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Effective gauge action on a finite-size lattice
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We present evidence to support the idea that finite-size effects for Monte Carlo simulations of
gauge theories on a lattice may be represented by an effective action which could be measured for
the particular lattice at hand. For SU(2) lattice-gauge-theory simulations this implies a shift in the
coefficients (inverse coupling parameters) of the character expansion of the action being simulated.
This shift can be measured and is observed to occur as expected in the crossover region and beyond
into the weak-coupling domain.

I. INTRODUCTION

It is expected, and indeed already observed, that any
simulation of a gauge theory on a finite-size lattice would
show "finite-size effects" in the measurements of all
operators on the lattice under consideration. These effects
are expected to be most pronounced for regions of the
coupling where the correlation length grows beyond the
size of the lattice; and a theory for how particular opera-
tor expectation values scale with lattice size is known. '

For example, the average of the simplest observable, the
trace of the Wilson plaquette, shows such behavior and is
known to obey these scaling laws. Shifts in the expected
location of known phase-transition points have been ob-
served on finite lattices for models where such location is
calculable exactly.

It is also implicitly assumed, based on general theorems,
that the parameters of the action being simulated in a
Monte Carlo calculation provide a correct description of
the configurations generated by this simulation f'or a finite
lattice. However, in view of the observed dependence of
various physical quantities on the size of the lattice this
assumption may not be strictly true. Any measurement of
these parameters would reflect these finite-size eff'ects and
lead to an "effective action" which, through modified pa-
rameters, would account for these finite-size effects. We
propose to test this possibility here using a method, intro-
duced earlier, which allows us to determine the action
directly from the Monte Carlo —generated configurations.

Consider, in light of the above, the character expansion
of the Boltzmann factor of the action. The Boltzmann
factor is

F( Uz) =exp[S(U~)],

where Uz indicates the product of gauge group elements,
defined over links, taken over simple four-sided pla-
quettes. The action S is defined by

S= QP„X„(v,),

The Boltzmann factor for each plaquette may be also
character expanded. We use the form

Fp ——g f„d„x„(U~), (3)

where d, is the dimension of the r th representation.
Orthonormality of the characters implies that

f„= ' f dv, F, (v, )x„(v, ) .
T

(4)

Note that the measure is over the group space of the
plaquette variable. It is clear that a knowledge of the
coefficients f„ is equivalent to a knowledge of the p„as
we have

p„= f d ( Uz )lnF& ( U~ )X„(Uz ) .

Note here that the measure is over the group space of
the basic link variables of the lattice. The product over
the measures of link variables may however be
transformed to the measure over the group space of the
plaquette variables of the lattice with an appropriate Jaco-
bian of transformation inserted.

This leads to a procedure by which the coefficients of
the character expansion of Eq. (3) may be determined.
This is based on the measurement of the ratio of expecta-
tion values of the operators indicated below

f„d„

Consider now the Monte Carlo integral for determining
the expectation value of the character of any particular
plaquette on the lattice. We have

f Q d(U()x„(U )F(U )

(x„(v,)) =
f gd(v, )F(v )

where X„(U~ ) represents the character of the group in the
rth representation and P„ is the corresponding coupling.
This is a unique expansion, so that knowledge of the coef-
ficients p„ is equivalent to the knowledge of the action.

where B(vz) represents the appropriate Jacobian factor
mentioned above.

This determination is an operational definition of the

35 691 1987 The American Physical Society



692 KHALIL M. BITAR 35

TABLE I. Measured character expansion coefficients f„d, /f, , action parameters P„and plaquette characters (P„) as a function
of the lattice size. The column L = co indicates the exact values. (al 132

——1.25. (bl f3, = 1.50.

d.

L=4

1.0427(6)

L=6

1.0378(4)

L=8

1.0371(1)

(a)

L=10

1.0361(4)

L=12

1.0358(4)

L= 14

1.0352(1) 1.0144

0.5 187(5)
0.2258(8)
0.0668(8)
0.0165(8)
0.0028(8)

1.396(12)
—0.10(1)

0.06(2)
—0.04(2)

1.3 103(3)
1.0001(7)
0.5427(7)
0.2272(7)
0.0771(6)
0.0222(6)

1.118(2)
0.688(1)
0.303(1)
0.100(2)
0.025(2)
0.005(2)

1.63(6)
—0.20(7)

0.15(6)
—0.08(5)

1.4483 (3)
1.2838 (6)
0.8373(8)
0.4304(8)
0.1810(7)
0.0636(7)

0.5798(3)
0.2265(5)
0.0655(4)
0.0158(4)
0.0022(4)

