f32 B) is again crucial for desirable properties.

Using (A7') it can be shown that

the overbar denoting complex conjugation.
Purely solitonic solutions can be obtained from the

"simple pole Ansatz"

(Gk, mk) Smk
~k t [Gk —1 Pk —1(A

mk Gk —lmk
(A 14')

pv(A) = I+ g gQ(A)

or, equivalently, iteratively from

(A7)

G„(phys) = Q

@krak

k=1

Finally, to assure unimodularity one defines
j. /2

G E,
'A 15)
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The iterative structure for the 6's can be shown to be M"'=(Ml(R i—t),M2(R —it)) . (A27)

I+pkuk (Gk )mk)(mkGk, )
Gg ——Gk

Pkgk (m„G„,m„)
(A 16)

Consider now some simple particular cases. For (Al 1)
choose (c being a complex constant)

I l(P) P2(P) r( I+yy)(W —V 'y+ I —yy)

=r[ —,
' (pe'~ —p 'e '~)sinO+cosO]

Go ——diag(e", e ") .

A complex-conjugate pair of poles are taken

(A28)

Only the ratio M) /M2, a function of (R —it), plays a
role. At the end one can take, in the gauge potentials, the
limit c~0. (See Sec. II.)

For two-step solutions with 2 poles,

=C (A17)
C] =C, C2 =C

(A29)

p e'~~@= —tan —,
'

(cv —O) . (A19)

[p =cot —, (cv —O) is also a solution; only (A19) will be re-
tained. ] Let the suffix j indicate the value ci of c. Then

This choice (with purely imaginary values, + in lr/2, of
c) appears in the construction of static, axially symmetric
monopoles. " ' The P dependence is trivial and can be
absorbed through a redefinition Ae'~~A, pe'~ p. De-
fine

R =(r +c —2cr cosO)'
(A18)

R cos(co —O) =r —c cosH, R sin(co —O) =c sinO .

Then from (A17) (absorbing the P dependence as indicat-
ed)

P& =P~ P2=P-
(For monopoles c = —c. ) Correspondingly we write

R (c, ) =R(c)=R,
R(c2)=R(c)=R .

Define

f)(R —it) =M'1 /M2, f2(R —«) = —M)

G, (phys) = ()cc ))Lc,)Lc2ic2)
' 'G,

1
=VP Go ——(&22 V1 V)+&» V2 V2N

—N2) Vl(8) V2 —X)2 V2 Vl )

13,(p/) = —,(ci RJ +it)—,
p2( p, ) = —,

'
( —cj —Ri +i t ),

B(p/) = —e '~tan —,
'

cod .

From (A6) and (A19),

(A20) where

——lr c (r —R )/2 —(r —R )/2s

—1& c' (r —R)/2 —(r —R j/2~V2 ——P (g 2e, e

(A31)

(A32)

= —,'(r+R ), (A21) (A33)

( 1 +pp ) (f f e ( R +R ) I2 +e ( R +R ) / 2
) (j 1 2 )

X, =(I+P ) '(f,f + )=X, ,
so in (A5)

(r + R. )/2 —(r +R. )/2
o p~ =diag e ', ee (A22)

k M ~(PI(Pk ) P2(Pk ))0k —1(Pk ) (A23)

[M'"' is independent of B(pk)]. To study "physical solu-
tions" at the first step one starts from

Go=diag(e", —e ") .

Now c& ——c is real and

(A24)

Now consider the first two steps of iteration using this re-
stricted class of poles and in (A13)

N =N)(N22 —N)2N2) .

r+it=tanh —,
' (p+ir), pE[0, oo], «[—lr, lr],

so that

(A34)

This is used in Sec. III. ,

One can continue to iterate using (A16). But we now
turn to a generalization of the formalism which gives
back the preceding results of this appendix as limiting
cases. A fuller treatment can be found in Ref. 6. Here
the main features are recorded briefly for ready compar-
1son.

Define

p) =p, )
——p = —tan —,(cv —O),

G, ( phys) = (pp, )'/2G,

=tan
z (co —O) Go-

slll 2 (cv —O)

(Gom i )(3) (m)GO)
X

(m(G()m, )

(M —(r+R)/2 M (r+R)/2)
1

and from (A20) and (A23)

(A25)

(A26)

Instead of (Al), now (with the same y,y as before)

sinh p(G, G '),-+( I+yy)'(G~G ')- =0
with

z= —,'(p+ir), z= —,'(p+ir) .

Correspondingly,

(A36)

ds =dt +dr +r (dO +sin Od(t) )

=(coshp+cosr)

X [dr +dp +sinh p(dO +sin'Od(t) )] . (A35)
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Dt t/t= (—sinhp) '[sinhpt), —A(1+yy )t)- —(coshp+y A )At)~]1/t = (G,G ') t/t,

Dzt/i—:(1+yy ) '[A sinhpt)-, +(1+yy )t)~+ (A coshp —y )At)it)t/ = (G~ 6 ')t/~ .

(A37)

(A38)

Let a be an arbitrary real parameter and

Go ——diag(e P, ee P), t/io ——diag(e", ee "), (A39)

r' t'
p= —,~= —,and let a~ ooa n

( r' & [0, co ], t ' G [ —oo, 0c ] ) . (A44)

with

h(A) (A —epy)(Ay+ep)
(A —e ~y)(Ay+ e P)

a/4

(A40)

The preceding results are obtained with r', t' replacing
r, t, respectively.

Define g(c) and y(c), for an arbitrary complex ct
through

/3, (p) = (pe '—ye') (pe' —ye ')

= (p —ye p) '(pe p —y )e",
Pz(p) = (pye '+ e') '(pye'+ e ')

=(py+eP) '(pyeP+1)e",

B(p)=(1+pyeP) '(peP y) . —

(A41)

(A41')

(A41 ")

In terms of these the pole equations [ compare with (A9)]

[compare with (A5) and (A6)].
The general structure of the solutions [from (A7) to

(A16)] remains unaltered. But now instead of (A10),
(A10'), and (A10") one has

and

cosh'/(c) =coshc coshp —sinhc sinhp cosO (A45)

/3i(p)//32(p) =e" (A46')

tany(c) = (coshc sinhp —sinhc coshp cosO) 'sinhc sinO .
(A46)

These (t/ and y) furnish the correct generalizations of R
and (co —O) of (A18), respectively. [The parameter c
comes out in regular solutions with the scaling factor a
incorporated in its explicit values, such as +tz '(intr/2)
instead of +inn/2. ]

The pole equation [compare to (A17)] is now chosen to
be

[sinhpt), —p(1+yy)t)y+ (coshp+yp )]p =0,

[p sinhpt), +( I+yy)t)y —(p coshp —y)]p =0,
(A42) and the solutions, corresponding to (A19), are

p e'~~p = —tan —,
' y(c) . (A47)

have the solutions

H((3, (p ), /32(p ),B(p ) ) =0 . (A43)
Substituting (A47) in (A40), (A41), and (A41') and using
(A45) and (A46), one has the remarkable simplifications

This formalism [from (A37) to (A43)] contains the
preceding one [from (Al) to (A16)] as a simple scaling
limit.

Define, using the parameter a of (A39) and (A40),

h(p) a(p+n)/2 rt ( )
c —g+ir

19& p =e

/I2(p)=e ' '+" [n=n(c)l.
These generalize (A20) and (A21).
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