1.370(7)
—0.09(1)

0.06(1)
—0.05(1)

1.3057(2)
0.9924(3)
0.5360(3)
0.223 1(3)
0.0752(3)
0.0214(3)

1.1183(7)
0.6897(4)
0.3038(5)
0.1020(5)
0.0270(5)
0.0061(5)

1.59(2)
—0.15(2)

0.1 1(2)
—0.07(2)

1.4467(1)
1.2800(3)
0.8329(3)
0.4270(3)
0.1793(3)
0.0634(3)

0.5790(2)
0.2256(4)
0.0660(5)
0.0156(5)
0.0020(5)

1.364(6)
—0.08(1)

0.05(1)
—0.04(1)

1 ~ 3048(1)
0.9907(2)
0.5344(2)
0.2221(2)
0.0745(2)
0.0208(2)

1.1158(9)
0.6893(4)
0.3035(6)
0.1013(4)
0.0271(5)
0.0061(6)

1.55(2)
—0.12(2)

0.09(2)
—0.07(2)

1.4464(1)
1.2794(2)
0.8324(2)
0.4267(2)
0.1792(2)
0.0634(2)

0.5787(2)
0.2264(4)
0.0663(3)
0.0157(3)
0.0028(3)

1.358(5)
—0.076(6)

0.050(7)
—0.034(7)

1.3048(1)
0.9906(2)
0.5343(2)
0.2220(2)
0.0745 (2)
0,0209(2)

(b)

1.1 161(8)
0.6886(6)
0.3047(1)
0.1050(3)
0.03 18(5)
0.0078(2)

1.56(2)
—0.12(2)

0.08(2)
—0.04(5)

1.4465 (7)
1.2796(2)
0.8326(2)
0.4270(2)
0.1795(2)
0.0636(2)

0.5787(3)
0.2251(3)
0.0660(3)
0.0149(2)
0.0021(2)

1.348(5)
—0.063(6)

0.035(7)
—0.021(7)

1.3037(1)
0.9887(2)
0.5328(2)
0.2212(2)
0.0741(2)
0.0208(2)

1.1157(5)
0.6891(2)
0.03032(4)
0.1015(3)
0.0272(2)
0.0059(3)

1.55(1)
—0.1 1(1)

0.10(2)
—0.06(1)

1.4462(6)
1.2796(1)
0.8328(2)
0.4272(2)
0.1797(2)
0.0637(2)

0.5787(3)
0.2251(4)
0.0662(5)
0.0151(5)
0.0025 (5)

1.342(3)
—0.055(5)

0.027(6)
—0.012(7)

1.30411(7)
0.9894(1)
0.5333(1)
0.2214(1)
0.0742(1)
0.0206(1)

1.1142(7)
0.6892(5)
0.3029(7)
0.1016(6)
0.0272(4)
0.0059(4)

1.52(1)
—0.08(1)

0.06(1)
—0.04(1)

1.44640(6)
1.2795(1)
0.8326(1)
0.4269(1)
0.1793(1)
0.0634(1)

0.5655
0.2193
0.0650
0.0157
0.0032

1.25
0
0
0

1.1358
0.7283
0.3295'
0.1154
0.0329
0.0078

1.50
0
0
0

TABLE II. Effective action as a function of lattice size. L = m indicates values of the simulated ac-
tion.

L=4
0.912(2)

—0.008(3)
0.006(3)

—0.005(3)

L=6
0.908(1)

—0.004(2)
0.003(2)

—0.003(2)

0.907(1)
—0.002(1)

0.000(1)
—0.000(1)

L=10
0.907(1)

—0.004(1)
0.001(1)

—0.001(1)

L=12

0.907(1)
—0.003(1)

0.001(2)
—0.001(2)

0.90
0.0
0.0
0.0

1.186(6)
—0.041(8)

0.020(9)
—0.012(9)

1.159(2)
—0.031(3)

0.017(3)
—0.011(4)

1.156(2)
—0.026(2)

0.015(2)
—0.010(3)

1.156(2)
—0.024(1)

0.011(2)
—0.006(1)

1.157(1)
—0.027(1)

0.014(1)
—0.008(1)

1.10
0.0
0.0
0.0

1.51(3)
—0.14(4)

0.10(4)
—0.06(4)

1.46(1)
—0.11(1)

0.08(1)
—0.05(2)

1.44(1)
—0.08(2)

0.06(2)
—0.04(2)

1.44(1)
—0.08(1)

0.05(1)
—0.02(1)

1.43(1)
—0.08(1)

0.06(1)
—0.04(1)

1.35
0.0
0.0
0.0
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action on the lattice under consideration. Even in the lim-
it of infinite accuracy of measurement these coefficients
should reflect the effects of the finite size of the lattice
whenever these do occur. This in turn will be reflected as
a finite-size dependence of the coefficients P, of the mea-
sured action on the lattice. These coefficients may, of
course, be shifted from the parameters of the action which
is being simulated. Therefore, for any particular lattice
simulation, we have a measurement of an "effective ac-
tion" which reflects the effects of the finiteness of the lat-
tice size and which represents the true description of the
configurations generated by the simulation for this lattice.
We perform these measurements for SU(2) lattice gauge
theory for various values of the coupling and for lattices
of sizes from 4 to 14 . The main result is that a shift in
the coupling parameters is observed at each lattice size as
the values of Pz approach the crossover region and beyond
into the weak-coupling domain. The shift is most pro-
nounced for small lattices and, as expected, decreases with
the increase of lattice size.

We simulate SU(2) gauge theory using the heat-bath al-
gorithm for a pure Wilson action for character coefficient
gz up to 1.5. The effective action shows no shift for
values of Pz less than 0.9. For values larger than 0.9 the
shift grows with 13z and the effective action develops small
terms of higher-dimensional characters of the group lead-
ing to an effective action that is in general of the mixed
type.

II. RESULTS

.35 I I I
I

I I I I
I
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I

I I

1.30

We have performed measurements of the character ex-
pansion coefficients for the Boltzmann factor for the ac-
tion defined by

5 =gz[Xz(U ) —2],
where Xz is the trace of the simple plaquette in the funda-
mental representation (Wilson action). The values of Pz
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FIG. 2. Variation of the measured parameters P„of the ac-
tion as a function of lattice size for a simulation with Pz ——1.25.

reported here are 0.9, 1.1, 1.25, 1.35, and 1.5. (Note that
in this normalization our 13z is one-half the value usually
quoted in some of the literature. ) Tables I(a) and I(b)
show the results, at various values of the lattice size, for
Pz ——1.25 and 1.5, respectively. We give the results of the
measurements for the ratios of f„d„lf&

for values of r up
to 7 and the corresponding measured effective action pa-
rameters for all lattice sizes considered. The last column,
labeled L = oo, gives the exact (infinite volume) expected
values for these ratios. Also reported are the values, as
measured on the various lattices, of the Monte Carlo ex-
pectation value of the characters in the rth representation
of the group over the plaquettes of the lattice. These last
operators have the same dimension as the coefficients
measured above and hence must scale with the size of the
lattice in a similar manner. This in fact can be seen in
Fig. 1 where representative quantities are plotted together
and where each set of data is accordingly labeled: I"„
represents f„d„lf, and X„represents (g„).

Figure 2 shows the variation with lattice size of the ef-
fective action as measured for the value of 13z ——1.25. This
plot also shows the significant components of higher di-
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FIG. l. Comparison of measured values of the characters of
the simple plaquettes with the coefficients of the character ex-
pansion of the Boltzmann factor for /3z ——1.25 as a function of
lattice size.
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FIG. 3. Measured shift in the action parameters as a function
of Pz of the simulated action at lattice size 12 .
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rnensional characters generated by the finite-size effects.
Similar data for other values of /3z are given in Table II.
Note the absence of a shift for /3~=0. 9 except for the lat-
tice with size 4 . Note also that whereas a significant
shift in the coefficient of the fundamental representation
persists for /32=1. 25 even for the 14 lattice, this shift is
much smaller for the larger value of /3z

——1.5 and which is
farther away from the crossover region. In fact one can
see a trend that indicates that the simulation for larger
lattices has effective action parameters in the fundamental
representation closer to the intended values for values of
/3q further away from the crossover region than for these
closer to it. However, the coefficients of higher dimen-
sional characters grow with /32, although their actual mag-
nitudes are smaller for larger and larger lattices as can be
seen from Tables I(a) and I(b). We show this trend for the
lattice 12 for the first four /3z in Fig. 3.

III. DISCUSS ION

The determination of the effective actions above is done
using our method of Ref. 3. Several observations lead us
to believe that this determination is accurate. First, for a
large range in coupling there is no shift observed and our
method gives a very accurate determination of the un-
shifted action. Second, the shift is observed and increases
gradually as one approaches the crossover region where
the correlation length increases and where such a shift, if
it exists, is expected to be. Third, the measurement pro-
cess can be effectively shifted to regions of /3z where the
method is known to be accurate and the shift is still ob-
served. This is done by measuring the character expan-
sion of the action being simulated minus a term whose
coefficient can be tuned at will. It is clear that if one
measures in the manner of Ref. 3 the expectation value
over plaquette variables of X„(U~ )exp(S') instead of
Y, ( Uz ), then one is measuring the expansion coefficients
for S+S'. By choosing S' at will one can put this sum in
the range of coupling where our method is known to be
accurate. For example, if S' is taken as —0.5[Yq(U~) —2]
for the point /32

——1.25, one, in the absence of a shift, ex-
pects to measure the resultant action as one with
/3z

——1.25 —0.5=0.75. The result on the 8 lattice is how-
ever /3~=0. 864, /33

———0.08, /3~=0 05 which is t.he "true"
shifted action as measured on that lattice directly plus the
parameter /32= —0.5 introduced by hand. In fact, one can
vary this parameter at will and in all cases the coefficients
here reflected the same shift as the case with S'=0 indi-
cating that S itself has this shift and it is not an error of
measurement. Further, if one performs tests similar to
the above in the range of /3q where no shift is expected, no
shift is observed and this assures us that the process indi-
cated above is an accurate procedure. Fourth, the coeffi-
cients of the character expansion of the Boltzmann factor
have the same dimension as the simple Wilson plaquette
and hence are expected to scale with volume in the same
manner. This is borne out by the data for all values of /32

for which measurements were taken.
All these measurements were done after the lattice pa-

rameters were observed to stabilize indicating that equili-
bration had been reached. This typically meant taking
about five thousand sweeps on a 4 lattice, ten thousand
sweeps for a 6 lattice, and over twenty thousand sweeps
for 8 and 10 lattices and higher. In the case of /3=1.25
on an 8 lattice there was no measurable change in the
shifts even after eighty thousand sweeps, clearly indicat-
ing that the measured shift is not merely a consequence of
lack of equilibration unless the equilibration rate is ex-
tremely slow. In fact, using our method of Ref. 3 we have
performed a quantitative assessment of the approach to
equilibration. One observes a clear approach to an equili-
brium value for the measured action as the number of
Monte Carlo sweeps increases. For, whereas it is a matter
of 100 sweeps at /3q

——0.8 for a 8 lattice to converge to an
unshifted action, the number rapidly increases to twenty
thousand at /3~=1.25 to converge to the shifted action
quoted above without any further and noticeable change
beyond that. A more detailed presentation of this study
will be given elsewhere.

Finally a word concerning the finite-size dependence in-
trinsic to the method we have used. As pointed out in
Ref. 3 the Jacobian of transformation from link to pla-
quette variables consists, in the case of a finite lattice with
period boundary conditions, of two types of terms. The
first type are 6 functions over the boxes of the lattice, the
"box" terms mentioned above and these also exist for an
infinite lattice, and the second (see Ref. 5) are 6 functions
over a whole plane traversing the lattice, one per type of
plane, and these do not exist for the infinite lattice. These
planar 6 functions are known strictly for Abelian gauge
theory and require that the product of all plaquettes on
the plane be equal to unity. Their argument is not as sim-
ple for the non-Abelian version and is not known in a
simple closed form in terms of plaquette variables alone.
In order to estimate the influence of such terms on our
measurement. We have implemented these planar 6 func-
tions assuming the argument to be that of the Abelian
version and found an insignificant change from the results
obtained in their absence except in very small lattices of
size 2 . This is partly due to the strong damping factors

2
of (2/+1) ' multiplying each term of spin J in the
factorized form of the character expansion of such 6 func-
tions and where I. is the area of the plane. These quick-
ly damp out all terms except the identity for L greater
than four. Thus barring some unforeseen influence of
precisely such unknown terms we do not expect them to
influence the result beyond the errors we are able to get
without them.

Thus, in view of the above, we interpret our results as a
measurement of the "effective finite-size action" for the
simulations under consideration.

IV. CONCLUSION

The main observation we can make is that the effective
coupling parameters in any lattice-gauge-theory simula-
tion are not generally those intended by the simulation ex-
cept in regions of parameter space describing small corre-
lation lengths and the impractical but realistic case of
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infinite-size lattice. For all finite-size lattices and values
of the coupling parameters where the correlation length is
expected to grow, the parameters of the effective mea-
sured action show a size-dependent shift from the intend-
ed values. We have reported here on such measurements
for the range in P2 of interest for SU(2) gauge-theory
simulations. Knowledge of such shifts should be of im-
portance primarily for calculations and data fits that de-
pend crucially on the precise values of these parameters
such as measurements of critical exponents, location of
finite-temperature phase transitions, location of other
phase transitions, measurement of glueball masses, and
the like.
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